
Techniques and Processes for Improving the
Quality and Performance of Open-Source Software

Adam Porter, Cemal Yilmaz,
Atif M. Memon

Arvind S. Krishna, Douglas C. Schmidt,
Aniruddha Gokhale

University of Maryland Vanderbilt University
College Park, MD Nashville, TN

Abstract
Open-source development processes have emerged as an
effective approach to reduce cycle-time and decrease de-
sign, implementation, and quality assurance costs for
certain types of software, particularly systems infrastruc-
ture software, such as operating systems, compilers and
language processing tools, text and drawing editors, and
middleware. This paper presents two contributions to the
study of open-source software processes. First, we de-
scribe key challenges of open-source software and illus-
trate how quality assurance (QA) processes – specifically
those tailored to open-source development – help miti-
gate these challenges better than traditional closed-
source processes do. Second, we summarize results of
empirical studies that evaluate how our Skoll distributed
continuous quality assurance (DCQA) techniques and
processes help to resolve key challenges of developing
and validating open-source software. Our results show
that: (1) using models to configure and guide the DCQA
process improves developer understanding of open-
source software, (2) improving the diversity of platform
configurations helps QA engineers find defects missed
during conventional testing, and (3) centralizing control
of QA activities helps to eliminate redundant work.

Keywords: Distributed Continuous Quality Assurance,
Model-driven Approaches, Skoll, and Software Quality

1. Introduction
1.1. Enablers of Open-Source Success

Over the past decade, open-source development proc-
esses [O’Reilly98] have demonstrated their ability to re-
duce cycle-time and decrease design, implementation,
and quality assurance (QA) costs for certain types of
software, particularly infrastructure software, such as
operating system (OS) platforms, web servers, middle-
ware, text and language processing tools, and sys-
tem/network support tools. These projects generally ex-
hibit common properties. First, they are general-purpose,
commoditized systems infrastructure software, whose re-
quirements and APIs are well known. For example, the
requirements and APIs for Linux, Apache, C/C++ com-
pilers/linkers, and JBoss/CORBA middleware are well
understood, so less time and effort is needed for up-
stream software development activities, such as require-
ments analysis or interface specifications. Second, they

service communities whose software needs are unmet by,
or are economically unappealing to, mass-market soft-
ware providers. For example, the Linux-based Beowulf
clusters and the Globus middleware for Grid computing
were developed in the scientific computing community
in part because their high-end computing applications
run on specialized platforms that were not the focus of
the traditional mass-market desktop and server suppliers.
In addition, they are often applied by relatively sophisti-
cated user communities, who have considerable software
development skills and knowledge of development tools
(such as debuggers, configuration managers, bug track-
ing systems, memory leak/validation tools, and perform-
ance profilers) and collaboration mechanisms (such as
web/ftp-sites, mailing lists, NetMeeting, and instant mes-
saging). When these users encounter bugs or software
configuration problems they can often identify/fix the
problems and submit patches.

From a software perspective, the open-source projects
outlined above have generally succeeded for the reasons
described below.

1.1.1. Scalable division of labor. Brooks’ Law states
that “adding developers to a late project makes it later”
[Brooks75]. Open-source projects often exploit a “loop-
hole” in this law, namely that software debugging and
QA productivity do scale up as headcount increases be-
cause the more people testing the code, the more defects
will be detected. All other things being equal, therefore,
we would thus expect a team of 1,000 testers to find
many more defects than a team of 10 testers, a phenome-
non referred to in the open-source community as “to
enough eyeballs, all bugs are shallow” [Raymond98].
QA activities also scale well since they do not require as
much inter-personal communication as software develop-
ment (particularly analysis and design activities).

To leverage the scalability of open-source QA processes,
successful projects are often organized into a “core” and
“periphery” structure where a relatively small number of
core developers ensure the architectural integrity of the
project, e.g., vetting user contributions and bug fixes,
adding new features and capabilities, and tracking day-
to-day progress on project goals and tasks. In contrast,
the periphery consists of the hundreds or thousands of
user community members who help test and debug the
software released periodically by the core team. In some

open-source projects, the distinctions between core and
periphery are informal and fluid, e.g., participants can
play different roles at different times [Mockus02].

1.1.2. Short feedback loops between the core and the
periphery is one reason for the success of well-organized,
large-scale open-source development efforts, such as the
Linux OS, Apache web server, and the ACE+TAO mid-
dleware. In these systems, for example, it often takes
just a few minutes or hours to detect a bug at the periph-
ery, report it to the core, and receive an official patch
from a core developer [Mockus00, Osterlie03]. More-
over, the use of Internet-enabled configuration manage-
ment tools, such as the GNU Concurrent Versioning Sys-
tem (CVS) or Subversion, allows open-source users in
the periphery to resynchronize quickly with updates and
fixes supplied by the core.

1.1.3. Effective leverage of user community expertise
and computing resources. In today's time-to-market-
driven economy, few software providers can afford long
QA cycles. As a result, nearly everyone who uses a com-
puter – particularly software application developers – is
effectively a beta-tester of software that was shipped be-
fore all defects could be identified and removed. In tradi-
tional closed-source/binary-only software deployment
models, these premature release cycles yield frustrated
users, who have little recourse other than grousing when
problems arise. Since they are often limited to little more
than finding workarounds for problems they encounter,
they may have little incentive to help improve closed-
source products.

In contrast, open-source development leverages expertise
in their communities, allowing users and developers to
collaborate to improve software quality [Lakhani03]. For
example, short feedback loops encourage users to help
with the QA process since they are “rewarded” by rapid
fixes. Moreover, since the source code is available, users
at the periphery can often either fix bugs directly or can
provide concise test cases that help isolate problems
quickly. User efforts can therefore greatly magnify the
debugging and computing resources available to an
open-source project, which can improve software quality
if harnessed effectively and combined with automated
tools for tracking defect reports, such as Bugzilla and
JIRA.

1.1.4. Inverted stratification of available expertise. In
many organizations, testers and QA engineers are per-
ceived to have lower status than software developers. In
contrast, open-source development processes often invert
this stratification so that the “testers” in the periphery are
often excellent software developers who apply their de-
bugging skills when they encounter problems with the
open-source software base. The open-source model thus
makes it possible to leverage the talents of these develop-

ers, who ordinarily do not work as testers in traditional
software organizations.

1.1.5. Greater opportunity for analysis and validation.
Open-source development techniques can help improve
software quality by enabling the use of powerful analysis
and validation techniques, such as whitebox testing and
model checking, that require access to the source code.
For example, [Zeller02] and [Michail05] have employed
static analysis and testing techniques to find bugs in
open-source software.

In general, traditional closed-source/binary-only software
development and QA processes rarely achieve the bene-
fits outlined above as rapidly or as cost effectively as
open-source processes.

1.2. Problems with Current Open-Source Processes

Open-source projects have had great success in the sys-
tems infrastructure software domains, as described in
Section 1.1. Our experience working on many open-
source projects [GPERF90, TAO98, JAWS99, ACE01,
CoSMIC04] for the past two decades has shown, how-
ever, that the open-source development model can create
significant problems in maintenance and evolution:1

Problem 1: Hard to maintain software quality in the
face of short development cycles. The goals of open-
source software development are not unique, i.e., limit
regression errors to avoid breaking features or degrading
performance relative to prior releases, sustain end-user
confidence and good will, and minimize development
and QA costs. It can be hard, however, to ensure consis-
tent quality of open-source software due to the short
feedback loops between users and core developers,
which typically result in frequent “beta” releases, e.g.,
several times a month. Although this schedule satisfies
end-users who want quick patches for bugs they found in
earlier betas, it can be frustrating to other end-users who
want more stable, less frequent software releases. In
addition to our own experiences, [Gamma05] describes
how the length of the release cycles in the Eclipse frame-
work affected user participation and eventually the qual-
ity of the software.

Problem 2: Lack of global view of system constraints.
Large-scale open-source projects often have a large num-
ber of contributors from the user community (i.e., the
periphery). When these users encounter problems, they
may examine the source code, propose/apply fixes lo-
cally, and then submit the results back to the core team
for possible integration into the source base. Often these
users in the periphery have much less knowledge of the
entire architecture of an open-source software system

1 More discussions of failed open-source projects are available
at www.isr.uci.edu/research-open-source.html and
www.infonomics.nl/FLOSS/report.

than the core developers. As a result, they may lack a
global view of broader system constraints that can be
affected by any given change, so their suggested fixed
may be inappropriate.

Problem 3: Unsystematic and redundant QA activi-
ties. Many popular open-source projects (such as GNU
GCC, CPAN, Mozilla, the Visualization Toolkit, and
ACE+TAO) distribute regression test suites that end-us-
ers can run to evaluate the success of an installation on a
user’s platform. Users can – but frequently do not – re-
turn the test results to project developers. Even when
results are returned to core developers, however, the test-
ing process is often undocumented and unsystematic,
e.g., core developers have no record of what configura-
tions were tested, how they was tested, or what the re-
sults were, which loses crucial QA-related information.
Moreover, many QA configurations are executed redun-
dantly by thousands of users (e.g., on popular versions of
Linux or Windows), whereas others are never executed at
all (e.g., on less widely used operating systems).

Problem 4: Lack of diversity in test environments.
Well-written open-source software (e.g., based on GNU
auto-conf) can be ported easily to a variety of OS and
compiler platforms. In addition, since the source is avail-
able, end-users can modify and adapt their source base
readily to fix bugs quickly or to respond to new market
opportunities with greater agility. Support for platform-
independence, however, can yield the daunting task of
keeping an open-source source software base operational
despite continuous changes to the underlying platforms.
In particular, since developers in the core may only have
access to a limited number of OS/compiler configura-
tions, they may release code that has not been tested
thoroughly on all platform configurations on which users
want to run the software.

Problem 5: Manually intensive execution of QA proc-
esses. The availability of source code often encourages
an increase in the number of options for configuring and
subsetting the software at compile- and run-time. Al-
though this flexibility enhances the software’s applicabil-
ity for a broad range of use cases, it can also exacerbate
QA costs due to a combinatoric increase in the QA space.
Moreover, since open-source projects often run on a lim-
ited QA budget due to their minimal/non-existent licens-
ing fees, it can be hard for core developers to validate
and support large numbers of versions and variants si-
multaneously, particularly when regression tests and
benchmarks are written and run manually.

As open-source software systems evolve, the problems
outlined can compound, resulting in systems that are
defective, bloated, and hard to maintain. For example,
the inability to regression test a broad range of potential
configurations increases the probability that certain con-
figurations of features/options may break in new re-

leases, thereby reducing end-user confidence/adoption
and increasing subsequent development and QA costs.
Without remedial action, therefore, open-source user
communities may become smaller (due to frustration
with software quality) until the software falls into disuse.
This paper describes techniques and tools for addressing
these types of problems, so it becomes easier to deliver
on the promise of open-source processes.

2. Addressing Open-Source Challenges with
Skoll
To address the problems with open-source software de-
velopment described in Section 1.2, we have developed
the Skoll distributed continuous quality assurance
(DCQA) environment [Memon04]. Skoll provides tools
for creating and validating novel software QA processes
that leverage the extensive computing resources of
worldwide user communities in a distributed, continuous
manner to rapidly improve software quality. In particular,
Skoll provides an integrated set of tools that run coordi-
nated QA activities around-the-world, around-the-clock
on a virtual computing grid provided by user machines
during off-peak hours to (1) detect and resolve QA prob-
lems quickly and (2) automatically analyze and enhance
key system QoS characteristics on a diverse range of
system configurations and platforms.

To enhance the detection and resolution of QA problems,
Skoll closes the loop from users back to developers by
exploiting the inherently distributed nature of open-
source user communities. In particular, users at various
sites in the periphery use Skoll tools to perform a portion
of the overall testing, thereby offloading the number of
versions that must be maintained by core developers,
while enhancing user confidence in new (beta) versions
of open-source software. Each user/site participating in
Skoll-guided DCQA processes conducts different instru-
mentations and performance benchmarks automatically
to collect metrics, such as measures of memory footprint,

Computing Nodes
Cluster #1

Computing Nodes
Cluster #2

Skoll Coordinator
Site

Computing Nodes
Cluster #3

Subtask 1.1
Subtask 1.1

Subtask 1.2
Subtask 1.2

Subtask 1.3
Subtask 1.3

Task 1
Task 1

QA Task 1 is split into three subtasks
(1.1, 1.2, 1.3) and allocated to
computing node clusters 1, 2, and 3
respectively.

Computing Nodes
Cluster #1

Computing Nodes
Cluster #2

Skoll Coordinator
Site

Computing Nodes
Cluster #3

Subtask 1.1
Subtask 1.1

Subtask 1.2
Subtask 1.2

Subtask 1.3
Subtask 1.3

Task 1
Task 1

QA Task 1 is split into three subtasks
(1.1, 1.2, 1.3) and allocated to
computing node clusters 1, 2, and 3
respectively.

Fig. 1: Skoll Tasks/Subtasks Allocated
to Computing Nodes

throughput, latency, and jitter.

Skoll’s DCQA processes are (1) distributed, i.e., a given
QA task is divided into several subtasks that can be per-
formed on a single user machine, (2) opportunistic, i.e.,
when a user machine becomes available, one or more
subtasks are allocated to it and the results are collected
and fused together at central collection sites to complete
the overall QA process, and (3) adaptive, i.e., earlier
subtask results are used to schedule and coordinate future
subtask allocation. Skoll leverages important open-
source project assets, such as the technological sophisti-
cation and extensive computing resources of worldwide
user communities, open access to source, and ubiquitous
web access, to improve the quality and performance of
open-source software by automating the division of labor
to make those 'thousands of eyeballs' more effective.
Figure 1 illustrates how a QA task (Task 1) can be de-
composed into three subtasks (subtasks 1.1, 1.2, and 1.3),
which are allocated to and executed on computing node
clusters. As subtasks run, Skoll’s control logic may dy-
namically steer the global QA computations to enhance
their performance and accommodate various platform
constraints, such as type of OS/compiler platform,
amount of disk space and CPU load available for QA
tasks, etc.

At a high level, a Skoll-based DCQA process (shown in
Figure 2) runs as follows:

Step 1. Developers create a configuration and control
model (Section 3.2) and adaptation strategies (Section
3.3) for the open-source software. An intelligent steering
agent (ISA) uses automated AI planning algorithms
[Memon01a] to translate the model into planning opera-
tors. Developers create generic QA subtask code that will
be specialized when creating job configurations, which
consist of the code artifacts, configuration parameters,
build instructions, and QA-specific code (e.g., developer-
supplied regression and performance tests) associated
with a software project.

Step 2. A user registers with a Skoll server to receive
Skoll client software. The user receives the Skoll client
software and a configuration template. The user can
modify the configuration template to change option set-
tings temporarily or constrain specific options.

Step 3. The client periodically (or on-demand) requests a
job configuration from a Skoll server.

Step 4. The Skoll server queries its databases and the
user-provided configuration template to determine which
option settings are fixed for that user and which can be
set by the ISA. It then packages this information as a
planning goal and queries the ISA, which generates a
plan, creates the job configuration, and returns it to the
client.

Step 5. The Skoll client invokes the job configuration
and returns the results to the Skoll server.

Step 6. The Skoll server examines these results and in-
vokes the designated adaptation strategies, which update
the ISA operators to adapt the global process. Skoll’s
adaptation strategies use built-in statistical analyses that
help developers quickly identify large subspaces in
which QA subtasks have failed (or performed poorly).

Figure 2: Skoll in Action

Step 7. Periodically, e.g., when prompted by developers
or at the end of a QA session, Skoll servers prepare a
visualization of their subtask results and the current state
of the overall process.

Our earlier work on DCQA environments [Memon04,
Yilmaz05, PSA04] has described various techniques sup-
ported by Skoll, including (1) the creation of a model of
all possible software configurations, (2) division of a QA
task into subtasks that can execute independently on end-
user machines, (3) collection of subtask execution results
and their interpretation, (4) adaptation of the overall
process based on incremental QA results, (5) fault classi-
fication techniques to help pinpoint the source of errors,
and (6) visualization of QA task results. This paper ex-
tends our prior work by showing how we applied Skoll
to a large-scale open-source project to mitigate the prob-
lems described in Section 1.2.
3. Overview of ACE and TAO
We applied Skoll on ACE [ACE01] and TAO [TAO98],
which are widely used open-source middleware plat-
forms (www.dre.vanderbilt.edu). ACE is an object-ori-
ented framework containing hundreds of classes that
implement key patterns and frameworks for distributed
real-time and embedded (DRE) systems. TAO is an im-

plementation of the Real-time CORBA specification
[OMG02] that uses many frameworks and classes in
ACE to meet the demanding quality of service (QoS) re-
quirements in DRE systems. These middleware plat-
forms allow applications to interoperate across networks
without hard-coding dependencies on their location, pro-
gramming language, operating system platform, commu-
nication protocols and interconnects, and hardware char-
acteristics.

ACE and TAO were ideal study candidates for the Skoll
DCQA environment since they share the following char-
acteristics – as well as problems – with other large-scale
open-source projects, such as Linux, Apache, and the
GNU compiler and language processing tools:

• Large and mature source code base. The ACE+TAO
source base contains over two million source lines of
C++ middleware systems source code, examples, and
regression tests split into over 9,800 files as follows:

Software
Toolkit

Source
Files

Source Lines of
Code

ACE 2,016 448,974

TAO 7,824 1,755,789

Total 9,840 2,204,763

• Heterogeneous platform support. ACE+TAO runs
on dozens of platforms, including most POSIX/UNIX
variants, all versions of Microsoft Win32, many real-
time and embedded operating systems, MVS OpenEdi-
tion, and Cray. These platforms change over time, e.g.,
to support new features in the C++ standard and newer
versions of the operating systems.

• Highly configurable, e.g., numerous interdependent
options supporting a wide variety of program families
[Parnas79] and standards. Common examples of dif-
ferent options include multi-threaded vs. single-
threaded configurations, debugging vs. release ver-
sions, inlined vs. non-inlined optimized versions, and
complete ACE vs. ACE subsets. Examples of different
program families and standards include the baseline
CORBA 3.0 specification, Minimum CORBA, Real-
time CORBA, CORBA Messaging, the Lightweight
CORBA Component Model, and many different varia-
tions of CORBA services.

• Core development team. ACE+TAO are maintained
by a core – yet geographically distributed – team of
~20 developers. While many of these core developers
have worked on ACE+TAO for several years, there is
also a continual influx of developers into and out of
the core.

• Comprehensive source code control and bug track-
ing. The ACE and TAO source code resides in a CVS

repository, hosted at the Institute for Software Inte-
grated Systems (ISIS) at Vanderbilt University. Exter-
nal read-only access is available to the ACE+TAO
user community via the Web. Write access is granted
only to certain group members and trusted external
contributors. Software defects are tracked using Bug-
zilla, which is a Web-based tool that helps ACE+TAO
developers resolve problem reports and other issues.

• Large and active user community. Over the past
decade ACE+TAO have been used by more than
20,000 application developers, who work for thou-
sands of companies in dozens of countries around the
world. Since ACE and TAO are open-source systems,
changes are often made and submitted by users in the
periphery who are not (initially) part of the core devel-
opment team.

• Continuous evolution, i.e., ACE+TAO have a dy-
namically changing and growing code base that has
hundreds of CVS repository commits per week. Al-
though the interfaces of the core ACE+TAO libraries
are relatively stable, their implementations are en-
hanced continually to improve correctness, time/space
overhead, user convenience, portability, safety, and
another desired aspects. The ACE+TAO software dis-
tributions also contain many examples, standalone ap-
plications, and tests for functionality and performance.
These artifacts change more frequently than the main
ACE+TAO libraries, and are often not as thoroughly
tested on all the supported platforms.

• Frequent beta releases and periodic “stable” re-
leases. Beta releases contain bug fixes and new fea-
tures that are lightly tested on the platforms that the
core ACE+TAO team uses for their daily development
work. The usual interval between beta releases aver-
ages around every two to three months. In contrast, the
“stable” versions of ACE+TAO are released less fre-
quently, e.g., once a year, and are tested extensively on
all the OS and compiler platforms to which
ACE+TAO have been ported. The stable releases are
supported commercially by over half a dozen compa-
nies worldwide.

Despite the broad use of ACE+TAO, this open-source
effort suffers from the problems discussed in Section 1.2.

4. Applying Skoll to ACE+TAO
This section describes how we have applied DCQA proc-
esses using Skoll to address the problems with open-
source processes discussed in Section 1.2. To make the
discussion concrete, we focus applying Skoll to improve
the quality and performance of ACE+TAO by developing
a scalable QA process based on continuous testing and
profiling. Although we describe these problems in the

context of ACE+TAO, they are issues for many other
large-scale open-source projects.

4.1. Ensuring Software Quality in the Context of
Short Development Cycles

One reason why ACE+TAO are widely used in both
commercial and research projects is that they are cus-
tomizable to many different runtime contexts, i.e., they
have hundreds of features/options that can be en-
abled/disabled for application-specific use cases. In the
context of short “beta-driven” development cycles, how-
ever, the core ACE+TAO developers cannot test all pos-
sible configurations because there are simply not enough
people, OS/compiler, platforms, CPU cycles, or disk
space in house to run the hundreds of ACE+TAO regres-
sion tests over the combinatorial number of configu-
rations in a timely manner. As a result, some parts of the
middleware are released untested, which greatly in-
creases the probability that certain configurations of fea-
tures/options may break in new releases, thereby reduc-
ing end-user confidence and increasing subsequent de-
velopment and QA costs.

To mitigate this problem we designed a Skoll DCQA
process that runs automated regression tests continuously
across a grid of external computing resources. These
tests include ~100 ACE tests and ~250 TAO tests that
serve several purposes, including (1) user acceptance
and assurance, which involves building and testing the
ACE and/or TAO libraries on a wide variety of different
platforms to validate the integrity of the builds and any
assumptions made about the operating platform and (2)
smoke testing, where build/test scripts run a varying sub-
set of the ACE+TAO regression test suite whenever de-
velopers commit their changes to the CVS repository.
The Skoll DCQA process is currently running on 60+
workstations and servers at over a dozen sites around the
world (see www.dre.vanderbilt.edu/scoreboard for a
summary). This parallelization of the DCQA process
allows much more work to be done in a shorter time
frame.

Each full build and test ranges can take anywhere from
three hours on quad-CPU Linux machines to 8 or more
hours on less powerful machines. Given the size of the
configuration space and the shortness of the development
cycle, we try to improve efficiency by adapting Skoll’s
DCQA process to incoming test results. One adaptation
strategy is called nearest neighbor search, where when a
configuration fails all configurations that differ from it in
the setting of exactly one option are scheduled for testing
with the highest priority to quickly identify sets of simi-
lar configurations that both pass and fail. This informa-
tion is then fed to classification tree algorithms [Por-
ter91] that (1) build models of the specific option settings
that may be causing the failures and (2) summarize the
large volumes of data into feedback that developers can

use to help focus their debugging efforts. For more infor-
mation on this work see Memon et al. [Memon04].

4.2. Ensuring a Consistent Global View of System
Configuration Constraints

A fundamental strength of open-source software is its
distribution in source-code form that users are free to
download, build, and execute on any platform that has
the right combination of compiler/build tools and run-
time support. This flexibility, however, creates an enor-
mous number of potential platform configurations (e.g.,
compiler and OS settings, versions of the OS and in-
stalled libraries, etc.) in which open-source software can
execute. Complexity is also introduced by the large num-
ber of compile- and run-time options/settings typically
seen in open-source software itself. Our experience with
ACE+TAO has shown that many errors are encountered
in the field by users who employ new, unexplored con-
figurations. For example, the Bugzilla databases
(deuce.doc.wustl.edu/bugzilla/index.cgi) for ACE+ TAO
show many cases of bug reports that are in fact miscon-
figurations by users. These problems are exacerbated by
the turnover in core developers.

For a successful DCQA process, it is essential to model
valid configurations explicitly. Although documentation
generally does a good job of conveying the options and
their settings, it rarely captures inter-option constraints.
For example, in our case study with ACE+TAO
[Memon04], we found that many core ACE+TAO devel-
opers did not understand the configuration option con-
straints for their very complex system, i.e., they provided
us with both erroneous and missing constraints.

A useful way to visualize the full range of settings possi-
ble in open-source software is as a multidimensional soft-
ware configuration space. Each possible combination of
settings becomes a single unique point within this space,
with the space as a whole encompassing every possible
combination of settings. The total size of the software
configuration space depends on the number of settings
available for change. If only a small number of settings
are treated “in play,” the resulting subset of the software
configuration space might have no more than a few tens
of unique points. If every setting available on a typical
realistic open-source software is put into play, however,
the resulting full software configuration space can be
enormous, containing millions or more unique points.

Skoll uses a formal model of the software’s configuration
space to maintain a consistent global view of system con-
straints. This model captures all valid configurations,
which are mappings represented as a set {(V1, C1), (V2,
C2), …, (VN, CN)}, where each Vi is a configuration op-
tion and Ci is its value, drawn from the allowable settings
of Vi. As noted, not all configurations make sense (e.g.,
feature X not supported on operating system Y). We

therefore allow inter-option constraints that limit the set-
ting of one option based on the setting of another. We
represent constraints as (Pi → Pj), meaning “if predicate
Pi evaluates to TRUE, then predicate Pj must evaluate to
TRUE. A predicate Pk can be of the form A, ¬A, A|B,
A&B, or simply (Vi=Ci), where A, B are predicates, Vi is
an option and Ci is one of its allowable values. A valid
configuration is a configuration that violates no inter-
option constraints.

The Skoll configuration model can cover more than just
software options, e.g., it can indicate the range of plat-
forms over which the QA process can run correctly. It
can also cover test cases that run correctly only in certain
configurations. Since this information is typically not
written down anywhere, users often run regression tests
anyway, which confuses them into believing that the re-
sulting test failure indicates an unknown installation
problem. These test failures also confuse developers
who must remember which of the several hundred test
cases to pay attention to and which can be ignored safely.

Table 1 presents some sample options and constraints for
ACE+TAO, including the end platform compiler (COM-
PILER), whether to compile in certain features (AMI,
CORBA_MSG), whether certain test cases are runnable in
a given configuration (run(T)), and at what level to set a
run-time optimization (ORBCollocation). One sam-
ple constraint shows that asynchronous method invoca-
tion (AMI) support requires the presence of CORBA
messaging services (CORBA_MSG). The other shows that
a certain test only runs on platforms with the SUN CC
compiler version 5.1.

We learned several lessons building the ACE+TAO con-
figuration model. For example, we learned that the con-
figuration model for ACE+TAO was undocumented, so
we had to build our initial model bottom-up. We also
found that different core developers had conflicting
views on what the constraints really were and whether
certain constraints were current or had been superseded
by recent changes, which taught us that building configu-
ration models is an iterative process.

By using Skoll in place of manual QA processes, we
quickly identified previously undiscovered coding errors
that prevented the software from compiling in certain

configurations. For example, the ACE+TAO build failed
at line 137 in the RT_ORBInitializer.cpp source
file (20 configurations) whenever CORBA MSG = 0 due
to a missing #include statement that was conditionally
included (via a #define block) only when CORBA_MSG =
1. The ACE+TAO build also failed at line 38 in the
source file Asynch_Reply_Dispatcher.h (8 con-
figurations) whenever CALLBACK = 0 and POLLER = 1.
Since this configuration should be legal, this was deter-
mined to be a previously undiscovered bug.

In several cases, tests failed for the same reason on the
same configurations. For example, test compilation failed
at line 596 of the source file ami_testC.h for 7 tests,
each when CORBA_MSG = 1 and POLLER = 0 and
CALLBACK = 0, which was a previously undiscovered
bug. It turned out that certain code within TAO imple-
menting CORBA Messaging incorrectly assumed that at
least one of the POLLER or CALLBACK options would
always be set to 1. ACE+TAO developers also noticed
that the failure manifested itself no matter what the set-
ting of the AMI option, which was a second previously
undiscovered problem because these tests should not
have been executed when AMI = 0. Consequently, there
was a missing testing constraint, which we then included
in the test constraint set.

In all the cases described above, we found that access to
the source code of ACE+TAO enabled us to create and
validate our configuration models more quickly and ef-
fectively than if we only had access to the binaries.

4.3. Ensuring Coherency and Reducing Redundancy
in QA Activities
While conventional QA approaches employed in open-
source projects help improve the quality and perform-
ance of software, they have significant limitations, e.g.,
there is little, if any, control over the QA tasks being
executed. What to test is left to developers, i.e., each
developer typically decides (often by default) what as-
pects of the system to examine. For example, ACE+TAO
developers continuously test their software using a bat-
tery of automated tests whose results are published at
www.dre.vanderbilt.edu/scoreboard. Developers are re-
sponsible, however, for deciding which configurations
and tests to run on their platforms. Our experience
[Memon04, Yilmaz05] shows that (1) configurations
proven to be faulty are tested repeatedly and (2) some
configurations are evaluated multiple times, whereas
others are never evaluated, which leads to wasted re-
sources and lost opportunities and lets redundancies and
important gaps in QA coverage creep in.

To ensure greater coherency and less redundancy in QA
activities, Skoll provides an Intelligent Steering Agent
(ISA) to control the global QA process. The ISA uses AI
planning algorithms [Memon01a] to decide which valid

configuration to allocate to each incoming Skoll client
request. When a client becomes available, the ISA de-
cides which subtask to assign it by considering various
factors, including (1) the configuration model, e.g.,
which characterizes the subtasks that can legally be as-
signed, (2) the results of previous subtasks, e.g., which
captures what tasks have already been done and whether
the results were successful, (3) global process goals, e.g.,
testing popular configurations more than rarely used ones
or testing recently changed features more heavily than
unchanged features, and (4) client characteristics and
preferences., e.g., the configuration must be compatible
with physical realities, such as the OS running on the
remote machine.

After a valid configuration has been chosen, the ISA
packages the corresponding QA subtask implementation
into a job configuration (defined in step 1 in Section 2).
The job configuration is then sent to the requesting Skoll
client, which executes the job configuration and returns
the results to the ISA. The ISA’s two default behaviors
are (1) to allocate each configuration exactly once (i.e.,
random selection without replacement) or (2) to allocate
them zero or more times (i.e., random selection with re-
placement). In both cases, the ISA ignores subtask re-
sults. Often, however, we want to learn from incoming
results, e.g., when some configurations prove to be
faulty, resources should be refocused on other unex-
plored parts of the configuration space. When such dy-
namic behavior is desired, process designers develop
pluggable ISA components called adaptation strategies
that monitor the global process state, analyze it, and use
the information to modify future subtask assignments to
improve overall performance of the DCQA process.

In the ACE+TAO case study mentioned previously in
Section 4.2, we observed that ACE+TAO failed to build
whenever configuration options AMI = 0 and
CORBA_MSG = 1 were selected. Developers were unable
to fix the bug immediately, however, so we developed an
adaptation strategy that inserted temporary constraints,
such as CORBA_MSG = 1 → AMI = 1 into the configura-
tion model, excluding further exploration of the offend-
ing option settings until the problem was fixed. After
fixing it, the constraints were removed to restore normal
ISA execution. Temporary constraints can also be used
to spawn new Skoll processes that test patches only on
the previously failing configurations.

Skoll’s configuration model therefore makes it possible
for the ISA and adaptation strategies to steer the QA
process in ways that ensure coherency and reduce redun-
dancy in QA activities. Skoll also allows more sophisti-
cated algorithms and techniques to be applied to improve
software quality, e.g., its configuration model essentially
defines a combinatorial object against which a wide vari-
ety of statistical tools can be applied. In another case

study [Yilmaz05], we leveraged this feature to develop a
DCQA process called main effects screening for monitor-
ing performance degradations in evolving systems.

Main effects screening is a technique that can be used to
detect performance degradation rapidly across a large
configuration space as a software system changes. This
technique relies on experimental design theory to effi-
ciently determine a small subset of the configuration op-
tions that substantially effect performance. To implement
this technique we compute a highly-efficient formal ex-
perimental design called screening designs based on the
configuration model and conduct the resulting experi-
ment over the Skoll grid. The outcome is a small set of
“important options,” i.e., those that have the main effects
on key system quality factors. From this point on, when-
ever the system changes, we systematically benchmark
all combinations of the important options (while random-
izing the rest) to get a reliable estimate of the perform-
ance across the entire configuration space. We then
monitor the performance estimates to detect performance
degradations. Since important options can change over
time, we can recalibrate the important options by restart-
ing the process.

We evaluated the main effects screening process via sev-
eral industrial strength feasibility studies on ACE+TAO
software systems. In these studies we created a configu-
ration model containing 14 binary runtime options (a
total of 16,384 valid configurations). Our application
scenario evaluated the system performance across this
configuration space using a benchmarking regression
test.

We created a screening design that contained only 32
configurations to identify the important options reliably.
We ran the benchmarking test on each of these configura-
tions and found that only 2 (out of 14) options affected
the performance of the system significantly. We then
monitored the system performance using 4 configura-
tions (all possible combinations of the 2 important op-
tions) during a period of time as the system evolved.

Our results showed that (1) screening designs can cor-
rectly identify important options, (2) these options can be
used to quickly produce reliable estimates of the per-
formance across the entire configuration space at a frac-
tion of the cost of exhaustive testing, (3) the alternative
approach of ad hoc or random sampling can give highly
unreliable results, (4) the main effects screening process
can detect performance degradations in evolving soft-
ware systems, and (5) monitoring all combinations of
important options while defaulting or randomizing all the
others can provide more precise performance estimates
than ad hoc or random approaches [Yilmaz05].

4.4. Supporting Diversity in Test Environments

When configuration space explosion is coupled with fre-
quent software updates and increasing platform heteroge-
neity, ensuring the quality of open-source software can
be hard since individual developers may only have ac-
cess to a limited number of software and hardware plat-
forms. Moreover, frequent code changes may cause de-
velopment teams to release code that has not been tested
thoroughly on all platform and configuration combina-
tions. For example, in one of our case studies with
ACE+TAO, we built a configuration model by interview-
ing the core ACE+TAO developers. After testing several
hundred configurations, we found that every configura-
tion failed to compile. We discovered that the problem
stemmed from options providing fine-grained control
over CORBA messaging policies that had been modified
and moved to another library and developers (and users)
failed to establish if these options still worked. Based on
this feedback the ACE+TAO developers chose to control
these policies at link-time rather than compile-time.

To support greater diversity in testing, one QA task we
implemented in Skoll is to systematically sample con-
figuration spaces [Yilmaz04]. The approach is based on
calculating a mathematical object called a covering array
with certain coverage properties over the configuration
space. A t-way covering array (where t is called the
strength of the array) is a minimal set of configurations
in which all t-way combinations of option settings appear
at least once. For a given configuration model and a level
of coverage criterion (i.e., a value for t), the ISA com-
putes a covering array and allocates only the selected
configurations to the requesting clients. The goal is to
efficiently improve developer’s confidence that options
interact with each other as expected.

We conducted a set of feasibility studies on ACE+TAO
where we evaluated covering arrays as a sampling strat-
egy in complex configuration spaces [Yilmaz04]. In
these studies, our configuration model consisted of 10
compile-time and 6 runtime options. Each compile-time
option was binary-valued, while the runtime options had
differing numbers of settings: four options with three
levels, one option with four levels, and one option with
two levels. This configuration space has 18,792 valid
configurations. We tested each configuration using 96
regression tests, each of which was designed to emit an
error message for failure cases. We captured these error
messages, indexed them, and used them in our analysis.

To evaluate the use of covering arrays, we created five
different t-way covering arrays for this configuration
space. We allowed t to range between 2 and 6. We reran
the regression tests on each of these t-way suites and
used classification trees to automatically characterize the
test results. We then compared the fault characterizations
obtained from t-way suites to the ones obtained from
exhaustive testing.

Covering Array
Strength (t)

of configurations % of reduction

2 116 99.4

3 348 98.2

4 1229-1236 93.5-93.4

5 3369-3372 82.1-82.0

6 9433-9453 49.8-49.7

Table 2. Percentage Reduction in Number of Configu-
rations Tested (Compared to Exhaustive Testing)

Table 2 gives the covering array size N for each value of
t and the average percentage of reductions in the number
of configurations to be tested compared to exhaustive
testing. When t ≤ 3 all five arrays were the same size N.
For these we were able to construct covering arrays with
the smallest mathematically possible number of rows.
When t ≥ 4, the problem of building a small N is harder,
so we obtained a range of sizes.

We learned several things from our covering array stud-
ies. First, we rapidly identified problems that had taken
the developers substantially longer to find or which had
previously not been found. Second, we observed that
diverse testing also allows sophisticated analysis tech-
niques to be applied to the resulting data to reason about
the root causes of failures, e.g., the classification tree
analysis techniques described in Section 3.1 will perform
poorly if the input data is skewed towards specific con-
figurations. Third, using covering arrays in complex con-
figuration spaces resulted in fault characterization mod-
els that are nearly as accurate as the ones obtained from
exhaustive testing, but are much cheaper (provides 50-
99% reductions in the number of configurations to be
tested) [Yilmaz04].

4.5. Automating the Execution of QA Processes

To evaluate key QoS characteristics of performance in-
tensive software, QA engineers today often handcraft
individual QA tasks. For example, for a simple QA task,
initial versions of Skoll required the artifacts such as (1)
the configuration settings and options for ACE+TAO that
need to be evaluated, (2) the evaluation/benchmarking
code used to evaluate the configuration settings and pro-
vide feedback, (3) interface definitions that represent the
contract between the client and server, and (3) support
code, e.g., script files, build files to build and execute the
experiments. Our earlier work [Memon04] revealed how
manually implementing these steps is tedious and error-
prone since each step may be repeated many times for
every QA experiment.

To redress this shortcoming, we applied model-driven
generative programming techniques [Czarnecki:00] to

automate the generation of scaffolding code from higher
level models, which helps ensure that the generated code
is both syntactically correct and semantically valid, thus
shielding QA engineers from tedious and error-prone
low-level source code generation. This technique also en-
ables QA engineers to compose the experiments via
model artifacts rather than source code, thereby raising
the level of abstraction. We have integrated the following
two modeling capabilities into Skoll:

• The Options Configuration Modeling Language
(OCML) [RTAS05] modeling tool, which enables us-
ers to select a set of middleware-specific configuration
options required to support the application needs and

• The Benchmark Generation Modeling Language
(BGML) [RTAS05], which is a model-driven bench-
marking tool that allows component middleware QA
engineers to visually model interaction scenarios be-
tween configuration options and system components
using domain-specific building blocks, i.e., capture
software variability in higher-level models rather than
in lower-level source code.

OCML model interpreters based on the requesting client
characteristics (e.g., OS, compiler, and hardware) and the
configuration model generate platform-specific configu-
ration information, which serves as the basis for generat-
ing the job configuration. As described in Section 4.3, a
job configuration is used to run a particular QA subtask
at the client site. The BGML model interpreters generate
benchmarking code generation and reuse QA task code
across configurations.

In earlier work [Yilmaz05, ICSR8], we showed how
BGML can be used to auto-generate ~90% of the code
required to set up a benchmarking experiment. This gen-
erated code was also interfaced with our main effects
screening tools. Our work on model-driven automation
of the QA process revealed that having access to the
source code enabled the QA engineers to reuse instru-
mentation and evaluation code for different configuration
combinations. Similarly, QA engineers can easily tailor
the generated code for different IDL interfaces by add-
ing/modifying the generated IDL from the model.

5. Related Work
There are several efforts addressing the QA challenges of
open-source software systems by gathering various types
of information from distributed run-time environments
and usage patterns encountered in the field, i.e., on user
target platforms with user configuration options. This
section describes the most visible of these efforts.

Online crash reporting systems gather system state at a
central location whenever a fielded system crashes,
which simplifies user participation in QA by automating
certain aspects of problem reporting. For example, Net-

scape Quality Feedback Agent and Microsoft XP Error
Reporting aid users in reporting errors by automatically
generating error reports during crashes to enable users to
report failures with ease, thus aiding QA teams to im-
prove software quality. These approaches, however, have
a very limited scope, i.e., they perform only a small frac-
tion of typical QA activities and ignore issues associated
with QoS and performance. Moreover, they are reactive
(i.e., the reports are only generated when systems crash),
rather than proactive (e.g., attempting to detect, identify,
and remedy problems before users encounter them). In
contrast, Skoll’s ISA uses several techniques (e.g., near-
est neighbor) that study previous results and predict con-
figurations that are likely to create problems and explores
them before they are encountered in the field.

Auto-build scoreboards are a more proactive form of
distributed regression test suites that allow software to be
built/tested at multiple sites on various hardware, OS,
and compiler platforms. The Mozilla Tinderbox and
ACE+TAO Virtual Scoreboard are auto-build score-
boards that track end-user build results across various
platforms. Bugs are reported via defect tracking systems
(such as Bugzilla and JIRA), which provide inter-bug
dependency recording, advanced reporting capabilities,
extensive configurability, and integration with automated
software configuration management systems (such as
CVS and Subversion). While these systems help docu-
ment the QA process, the decision of what to test is left
to end users. Unless the core developers can control at
least some aspects of the QA process, important gaps and
inefficiencies will still occur. In contrast, Skoll is essen-
tially driven by core developers in multiple ways. For
example, adaptation strategies in the ISA are coded by
the core developers. This has a direct impact on which
configurations should be tested and when.

6. Concluding Remarks
Open-source has proven to be an effective development
process for many software application domains [Ray-
mond01]. The overall quality of open-source software,
however, can be compromised by recurring problems,
such as frequent releases of patches, lack of global view
of system constraints, unsystematic and inadequate QA,
and large configuration spaces,. This paper described
how the Skoll project provides technologies and tools to
help minimize the effects of these problems by leverag-
ing key strengths of open-source development processes,
such as open access to source code, ubiquitous web ac-
cess, and their scalability to large user communities,
where technologically sophisticated application program-
mers and end-users in the field can assist with QA activi-
ties, documentation, mentoring, and technical support
traditionally performed in-house. Throughout this paper
we describe how intelligent leverage of the expertise and
extensive computing resources of user communities is

essential to overcome common problems that can impede
the success of large-scale open-source software projects.

7. Acknowledgements
We thank the anonymous reviewers for their helpful
comments. This material is based on work supported by
the US National Science Foundation under NSF grants
ITR CCR-0312859, CCR-0205265, CCF-0447864, and
CCR-0098158, ONR grant N00014-05-1-0421, as well
as funding from BBN Technologies, Lockheed Martin,
Raytheon, and Siemens.

Bibliography
[ACE01] Schmidt D., Huston S., C++ Network Pro-

gramming: Resolving Complexity with ACE and Pat-
terns, Addison-Wesley, Reading, MA, 2001.

[Brooks75] Brooks, F., The Mythical Man-Month, Addi-
son-Wesley, 1975.

[Raymond98] E. Raymond, "The Cathedral and the Ba-
zaar," First Monday, volume 3, number 3 (March),
http://www.firstmonday.org/issues/issue3_3/raymond/,
1998.

[Mockus02] A. Mockus, R.T. Fielding, and J. Herbsleb,
“Two Case Studies of Open Source Software Devel-
opment: Apache and Mozilla,” ACM Trans. Software
Engineering and Methodology, 11(3), 309-346, 2002.

[Mockus00] Mockus, A., Fielding, R.T., and Herbsleb,
J. (2000). “A Case Study of Open Source Software
Development: The Apache Server,” Proceedings of the
22nd International Conference on Software Engineer-
ing. IEEE Computer Society, 263-272. A quantitative
study of Apache development.

[Osterlie03] Thomas Østerlie and Knut H. Rolland,
“Unveiling Distributed Organizing in Open Source
Development: Practices of Using, Aligning, and
Wedging,” in Proceedings of the Workshop on Open
Source Software Movements and Communities, 19-22
September 2003, Amsterdam

 [Lakhani03] Lakhani, K.R., E. von Hippel. 2003. “How
Open Source Software Works: ‘Free" User-to-User As-
sistance,” Research Policy. 32 923-943.
[CoSMIC05] Krishnakumar Balasubramanian, Arvind

S. Krishna, Emre Turkay, Jaiganesh Balasubramanian,
Jeff Parsons, Aniruddha Gokhale, and Douglas C.
Schmidt, “Applying Model-Driven Development to
Distributed Real-time and Embedded Avionics Sys-
tems", International Journal of Embedded Systems
special issue on Design and Verification of Real-Time
Embedded Software, Kluwer, April 2005.

[Gamma05] Erich Gamma, “Agile, open source, distrib-
uted, and on-time: inside the eclipse development
process”, Keynote Address, International Conference

on Software Engineering (ICSE) 2005, St Louis, MO
USA.

[GPERF90] Schmidt, D., “GPERF: A Perfect Hash
Function Generator,” Proceedings of the 2nd USENIX
C++ Conference, San Francisco, April 1990.

 [JAWS99] Hu, J., Pyarali I., and Schmidt D., “The Ob-
ject-Oriented Design and Performance of JAWS: A
High-performance Web Server Optimized for High-
speed Networks,” Parallel and Distributed Computing
Practices Journal.

[ICSR8] Arvind S. Krishna, Douglas C. Schmidt, Adam
Porter, Atif Memon and Diego Sevilla-Ruiz “Improv-
ing the Quality of Performance-intensive Software via
Model-integrated Distributed Continuous Quality As-
surance”, "Proceedings of the 8th International Confer-
ence on Software Reuse, Madrid, Spain, July 2004.

 [Memon01a] Atif M. Memon, Martha E. Pollack and
Mary Lou Soffa, “Hierarchical GUI Test Case Gen-
eration Using Automated Planning,” IEEE Transac-
tions on Software Engineering. vol. 27, no. 2, pp. 144-
155, Feb. 2001.

[Michail05] Amir Michail and Tao Xie, Helping Users
Avoid Bugs in GUI Applications, Proceedings of the
27th International Conference on Software Engineer-
ing (ICSE 2005), St. Louis, Missouri, USA, May 2005.

[OMG02] Object Management Group, “Real-time
CORBA, OMG Technical Document formal/02-08-
02”, August 2002.

[Parnas79] Parnas, D., “Designing Software for Ease of
Extension and Contraction,” IEEE Transactions on
Software Engineering, March 1979.

[Porter91] Adam Porter, R. Selby, “Empirically Guided
Software Development Using Metric-Based Classifi-
cation Trees,” IEEE Software, March 1990.

[PSA04] Arvind S. Krishna, Cemal Yilmaz, Atif
Memon, Adam Porter, Douglas C. Schmidt, Anirud-
dha Gokhale, and Balachandran Natarajan, “Preserv-
ing Distributed Systems Critical Properties: a Model-
Driven Approach,” the IEEE Software special issue on
the Persistent Software Attributes, Nov/Dec 2004.

[Raymond01] Raymond E., The Cathedral and the Ba-
zaar: Musings on Linux and Open-source by an Acci-
dental Revolutionary, O’Reilly, 2001.

[RTAS05] Arvind S. Krishna, Emre Turkay, Aniruddha
Gokhale, and Douglas C. Schmidt, “Model-Driven
Techniques for Evaluating the QoS of Middleware
Configurations for DRE Systems,” Proceedings of the
11th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, CA, March
2005.

[Schantz01] Schantz R. and Schmidt D., “Middleware
for Distributed Systems: Evolving the Common Struc-

http://www.firstmonday.org/issues/issue3_3/raymond/
http://opensource.ucc.ie/ct2003/
http://opensource.ucc.ie/ct2003/

ture for Network-centric Applications,” Encyclopedia
of Software Engineering, Wiley & Sons, 2001.

[Memon04] Atif Memon, Adam Porter, Cemal Yilmaz,
Adithya Nagarajan, Douglas C. Schmidt and Bala Na-
tarajan, “Skoll: Distributed Continuous Quality As-
surance”, Proceedings of the 26th IEEE/ACM Inter-
national Conference on Software Engineering,
IEEE/ACM, Edinburgh, Scotland, May 2004.

[Yilmaz05] Cemal Yilmaz, Arvind Krishna, Atif
Memon, Adam Porter, Douglas C. Schmidt, Aniruddha
Gokhale, and Bala Natarajan, “Main Effects Screen-
ing: A Distributed Continuous Quality Assurance
Process for Monitoring Performance Degradation in
Evolving Software Systems,” proceedings of the 27th
International Conference on Software Engineering, St.
Louis, MO, May 15-21, 2005.

[TAO98] Schmidt D., Levine D., Mungee S. “The De-
sign and Performance of the TAO Real-Time Object
Request Broker”, Computer Communications Special
Issue on Building Quality of Service into Distributed
Systems, 21(4), 1998.

[Czarnecki:00] Krzysztof Czarnecki and Ulrich Eise-
necker, “Generative Programming: Methods, Tools,
and Applications”, Addison-Wesley, Boston 2000.

[Yilmaz04] Cemal Yilmaz, Myra Cohen and Adam Por-
ter, “Covering Arrays for Efficient Fault Characteriza-
tion in Complex Configuration Spaces”, Proceedings
of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), Boston,
Massachusetts, 2004.

[Zeller02] Andreas Zeller, “Isolating Cause-Effect
Chains from Computer Programs,” Proceedings of the
ACM SIGSOFT 10th International Symposium on the
Foundations of Software Engineering (FSE-10),
Charleston, South Carolina, November 2000.

	
	Abstract
	1. Introduction
	1.1. Enablers of Open-Source Success
	1.2. Problems with Current Open-Source Processes
	2. Addressing Open-Source Challenges with Skoll
	3. Overview of ACE and TAO
	We applied Skoll on ACE [ACE01] and TAO [TAO98], which are widely used open-source middle ware plat forms (www.dre.vanderbilt.edu). ACE is an ob ject-ori ented frame work containing hundreds of classes that imple ment key patterns and frameworks for distrib uted real-time and embedded (DRE) systems. TAO is an imple menta tion of the Real-time CORBA specification [OMG02] that uses many frameworks and classes in ACE to meet the de manding quality of ser vice (QoS) re quirements in DRE sys tems. T

	4. Applying Skoll to ACE+TAO
	4.1. Ensuring Software Quality in the Context of Short Development Cycles
	4.2. Ensuring a Consistent Global View of Sys tem Con figuration Constraints
	4.3. Ensuring Coherency and Reducing Redun dancy in QA Activities
	4.4. Supporting Diversity in Test Environ ments
	4.5. Automating the Execution of QA Proc esses

	5. Related Work
	6. Concluding Remarks
	7. Acknowledgements

