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Abstract 
Open-source development processes have emerged as an 
effective approach to reduce cycle-time and decrease de-
sign, implementation, and quality assurance costs for 
certain types of software, particularly systems infrastruc-
ture software, such as operating systems, compilers and 
language processing tools, text and drawing editors, and 
middleware. This paper presents two contributions to the 
study of open-source software processes. First, we de-
scribe key challenges of open-source software and illus-
trate how quality assurance (QA) processes – specifically 
those tailored to open-source development – help miti-
gate these challenges better than traditional closed-
source processes do. Second, we summarize results of 
empirical studies that evaluate how our Skoll distributed 
continuous quality assurance (DCQA) techniques and 
processes help to resolve key challenges of developing 
and validating open-source software. Our results show 
that: (1) using models to configure and guide the DCQA 
process improves developer understanding of open-
source software, (2) improving the diversity of platform 
configurations helps QA engineers find defects missed 
during conventional testing, and (3) centralizing control 
of QA activities helps to eliminate redundant work. 

Keywords: Distributed Continuous Quality Assurance, 
Model-driven Approaches, Skoll, and Software Quality 

1. Introduction 
1.1. Enablers of Open-Source Success 

Over the past decade, open-source development proc-
esses [O’Reilly98] have demonstrated their ability to re-
duce cycle-time and decrease design, implementation, 
and quality assurance (QA) costs for certain types of 
software, particularly infrastructure software, such as 
operating system (OS) platforms, web servers, middle-
ware, text and language processing tools, and sys-
tem/network support tools. These projects generally ex-
hibit common properties. First, they are general-purpose, 
commoditized systems infrastructure software, whose re-
quirements and APIs are well known. For example, the 
requirements and APIs for Linux, Apache, C/C++ com-
pilers/linkers, and JBoss/CORBA middleware are well 
understood, so less time and effort is needed for up-
stream software development activities, such as require-
ments analysis or interface specifications. Second, they 

service communities whose software needs are unmet by, 
or are economically unappealing to, mass-market soft-
ware providers. For example, the Linux-based Beowulf 
clusters and the Globus middleware for Grid computing 
were developed in the scientific computing community 
in part because their high-end computing applications 
run on specialized platforms that were not the focus of 
the traditional mass-market desktop and server suppliers. 
In addition, they are often applied by relatively sophisti-
cated user communities, who have considerable software 
development skills and knowledge of development tools 
(such as debuggers, configuration managers, bug track-
ing systems, memory leak/validation tools, and perform-
ance profilers) and collaboration mechanisms (such as 
web/ftp-sites, mailing lists, NetMeeting, and instant mes-
saging). When these users encounter bugs or software 
configuration problems they can often identify/fix the 
problems and submit patches. 

From a software perspective, the open-source projects 
outlined above have generally succeeded for the reasons 
described below. 

1.1.1. Scalable division of labor. Brooks’ Law states 
that “adding developers to a late project makes it later” 
[Brooks75]. Open-source projects often exploit a “loop-
hole” in this law, namely that software debugging and 
QA productivity do scale up as headcount increases be-
cause the more people testing the code, the more defects 
will be detected.  All other things being equal, therefore, 
we would thus expect a team of 1,000 testers to find 
many more defects than a team of 10 testers, a phenome-
non referred to in the open-source community as “to 
enough eyeballs, all bugs are shallow” [Raymond98].  
QA activities also scale well since they do not require as 
much inter-personal communication as software develop-
ment (particularly analysis and design activities). 

To leverage the scalability of open-source QA processes, 
successful projects are often organized into a “core” and 
“periphery” structure where a relatively small number of 
core developers ensure the architectural integrity of the 
project, e.g., vetting user contributions and bug fixes, 
adding new features and capabilities, and tracking day-
to-day progress on project goals and tasks. In contrast, 
the periphery consists of the hundreds or thousands of 
user community members who help test and debug the 
software released periodically by the core team. In some 



open-source projects, the distinctions between core and 
periphery are informal and fluid, e.g., participants can 
play different roles at different times [Mockus02]. 

1.1.2. Short feedback loops between the core and the 
periphery is one reason for the success of well-organized, 
large-scale open-source development efforts, such as the 
Linux OS, Apache web server, and the ACE+TAO mid-
dleware.  In these systems, for example, it often takes 
just a few minutes or hours to detect a bug at the periph-
ery, report it to the core, and receive an official patch 
from a core developer [Mockus00, Osterlie03]. More-
over, the use of Internet-enabled configuration manage-
ment tools, such as the GNU Concurrent Versioning Sys-
tem (CVS) or Subversion, allows open-source users in 
the periphery to resynchronize quickly with updates and 
fixes supplied by the core.  

1.1.3. Effective leverage of user community expertise 
and computing resources. In today's time-to-market-
driven economy, few software providers can afford long 
QA cycles. As a result, nearly everyone who uses a com-
puter – particularly software application developers – is 
effectively a beta-tester of software that was shipped be-
fore all defects could be identified and removed. In tradi-
tional closed-source/binary-only software deployment 
models, these premature release cycles yield frustrated 
users, who have little recourse other than grousing when 
problems arise. Since they are often limited to little more 
than finding workarounds for problems they encounter, 
they may have little incentive to help improve closed-
source products. 

In contrast, open-source development leverages expertise 
in their communities, allowing users and developers to 
collaborate to improve software quality [Lakhani03]. For 
example, short feedback loops encourage users to help 
with the QA process since they are “rewarded” by rapid 
fixes. Moreover, since the source code is available, users 
at the periphery can often either fix bugs directly or can 
provide concise test cases that help isolate problems 
quickly. User efforts can therefore greatly magnify the 
debugging and computing resources available to an 
open-source project, which can improve software quality 
if harnessed effectively and combined with automated 
tools for tracking defect reports, such as Bugzilla and 
JIRA. 

1.1.4. Inverted stratification of available expertise. In 
many organizations, testers and QA engineers are per-
ceived to have lower status than software developers. In 
contrast, open-source development processes often invert 
this stratification so that the “testers” in the periphery are 
often excellent software developers who apply their de-
bugging skills when they encounter problems with the 
open-source software base. The open-source model thus 
makes it possible to leverage the talents of these develop-

ers, who ordinarily do not work as testers in traditional 
software organizations.  

1.1.5. Greater opportunity for analysis and validation. 
Open-source development techniques can help improve 
software quality by enabling the use of powerful analysis 
and validation techniques, such as whitebox testing and 
model checking, that require access to the source code. 
For example, [Zeller02] and [Michail05] have employed 
static analysis and testing techniques to find bugs in 
open-source software.  

In general, traditional closed-source/binary-only software 
development and QA processes rarely achieve the bene-
fits outlined above as rapidly or as cost effectively as 
open-source processes.  

1.2. Problems with Current Open-Source Processes  

Open-source projects have had great success in the sys-
tems infrastructure software domains, as described in 
Section 1.1. Our experience working on many open-
source projects [GPERF90, TAO98, JAWS99, ACE01, 
CoSMIC04] for the past two decades has shown, how-
ever, that the open-source development model can create 
significant problems in maintenance and evolution:1

Problem 1: Hard to maintain software quality in the 
face of short development cycles. The goals of open-
source software development are not unique, i.e., limit 
regression errors to avoid breaking features or degrading 
performance relative to prior releases, sustain end-user 
confidence and good will, and minimize development 
and QA costs. It can be hard, however, to ensure consis-
tent quality of open-source software due to the short 
feedback loops between users and core developers, 
which typically result in frequent “beta” releases, e.g., 
several times a month. Although this schedule satisfies 
end-users who want quick patches for bugs they found in 
earlier betas, it can be frustrating to other end-users who 
want more stable, less frequent software releases.  In 
addition to our own experiences, [Gamma05] describes 
how the length of the release cycles in the Eclipse frame-
work affected user participation and eventually the qual-
ity of the software. 

Problem 2: Lack of global view of system constraints. 
Large-scale open-source projects often have a large num-
ber of contributors from the user community (i.e., the 
periphery). When these users encounter problems, they 
may examine the source code, propose/apply fixes lo-
cally, and then submit the results back to the core team 
for possible integration into the source base. Often these 
users in the periphery have much less knowledge of the 
entire architecture of an open-source software system 
                                                           
1 More discussions of failed open-source projects are available 
at www.isr.uci.edu/research-open-source.html and 
www.infonomics.nl/FLOSS/report. 



than the core developers.  As a result, they may lack a 
global view of broader system constraints that can be 
affected by any given change, so their suggested fixed 
may be inappropriate. 

Problem 3: Unsystematic and redundant QA activi-
ties. Many popular open-source projects (such as GNU 
GCC, CPAN, Mozilla, the Visualization Toolkit, and 
ACE+TAO) distribute regression test suites that end-us-
ers can run to evaluate the success of an installation on a 
user’s platform.  Users can – but frequently do not – re-
turn the test results to project developers.  Even when 
results are returned to core developers, however, the test-
ing process is often undocumented and unsystematic, 
e.g., core developers have no record of what configura-
tions were tested, how they was tested, or what the re-
sults were, which loses crucial QA-related information. 
Moreover, many QA configurations are executed redun-
dantly by thousands of users (e.g., on popular versions of 
Linux or Windows), whereas others are never executed at 
all (e.g., on less widely used operating systems). 

Problem 4: Lack of diversity in test environments. 
Well-written open-source software (e.g., based on GNU 
auto-conf) can be ported easily to a variety of OS and 
compiler platforms. In addition, since the source is avail-
able, end-users can modify and adapt their source base 
readily to fix bugs quickly or to respond to new market 
opportunities with greater agility. Support for platform-
independence, however, can yield the daunting task of 
keeping an open-source source software base operational 
despite continuous changes to the underlying platforms.  
In particular, since developers in the core may only have 
access to a limited number of OS/compiler configura-
tions, they may release code that has not been tested 
thoroughly on all platform configurations on which users 
want to run the software. 

Problem 5: Manually intensive execution of QA proc-
esses. The availability of source code often encourages 
an increase in the number of options for configuring and 
subsetting the software at compile- and run-time. Al-
though this flexibility enhances the software’s applicabil-
ity for a broad range of use cases, it can also exacerbate 
QA costs due to a combinatoric increase in the QA space. 
Moreover, since open-source projects often run on a lim-
ited QA budget due to their minimal/non-existent licens-
ing fees, it can be hard for core developers to validate 
and support large numbers of versions and variants si-
multaneously, particularly when regression tests and 
benchmarks are written and run manually. 

As open-source software systems evolve, the problems 
outlined can compound, resulting in systems that are 
defective, bloated, and hard to maintain. For example, 
the inability to regression test a broad range of potential 
configurations increases the probability that certain con-
figurations of features/options may break in new re-

leases, thereby reducing end-user confidence/adoption 
and increasing subsequent development and QA costs. 
Without remedial action, therefore, open-source user 
communities may become smaller (due to frustration 
with software quality) until the software falls into disuse. 
This paper describes techniques and tools for addressing 
these types of problems, so it becomes easier to deliver 
on the promise of open-source processes.   

2. Addressing Open-Source Challenges with 
Skoll  
To address the problems with open-source software de-
velopment described in Section 1.2, we have developed 
the Skoll distributed continuous quality assurance 
(DCQA) environment [Memon04]. Skoll provides tools 
for creating and validating novel software QA processes 
that leverage the extensive computing resources of 
worldwide user communities in a distributed, continuous 
manner to rapidly improve software quality. In particular, 
Skoll provides an integrated set of tools that run coordi-
nated QA activities around-the-world, around-the-clock 
on a virtual computing grid provided by user machines 
during off-peak hours to (1) detect and resolve QA prob-
lems quickly and (2) automatically analyze and enhance 
key system QoS characteristics on a diverse range of 
system configurations and platforms. 

To enhance the detection and resolution of QA problems, 
Skoll closes the loop from users back to developers by 
exploiting the inherently distributed nature of open-
source user communities. In particular, users at various 
sites in the periphery use Skoll tools to perform a portion 
of the overall testing, thereby offloading the number of 
versions that must be maintained by core developers, 
while enhancing user confidence in new (beta) versions 
of open-source software. Each user/site participating in 
Skoll-guided DCQA processes conducts different instru-
mentations and performance benchmarks automatically 
to collect metrics, such as measures of memory footprint, 
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throughput, latency, and jitter. 

Skoll’s DCQA processes are (1) distributed, i.e., a given 
QA task is divided into several subtasks that can be per-
formed on a single user machine, (2) opportunistic, i.e., 
when a user machine becomes available, one or more 
subtasks are allocated to it and the results are collected 
and fused together at central collection sites to complete 
the overall QA process, and (3) adaptive, i.e., earlier 
subtask results are used to schedule and coordinate future 
subtask allocation. Skoll leverages important open-
source project assets, such as the technological sophisti-
cation and extensive computing resources of worldwide 
user communities, open access to source, and ubiquitous 
web access, to improve the quality and performance of 
open-source software by automating the division of labor 
to make those 'thousands of eyeballs' more effective.  
Figure 1 illustrates how a QA task (Task 1) can be de-
composed into three subtasks (subtasks 1.1, 1.2, and 1.3), 
which are allocated to and executed on computing node 
clusters. As subtasks run, Skoll’s control logic may dy-
namically steer the global QA computations to enhance 
their performance and accommodate various platform 
constraints, such as type of OS/compiler platform, 
amount of disk space and CPU load available for QA 
tasks, etc. 

At a high level, a Skoll-based DCQA process (shown in 
Figure 2) runs as follows: 

Step 1. Developers create a configuration and control 
model (Section 3.2) and adaptation strategies (Section 
3.3) for the open-source software. An intelligent steering 
agent (ISA) uses automated AI planning algorithms 
[Memon01a] to translate the model into planning opera-
tors. Developers create generic QA subtask code that will 
be specialized when creating job configurations, which 
consist of the code artifacts, configuration parameters, 
build instructions, and QA-specific code (e.g., developer-
supplied regression and performance tests) associated 
with a software project. 

Step 2. A user registers with a Skoll server to receive 
Skoll client software.  The user receives the Skoll client 
software and a configuration template.  The user can 
modify the configuration template to change option set-
tings temporarily or constrain specific options. 

Step 3. The client periodically (or on-demand) requests a 
job configuration from a Skoll server. 

Step 4.  The Skoll server queries its databases and the 
user-provided configuration template to determine which 
option settings are fixed for that user and which can be 
set by the ISA. It then packages this information as a 
planning goal and queries the ISA, which generates a 
plan, creates the job configuration, and returns it to the 
client. 

Step 5. The Skoll client invokes the job configuration 
and returns the results to the Skoll server. 

Step 6. The Skoll server examines these results and in-
vokes the designated adaptation strategies, which update 
the ISA operators to adapt the global process. Skoll’s 
adaptation strategies use built-in statistical analyses that 
help developers quickly identify large subspaces in 
which QA subtasks have failed (or performed poorly). 

 

Figure 2: Skoll in Action 

Step 7. Periodically, e.g., when prompted by developers 
or at the end of a QA session, Skoll servers prepare a 
visualization of their subtask results and the current state 
of the overall process. 

Our earlier work on DCQA environments [Memon04, 
Yilmaz05, PSA04] has described various techniques sup-
ported by Skoll, including (1) the creation of a model of 
all possible software configurations, (2) division of a QA 
task into subtasks that can execute independently on end-
user machines, (3) collection of subtask execution results 
and their interpretation, (4) adaptation of the overall 
process based on incremental QA results, (5) fault classi-
fication techniques to help pinpoint the source of errors, 
and (6) visualization of QA task results. This paper ex-
tends our prior work by showing how we applied Skoll 
to a large-scale open-source project to mitigate the prob-
lems described in Section 1.2.  
3. Overview of ACE and TAO  
We applied Skoll on ACE [ACE01] and TAO [TAO98], 
which are widely used open-source middleware plat-
forms (www.dre.vanderbilt.edu). ACE is an object-ori-
ented framework containing hundreds of classes that 
implement key patterns and frameworks for distributed 
real-time and embedded (DRE) systems. TAO is an im-



plementation of the Real-time CORBA specification 
[OMG02] that uses many frameworks and classes in 
ACE to meet the demanding quality of service (QoS) re-
quirements in DRE systems. These middleware plat-
forms allow applications to interoperate across networks 
without hard-coding dependencies on their location, pro-
gramming language, operating system platform, commu-
nication protocols and interconnects, and hardware char-
acteristics.   

ACE and TAO were ideal study candidates for the Skoll 
DCQA environment since they share the following char-
acteristics – as well as problems – with other large-scale 
open-source projects, such as Linux, Apache, and the 
GNU compiler and language processing tools: 

• Large and mature source code base. The ACE+TAO 
source base contains over two million source lines of 
C++ middleware systems source code, examples, and 
regression tests split into over 9,800 files as follows: 

Software 
Toolkit 

Source 
Files 

Source Lines of 
Code 

ACE 2,016 448,974 

TAO 7,824 1,755,789 

Total 9,840 2,204,763 

• Heterogeneous platform support.  ACE+TAO runs 
on dozens of platforms, including most POSIX/UNIX 
variants, all versions of Microsoft Win32, many real-
time and embedded operating systems, MVS OpenEdi-
tion, and Cray. These platforms change over time, e.g., 
to support new features in the C++ standard and newer 
versions of the operating systems. 

• Highly configurable, e.g., numerous interdependent 
options supporting a wide variety of program families 
[Parnas79] and standards. Common examples of dif-
ferent options include multi-threaded vs. single-
threaded configurations, debugging vs. release ver-
sions, inlined vs. non-inlined optimized versions, and 
complete ACE vs. ACE subsets. Examples of different 
program families and standards include the baseline 
CORBA 3.0 specification, Minimum CORBA, Real-
time CORBA, CORBA Messaging, the Lightweight 
CORBA Component Model, and many different varia-
tions of CORBA services. 

• Core development team. ACE+TAO are maintained 
by a core – yet geographically distributed – team of 
~20 developers. While many of these core developers 
have worked on ACE+TAO for several years, there is 
also a continual influx of developers into and out of 
the core. 

• Comprehensive source code control and bug track-
ing. The ACE and TAO source code resides in a CVS 

repository, hosted at the Institute for Software Inte-
grated Systems (ISIS) at Vanderbilt University. Exter-
nal read-only access is available to the ACE+TAO 
user community via the Web. Write access is granted 
only to certain group members and trusted external 
contributors. Software defects are tracked using Bug-
zilla, which is a Web-based tool that helps ACE+TAO 
developers resolve problem reports and other issues. 

• Large and active user community. Over the past 
decade ACE+TAO have been used by more than 
20,000 application developers, who work for thou-
sands of companies in dozens of countries around the 
world. Since ACE and TAO are open-source systems, 
changes are often made and submitted by users in the 
periphery who are not (initially) part of the core devel-
opment team. 

• Continuous evolution, i.e., ACE+TAO have a dy-
namically changing and growing code base that has 
hundreds of CVS repository commits per week. Al-
though the interfaces of the core ACE+TAO libraries 
are relatively stable, their implementations are en-
hanced continually to improve correctness, time/space 
overhead, user convenience, portability, safety, and 
another desired aspects. The ACE+TAO software dis-
tributions also contain many examples, standalone ap-
plications, and tests for functionality and performance. 
These artifacts change more frequently than the main 
ACE+TAO libraries, and are often not as thoroughly 
tested on all the supported platforms.  

• Frequent beta releases and periodic “stable” re-
leases. Beta releases contain bug fixes and new fea-
tures that are lightly tested on the platforms that the 
core ACE+TAO team uses for their daily development 
work.  The usual interval between beta releases aver-
ages around every two to three months. In contrast, the 
“stable” versions of ACE+TAO are released less fre-
quently, e.g., once a year, and are tested extensively on 
all the OS and compiler platforms to which 
ACE+TAO have been ported. The stable releases are 
supported commercially by over half a dozen compa-
nies worldwide. 

Despite the broad use of ACE+TAO, this open-source 
effort suffers from the problems discussed in Section 1.2. 

4. Applying Skoll to ACE+TAO 
This section describes how we have applied DCQA proc-
esses using Skoll to address the problems with open-
source processes discussed in Section 1.2.  To make the 
discussion concrete, we focus applying Skoll to improve 
the quality and performance of ACE+TAO by developing 
a scalable QA process based on continuous testing and 
profiling. Although we describe these problems in the 



context of ACE+TAO, they are issues for many other 
large-scale open-source projects.  

4.1. Ensuring Software Quality in the Context of 
Short Development Cycles 

One reason why ACE+TAO are widely used in both 
commercial and research projects is that they are cus-
tomizable to many different runtime contexts, i.e., they 
have hundreds of features/options that can be en-
abled/disabled for application-specific use cases. In the 
context of short “beta-driven” development cycles, how-
ever, the core ACE+TAO developers cannot test all pos-
sible configurations because there are simply not enough 
people, OS/compiler, platforms, CPU cycles, or disk 
space in house to run the hundreds of ACE+TAO regres-
sion tests over the combinatorial number of configu-
rations in a timely manner. As a result, some parts of the 
middleware are released untested, which greatly in-
creases the probability that certain configurations of fea-
tures/options may break in new releases, thereby reduc-
ing end-user confidence and increasing subsequent de-
velopment and QA costs. 

To mitigate this problem we designed a Skoll DCQA 
process that runs automated regression tests continuously 
across a grid of external computing resources.  These 
tests include ~100 ACE tests and ~250 TAO tests that 
serve several purposes, including (1) user acceptance 
and assurance, which involves building and testing the 
ACE and/or TAO libraries on a wide variety of different 
platforms to validate the integrity of the builds and any 
assumptions made about the operating platform and (2) 
smoke testing, where build/test scripts run a varying sub-
set of the ACE+TAO regression test suite whenever de-
velopers commit their changes to the CVS repository.  
The Skoll DCQA process is currently running on 60+ 
workstations and servers at over a dozen sites around the 
world (see www.dre.vanderbilt.edu/scoreboard for a 
summary). This parallelization of the DCQA process 
allows much more work to be done in a shorter time 
frame. 

Each full build and test ranges can take anywhere from 
three hours on quad-CPU Linux machines to 8 or more 
hours on less powerful machines. Given the size of the 
configuration space and the shortness of the development 
cycle, we try to improve efficiency by adapting Skoll’s 
DCQA process to incoming test results. One adaptation 
strategy is called nearest neighbor search, where when a 
configuration fails all configurations that differ from it in 
the setting of exactly one option are scheduled for testing 
with the highest priority to quickly identify sets of simi-
lar configurations that both pass and fail. This informa-
tion is then fed to classification tree algorithms [Por-
ter91] that (1) build models of the specific option settings 
that may be causing the failures and (2) summarize the 
large volumes of data into feedback that developers can 

use to help focus their debugging efforts. For more infor-
mation on this work see Memon et al. [Memon04]. 

4.2. Ensuring a Consistent Global View of System 
Configuration Constraints 

A fundamental strength of open-source software is its 
distribution in source-code form that users are free to 
download, build, and execute on any platform that has 
the right combination of compiler/build tools and run-
time support. This flexibility, however, creates an enor-
mous number of potential platform configurations (e.g., 
compiler and OS settings, versions of the OS and in-
stalled libraries, etc.) in which open-source software can 
execute. Complexity is also introduced by the large num-
ber of compile- and run-time options/settings typically 
seen in open-source software itself. Our experience with 
ACE+TAO has shown that many errors are encountered 
in the field by users who employ new, unexplored con-
figurations. For example, the Bugzilla databases 
(deuce.doc.wustl.edu/bugzilla/index.cgi) for ACE+ TAO 
show many cases of bug reports that are in fact miscon-
figurations by users. These problems are exacerbated by 
the turnover in core developers. 

For a successful DCQA process, it is essential to model 
valid configurations explicitly. Although documentation 
generally does a good job of conveying the options and 
their settings, it rarely captures inter-option constraints. 
For example, in our case study with ACE+TAO 
[Memon04], we found that many core ACE+TAO devel-
opers did not understand the configuration option con-
straints for their very complex system, i.e., they provided 
us with both erroneous and missing constraints. 

A useful way to visualize the full range of settings possi-
ble in open-source software is as a multidimensional soft-
ware configuration space. Each possible combination of 
settings becomes a single unique point within this space, 
with the space as a whole encompassing every possible 
combination of settings. The total size of the software 
configuration space depends on the number of settings 
available for change. If only a small number of settings 
are treated “in play,” the resulting subset of the software 
configuration space might have no more than a few tens 
of unique points. If every setting available on a typical 
realistic open-source software is put into play, however, 
the resulting full software configuration space can be 
enormous, containing millions or more unique points. 

Skoll uses a formal model of the software’s configuration 
space to maintain a consistent global view of system con-
straints. This model captures all valid configurations, 
which are mappings represented as a set {(V1, C1), (V2, 
C2), …, (VN, CN)}, where each Vi is a configuration op-
tion and Ci is its value, drawn from the allowable settings 
of Vi. As noted, not all configurations make sense (e.g., 
feature X not supported on operating system Y). We 



therefore allow inter-option constraints that limit the set-
ting of one option based on the setting of another. We 
represent constraints as (Pi → Pj), meaning “if predicate 
Pi evaluates to TRUE, then predicate Pj must evaluate to 
TRUE. A predicate Pk can be of the form A, ¬A, A|B, 
A&B, or simply (Vi=Ci), where A, B are predicates, Vi is 
an option and Ci is one of its allowable values. A valid 
configuration is a configuration that violates no inter-
option constraints. 

The Skoll configuration model can cover more than just 
software options, e.g., it can indicate the range of plat-
forms over which the QA process can run correctly.  It 
can also cover test cases that run correctly only in certain 
configurations.  Since this information is typically not 
written down anywhere, users often run regression tests 
anyway, which confuses them into believing that the re-
sulting test failure indicates an unknown installation 
problem.  These test failures also confuse developers 
who must remember which of the several hundred test 
cases to pay attention to and which can be ignored safely. 

Table 1 presents some sample options and constraints for 
ACE+TAO, including the end platform compiler (COM-
PILER), whether to compile in certain features (AMI, 
CORBA_MSG), whether certain test cases are runnable in 
a given configuration (run(T)), and at what level to set a 
run-time optimization (ORBCollocation). One sam-
ple constraint shows that asynchronous method invoca-
tion (AMI) support requires the presence of CORBA 
messaging services (CORBA_MSG). The other shows that 
a certain test only runs on platforms with the SUN CC 
compiler version 5.1. 

 
We learned several lessons building the ACE+TAO con-
figuration model. For example, we learned that the con-
figuration model for ACE+TAO was undocumented, so 
we had to build our initial model bottom-up. We also 
found that different core developers had conflicting 
views on what the constraints really were and whether 
certain constraints were current or had been superseded 
by recent changes, which taught us that building configu-
ration models is an iterative process.  

By using Skoll in place of manual QA processes, we 
quickly identified previously undiscovered coding errors 
that prevented the software from compiling in certain 

configurations. For example, the ACE+TAO build failed 
at line 137 in the RT_ORBInitializer.cpp source 
file (20 configurations) whenever CORBA MSG = 0 due 
to a missing #include statement that was conditionally 
included (via a #define block) only when CORBA_MSG = 
1. The ACE+TAO build also failed at line 38 in the 
source file Asynch_Reply_Dispatcher.h (8 con-
figurations) whenever CALLBACK = 0 and POLLER = 1. 
Since this configuration should be legal, this was deter-
mined to be a previously undiscovered bug.  

In several cases, tests failed for the same reason on the 
same configurations. For example, test compilation failed 
at line 596 of the source file ami_testC.h for 7 tests, 
each when CORBA_MSG = 1 and POLLER = 0 and 
CALLBACK = 0, which was a previously undiscovered 
bug. It turned out that certain code within TAO imple-
menting CORBA Messaging incorrectly assumed that at 
least one of the POLLER or CALLBACK options would 
always be set to 1. ACE+TAO developers also noticed 
that the failure manifested itself no matter what the set-
ting of the AMI option, which was a second previously 
undiscovered problem because these tests should not 
have been executed when AMI = 0. Consequently, there 
was a missing testing constraint, which we then included 
in the test constraint set.  

In all the cases described above, we found that access to 
the source code of ACE+TAO enabled us to create and 
validate our configuration models more quickly and ef-
fectively than if we only had access to the binaries. 

4.3. Ensuring Coherency and Reducing Redundancy 
in QA Activities 
While conventional QA approaches employed in open-
source projects help improve the quality and perform-
ance of software, they have significant limitations, e.g., 
there is little, if any, control over the QA tasks being 
executed. What to test is left to developers, i.e., each 
developer typically decides (often by default) what as-
pects of the system to examine. For example, ACE+TAO 
developers continuously test their software using a bat-
tery of automated tests whose results are published at 
www.dre.vanderbilt.edu/scoreboard. Developers are re-
sponsible, however, for deciding which configurations 
and tests to run on their platforms.  Our experience 
[Memon04, Yilmaz05] shows that (1) configurations 
proven to be faulty are tested repeatedly and (2) some 
configurations are evaluated multiple times, whereas 
others are never evaluated, which leads to wasted re-
sources and lost opportunities and lets redundancies and 
important gaps in QA coverage creep in. 

To ensure greater coherency and less redundancy in QA 
activities, Skoll provides an Intelligent Steering Agent 
(ISA) to control the global QA process.  The ISA uses AI 
planning algorithms [Memon01a] to decide which valid 



configuration to allocate to each incoming Skoll client 
request.  When a client becomes available, the ISA de-
cides which subtask to assign it by considering various 
factors, including (1) the configuration model, e.g., 
which characterizes the subtasks that can legally be as-
signed, (2) the results of previous subtasks, e.g., which 
captures what tasks have already been done and whether 
the results were successful, (3) global process goals, e.g., 
testing popular configurations more than rarely used ones 
or testing recently changed features more heavily than 
unchanged features, and (4) client characteristics and 
preferences., e.g., the configuration must be compatible 
with physical realities, such as the OS running on the 
remote machine.   

After a valid configuration has been chosen, the ISA 
packages the corresponding QA subtask implementation 
into a job configuration (defined in step 1 in Section 2). 
The job configuration is then sent to the requesting Skoll 
client, which executes the job configuration and returns 
the results to the ISA. The ISA’s two default behaviors 
are (1) to allocate each configuration exactly once (i.e., 
random selection without replacement) or (2) to allocate 
them zero or more times (i.e., random selection with re-
placement). In both cases, the ISA ignores subtask re-
sults. Often, however, we want to learn from incoming 
results, e.g., when some configurations prove to be 
faulty, resources should be refocused on other unex-
plored parts of the configuration space. When such dy-
namic behavior is desired, process designers develop 
pluggable ISA components called adaptation strategies 
that monitor the global process state, analyze it, and use 
the information to modify future subtask assignments to 
improve overall performance of the DCQA process.  

In the ACE+TAO case study mentioned previously in 
Section 4.2, we observed that ACE+TAO failed to build 
whenever configuration options AMI = 0 and 
CORBA_MSG = 1 were selected. Developers were unable 
to fix the bug immediately, however, so we developed an 
adaptation strategy that inserted temporary constraints, 
such as CORBA_MSG = 1 → AMI = 1 into the configura-
tion model, excluding further exploration of the offend-
ing option settings until the problem was fixed. After 
fixing it, the constraints were removed to restore normal 
ISA execution. Temporary constraints can also be used 
to spawn new Skoll processes that test patches only on 
the previously failing configurations. 

Skoll’s configuration model therefore makes it possible 
for the ISA and adaptation strategies to steer the QA 
process in ways that ensure coherency and reduce redun-
dancy in QA activities. Skoll also allows more sophisti-
cated algorithms and techniques to be applied to improve 
software quality, e.g., its configuration model essentially 
defines a combinatorial object against which a wide vari-
ety of statistical tools can be applied. In another case 

study [Yilmaz05], we leveraged this feature to develop a 
DCQA process called main effects screening for monitor-
ing performance degradations in evolving systems.  

Main effects screening is a technique that can be used to 
detect performance degradation rapidly across a large 
configuration space as a software system changes.  This 
technique relies on experimental design theory to effi-
ciently determine a small subset of the configuration op-
tions that substantially effect performance. To implement 
this technique we compute a highly-efficient formal ex-
perimental design called screening designs based on the 
configuration model and conduct the resulting experi-
ment over the Skoll grid. The outcome is a small set of 
“important options,” i.e., those that have the main effects 
on key system quality factors. From this point on, when-
ever the system changes, we systematically benchmark 
all combinations of the important options (while random-
izing the rest) to get a reliable estimate of the perform-
ance across the entire configuration space. We then 
monitor the performance estimates to detect performance 
degradations. Since important options can change over 
time, we can recalibrate the important options by restart-
ing the process.  

We evaluated the main effects screening process via sev-
eral industrial strength feasibility studies on ACE+TAO 
software systems.  In these studies we created a configu-
ration model containing 14 binary runtime options (a 
total of 16,384 valid configurations). Our application 
scenario evaluated the system performance across this 
configuration space using a benchmarking regression 
test.  

We created a screening design that contained only 32 
configurations to identify the important options reliably. 
We ran the benchmarking test on each of these configura-
tions and found that only 2 (out of 14) options affected 
the performance of the system significantly. We then 
monitored the system performance using 4 configura-
tions (all possible combinations of the 2 important op-
tions) during a period of time as the system evolved. 

Our results showed that (1) screening designs can cor-
rectly identify important options, (2) these options can be 
used to quickly produce reliable estimates of the per-
formance across the entire configuration space at a frac-
tion of the cost of exhaustive testing, (3) the alternative 
approach of ad hoc or random sampling can give highly 
unreliable results, (4) the main effects screening process 
can detect performance degradations in evolving soft-
ware systems, and (5) monitoring all combinations of 
important options while defaulting or randomizing all the 
others can provide more precise performance estimates 
than ad hoc or random approaches [Yilmaz05]. 

4.4. Supporting Diversity in Test Environments 



When configuration space explosion is coupled with fre-
quent software updates and increasing platform heteroge-
neity, ensuring the quality of open-source software can 
be hard since individual developers may only have ac-
cess to a limited number of software and hardware plat-
forms.  Moreover, frequent code changes may cause de-
velopment teams to release code that has not been tested 
thoroughly on all platform and configuration combina-
tions.  For example, in one of our case studies with 
ACE+TAO, we built a configuration model by interview-
ing the core ACE+TAO developers. After testing several 
hundred configurations, we found that every configura-
tion failed to compile. We discovered that the problem 
stemmed from options providing fine-grained control 
over CORBA messaging policies that had been modified 
and moved to another library and developers (and users) 
failed to establish if these options still worked. Based on 
this feedback the ACE+TAO developers chose to control 
these policies at link-time rather than compile-time. 

To support greater diversity in testing, one QA task we 
implemented in Skoll is to systematically sample con-
figuration spaces [Yilmaz04]. The approach is based on 
calculating a mathematical object called a covering array 
with certain coverage properties over the configuration 
space. A t-way covering array (where t is called the 
strength of the array) is a minimal set of configurations 
in which all t-way combinations of option settings appear 
at least once. For a given configuration model and a level 
of coverage criterion (i.e., a value for t), the ISA com-
putes a covering array and allocates only the selected 
configurations to the requesting clients. The goal is to 
efficiently improve developer’s confidence that options 
interact with each other as expected.  

We conducted a set of feasibility studies on ACE+TAO 
where we evaluated covering arrays as a sampling strat-
egy in complex configuration spaces [Yilmaz04]. In 
these studies, our configuration model consisted of 10 
compile-time and 6 runtime options. Each compile-time 
option was binary-valued, while the runtime options had 
differing numbers of settings: four options with three 
levels, one option with four levels, and one option with 
two levels. This configuration space has 18,792 valid 
configurations. We tested each configuration using 96 
regression tests, each of which was designed to emit an 
error message for failure cases. We captured these error 
messages, indexed them, and used them in our analysis.  

To evaluate the use of covering arrays, we created five 
different t-way covering arrays for this configuration 
space. We allowed t to range between 2 and 6. We reran 
the regression tests on each of these t-way suites and 
used classification trees to automatically characterize the 
test results. We then compared the fault characterizations 
obtained from t-way suites to the ones obtained from 
exhaustive testing. 

Covering Array 
Strength (t) 

# of configurations % of reduction

2 116 99.4 

3 348 98.2 

4 1229-1236 93.5-93.4 

5 3369-3372 82.1-82.0 

6 9433-9453 49.8-49.7 

Table 2. Percentage Reduction in Number of Configu-
rations Tested (Compared to Exhaustive Testing) 

Table 2 gives the covering array size N for each value of 
t and the average percentage of reductions in the number 
of configurations to be tested compared to exhaustive 
testing. When t ≤ 3 all five arrays were the same size N. 
For these we were able to construct covering arrays with 
the smallest mathematically possible number of rows. 
When t ≥ 4, the problem of building a small N is harder, 
so we obtained a range of sizes. 

We learned several things from our covering array stud-
ies. First, we rapidly identified problems that had taken 
the developers substantially longer to find or which had 
previously not been found. Second, we observed that 
diverse testing also allows sophisticated analysis tech-
niques to be applied to the resulting data to reason about 
the root causes of failures, e.g., the classification tree 
analysis techniques described in Section 3.1 will perform 
poorly if the input data is skewed towards specific con-
figurations. Third, using covering arrays in complex con-
figuration spaces resulted in fault characterization mod-
els that are nearly as accurate as the ones obtained from 
exhaustive testing, but are much cheaper (provides 50-
99% reductions in the number of configurations to be 
tested) [Yilmaz04]. 

4.5. Automating the Execution of QA Processes 

To evaluate key QoS characteristics of performance in-
tensive software, QA engineers today often handcraft 
individual QA tasks.  For example, for a simple QA task, 
initial versions of Skoll required the artifacts such as (1) 
the configuration settings and options for ACE+TAO that 
need to be evaluated, (2) the evaluation/benchmarking 
code used to evaluate the configuration settings and pro-
vide feedback, (3) interface definitions that represent the 
contract between the client and server, and (3) support 
code, e.g., script files, build files to build and execute the 
experiments. Our earlier work [Memon04] revealed how 
manually implementing these steps is tedious and error-
prone since each step may be repeated many times for 
every QA experiment. 

To redress this shortcoming, we applied model-driven 
generative programming techniques [Czarnecki:00] to 



automate the generation of scaffolding code from higher 
level models, which helps ensure that the generated code 
is both syntactically correct and semantically valid, thus 
shielding QA engineers from tedious and error-prone 
low-level source code generation. This technique also en-
ables QA engineers to compose the experiments via 
model artifacts rather than source code, thereby raising 
the level of abstraction. We have integrated the following 
two modeling capabilities into Skoll: 

• The Options Configuration Modeling Language 
(OCML) [RTAS05] modeling tool, which enables us-
ers to select a set of middleware-specific configuration 
options required to support the application needs and  

• The Benchmark Generation Modeling Language 
(BGML) [RTAS05], which is a model-driven bench-
marking tool that allows component middleware QA 
engineers to visually model interaction scenarios be-
tween configuration options and system components 
using domain-specific building blocks, i.e., capture 
software variability in higher-level models rather than 
in lower-level source code.   

OCML model interpreters based on the requesting client 
characteristics (e.g., OS, compiler, and hardware) and the 
configuration model generate platform-specific configu-
ration information, which serves as the basis for generat-
ing the job configuration. As described in Section 4.3, a 
job configuration is used to run a particular QA subtask 
at the client site. The BGML model interpreters generate 
benchmarking code generation and reuse QA task code 
across configurations.  

In earlier work [Yilmaz05, ICSR8], we showed how 
BGML can be used to auto-generate ~90% of the code 
required to set up a benchmarking experiment. This gen-
erated code was also interfaced with our main effects 
screening tools. Our work on model-driven automation 
of the QA process revealed that having access to the 
source code enabled the QA engineers to reuse instru-
mentation and evaluation code for different configuration 
combinations. Similarly, QA engineers can easily tailor 
the generated code for different IDL interfaces by add-
ing/modifying the generated IDL from the model. 

5. Related Work 
There are several efforts addressing the QA challenges of 
open-source software systems by gathering various types 
of information from distributed run-time environments 
and usage patterns encountered in the field, i.e., on user 
target platforms with user configuration options.  This 
section describes the most visible of these efforts. 

Online crash reporting systems gather system state at a 
central location whenever a fielded system crashes, 
which simplifies user participation in QA by automating 
certain aspects of problem reporting.  For example, Net-

scape Quality Feedback Agent and Microsoft XP Error 
Reporting aid users in reporting errors by automatically 
generating error reports during crashes to enable users to 
report failures with ease, thus aiding QA teams to im-
prove software quality. These approaches, however, have 
a very limited scope, i.e., they perform only a small frac-
tion of typical QA activities and ignore issues associated 
with QoS and performance. Moreover, they are reactive 
(i.e., the reports are only generated when systems crash), 
rather than proactive (e.g., attempting to detect, identify, 
and remedy problems before users encounter them). In 
contrast, Skoll’s ISA uses several techniques (e.g., near-
est neighbor) that study previous results and predict con-
figurations that are likely to create problems and explores 
them before they are encountered in the field. 

Auto-build scoreboards are a more proactive form of 
distributed regression test suites that allow software to be 
built/tested at multiple sites on various hardware, OS, 
and compiler platforms.  The Mozilla Tinderbox and 
ACE+TAO Virtual Scoreboard are auto-build score-
boards that track end-user build results across various 
platforms.  Bugs are reported via defect tracking systems 
(such as Bugzilla and JIRA), which provide inter-bug 
dependency recording, advanced reporting capabilities, 
extensive configurability, and integration with automated 
software configuration management systems (such as 
CVS and Subversion).  While these systems help docu-
ment the QA process, the decision of what to test is left 
to end users.  Unless the core developers can control at 
least some aspects of the QA process, important gaps and 
inefficiencies will still occur.  In contrast, Skoll is essen-
tially driven by core developers in multiple ways. For 
example, adaptation strategies in the ISA are coded by 
the core developers. This has a direct impact on which 
configurations should be tested and when.  

6. Concluding Remarks 
Open-source has proven to be an effective development 
process for many software application domains [Ray-
mond01]. The overall quality of open-source software, 
however,  can be compromised by recurring problems, 
such as frequent releases of patches, lack of global view 
of system constraints, unsystematic and inadequate QA, 
and large configuration spaces,. This paper described 
how the Skoll project provides technologies and tools to 
help minimize the effects of these problems by leverag-
ing key strengths of open-source development processes, 
such as open access to source code, ubiquitous web ac-
cess, and their scalability to large user communities, 
where technologically sophisticated application program-
mers and end-users in the field can assist with QA activi-
ties, documentation, mentoring, and technical support 
traditionally performed in-house. Throughout this paper 
we describe how intelligent leverage of the expertise and 
extensive computing resources of user communities is 



essential to overcome common problems that can impede 
the success of large-scale open-source software projects. 
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