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Abstract. Future embedded and ubiquitous computing systems will operate continuously on mobile de‐
vices, such as smartphones, with limited processing capabilities, memory, and power. A critical aspect 
of developing future applications for mobile devices will be ensuring that the application provides 
sufficient performance while maximizing battery life. Determining how a software architecture will 
affect power consumption is hard because the impact of software design on power consumption is not 
well understood. Typically, the power consumption of a mobile software architecture can only be 
determined after the architecture is implemented, which is late in the development cycle when design 
changes are costly. 
Model‐driven Engineering (MDE) is a promising solution to this problem. In an MDE process, a model of 
the software architecture can be built and analyzed early in the design cycle to identify key 
characteristics, such as power consumption. This paper describes current research in developing an 
MDE tool for modeling mobile software architectures and using them to generate synthetic emulation 
code to estimate power consumption properties. The paper provides the following contributions to the 
study of mobile software development: (1) it shows how models of a mobile software architecture can 
be built, (2) it describes how instrumented emulation code can be generated to run on the target 
mobile device, and (3) it discusses how this emulation code can be used to glean important estimates of 
software power consumption and performance. 
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1 Introduction 

Emerging trends and challenges. Mobile devices, such as smartphones, mobile 
internet devices and web-enabled media players, are becoming pervasive. These devices 
possess limited resources, such as battery capacity, which requires developers to carefully 
manage resource consumption. To optimize resource utilization, mobile application 
developers must understand the trade-offs between performance and battery life. It is hard 
to predict the effects of architectural optimizations in mobile devices until a system has 
been completely implemented, which makes it difficult to test power consumption and 
performance until late in the software lifecycle [14], e.g., during implementation and 
testing. Changes made at this point usually result in far-reaching consequences to the 
overall design and cost much more compared to those made during earlier software 
lifecycle phases [12], e.g., during architectural design and analysis.   

Conventional techniques for developing mobile device software are not well-suited to 
identifying performance and power consumption trade-offs during earlier phases of the 
software lifecycle.  These limitations stem largely from the difficulty of comparing the 
power consumption of one architectural design versus another without implementing and 
testing each on the target device. Moreover, for each function an application performs, 
there are often multiple possible designs for accomplishing the same task, each differing in 
terms of operational speed, battery consumption and accuracy. Even though these design 
variations can significantly impact device performance, there are too many permutations 
to implement and test each.  

For example, if a mobile application communicates with a server it can do so via 
several protocols, such as HTTP, HTTPS, or other socket connections.  Developers can 
also elect to have the application and/or mobile device infrastructure submit data 
immediately or in a batch at periodic intervals.  Each design option can result in differing 
power consumption profiles [13].  If the developer elects to use HTTPS over HTTP, the 
developer is provided with additional security.  The overhead associated with key 
exchange and the encryption/decryption process, however, incurs additional processing 
time and increases the amount of information that must be transmitted over the network.  
Both of these require more power and time than would be required if standard HTTP was 
used.  

The combination of these architectural options results in too many possible variations 
to implement and test each one within a reasonable budget and production cycle.  A given 
application could have hundreds or thousands of viable configurations that satisfy the 
stated requirements. 

Solution approach  Emulation of application behavior through model-driven 
testing and auto-generated code. Model-driven engineering (MDE) [15] provides a 
promising solution to the challenges described above.  MDE relies on modeling languages, 
such as domain-specific modeling languages (DSMLs) [16], to visually represent various 
aspects of application and system design.  These models can then be utilized for code 
generation and performance analysis.  By creating a model of candidate solution archi-



Optimizing Mobile Application Performance with Model‐Driven Engineering   3 

tectures early in the design phase, instrumented architectural emulation code can be 
generated and then run on actual mobile devices. This MDE-based approach allows devel-
opers to quickly emulate a multitude of possible configurations and provides them with 
actual device performance data without investing the time and effort manually writing 
application code. 

The generated code emulates the modeled architecture by consuming sensor data, 
computational cycles, and memory as specified in the model, as well as 
transmitting/receiving faux data over the network. Since wireless transmissions consume 
most of the power on mobile devices [3] and network interaction is a key performance 
bottleneck, large-scale power consumption and performance trends can be gleaned by 
executing the emulation code. Moreover, as the real implementation is built, the actual 
application logic can be used to replace faux resource consuming code blocks to refine the 
accuracy of the model.  This MDE-based solution has been utilized previously to eliminate 
some inherent flaws with serialized phasing in layered systems, specifically as they apply 
to system QoS and to identify design flaws early in the software production life-cycle [9].  
Some prior work [8] also employs model-driven analysis to conduct what-if analysis on 
potential application architectures. 

By utilizing MDE-based analysis, mobile software developers can quantitatively 
evaluate key performance and power consumption characteristics earlier in the software 
lifecycle (e.g., at design time) rather than later (e.g., during and after implementation), 
thereby significantly reducing software refactoring costs due to design flaws.  MDE 
provides this by not only allowing developers to generate emulation code, but also by 
providing them with a high-level understanding of their application that is easy to modify 
on the fly.  Changes can be made at design time by simply moving model elements around 
rather than rewriting code.  Moreover, since emulation code is automatically generated 
from the model, developers can quickly understand key performance and power consump-
tion characteristics of potential solution architectures without investing the time and effort 
to implement them.  

This paper describes emerging R&D efforts that seek to provide developers of mobile 
applications with an MDE-based approach to optimizing application resource consumption 
across a multitude of platforms at design time. This paper also describes a methodology 
for increasing battery longevity in mobile devices through application-layer modifications.  
By focusing on the application layer, developers can still reap the benefits of advanced 
SDKs and compilers that shield the developer from hardware-centric decisions.  

Paper organization. The remainder of this paper is organized as follows: Section 2 
presents a sample mobile application running on Google’s Android platform and 
introduces several challenges associated with resource consumption optimization and 
mobile application development; Section 3 discusses our current research work developing 
an MDE tool to allow developers to predict software architecture performance and power 
consumption properties earlier in the development process; Finally, Section 4 presents 
concluding remarks and lessons learned. 
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2 Motivating Example 

This section presents a motivating mobile application running on Google’s Android 
platform and describes several challenges associated with resource consumption 
optimization and mobile application development. 

2.1 Overview of Wreck Watch 

Managing system resources properly can significantly affect device performance and 
battery life.  For instance, reducing CPU instructions not only speeds performance but also 
reduces the time the process is in a non-idle state thereby reducing power consumption; 
reducing network traffic also speeds performance and reduces the power supplied to the 
radio. To demonstrate the importance of proper resource management and the value of 
model-based resource analysis, we present the following example mobile application, 
called Wreck Watch, shown in Figure 1.  

 

Fig. 1. Wreck Watch Behavior 

Wreck Watch runs on Google Android smartphones to detect car accidents (1) by 
analyzing data from the device’s GPS receiver and accelerometer and looking for sudden 
acceleration events from a high velocity indicative of a collision. Car accident data is then 
posted to an HTTP server where (2) it can be retrieved by other devices in the area to help 
alleviate traffic congestion, notify first responders, and (3) provide accident photos to an 
emergency response center.  Users of Wreck Watch can also elect to have certain people 
contacted in the event of an accident via SMS message or a digital PBX.  Figure 1 shows 
this behavior of Wreck Watch. 

Since the the Wreck Watch application runs continuously in the background, it must -
conserve its power consumption.  The application needs to run at all times and consume a 
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great deal of sensor information to accurately detect wrecks. If not designed properly, 
therefore, these characteristics could result in a substantial decrease in battery life.  In the 
case of Wi-Fi for instance, the radio represents nearly 70% of device power consumption 
[2] and in extreme cases can consume 100 times the power of one CPU instruction to 
transmit one byte of data [3].   

The amount of power consumed by the network adapter is generally proportional to 
the amount of information transmitted [1].  The framing and overhead associated with 
each protocol can therefore significantly affect the power consumption of the network 
adapter.  Prior work [5] demonstrated that significant power savings could be achieved by 
modifying the MAC layer to minimize collisions and maximize time spent in the idle 
state.  This work also recognized that network operations generally involved only the CPU 
and transceiver and by reducing client-side processing, they could substantially reduce 
power consumed by network transactions.  Similarly, other work [7] demonstrated that 
such power savings could also be achieved through transport layer modifications.   

Although MAC and transport layer modifications are typically beyond the scope of 
most software projects, especially mobile application development, the data transmitted on 
the network can be optimized so it is as lightweight as possible, thereby accomplishing, on 
a much smaller scale, some of the same effects. The remainder of this paper uses the 
Wreck Watch application to showcase key design challenges that developers face when 
building power-aware applications for mobile devices.  

2.2 Design and Behavioral Challenges of Mobile Application Development 

Despite the ease with which mobile applications can be developed via advanced SDKs 
(such as Google Android and Apple iPhone) developers still face many challenges related 
to power consumption.  If developers do not fully understand the implications of their 
designs, they can substantially reduce device performance.  Battery life represents a major 
metric used to compare devices and can be influenced significantly by design decisions.  
Designing mobile applications while remaining cognizant of battery performance presents 
the following challenges to developers: 

 Challenge 1: Accurately predicting battery consumption of arbitrary architectural 
decisions is hard. Each instruction executed can result in the consumption of an 
unknown amount of battery power.  Accurately predicting the power consumed for 
each line of code is hard given the level of abstraction present in modern SDKs, as 
well as the complexity and numerous variations between physical devices.  Moreover, 
disregarding language commonalities between completely unrelated devices, mobile 
platforms, such as Android, are designed to operate on a plethora of hardware 
configurations, which may affect the power consumption of a given configuration.   

 Challenge 2: Trade-offs between performance and battery life are not readily 
apparent.  Although performance and power consumption are generally design 
tradeoffs, the actual relationship between the two metrics is not readily apparent.  For 
example, when comparing two networking protocols, plain HTTP and SOAP, plain 
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HTTP might operate much faster requiring only 10 ms to transmit the data SOAP 
requires 50 ms to transmit.  At the same time, HTTP might consume .5 mW, while 
SOAP consumes 1.5 mW.  Without the context of real-world performance in a 
physical device it would be difficult to predict the overhead associated with SOAP.  
Moreover, this data may vary from one device to the next.   

 Challenge 3: Effects of transmission medium on power consumed are largely device, 
application, and environment specific. Wireless radios consume a substantial amount 
of device power relative to other mobile-device components [6], where the power 
consumed is directly proportional to the amount of information transmitted [1].  Each 
radio also provides differing data rates, as well as power consumption characteristics.  
Depending on the application, developers must choose the connection medium best 
suited to application requirements, such as medium availability and transmission rate.   
The differences between transmission media are generally subtle and may even depend 
on environmental factors [10], such as network congestion that are impossible to accu-
rately predict.  To deterministically and accurately quantify performance, therefore, 
testing must be performed in environmentally-accurate situations. 

 Challenge 4:  It is hard to accurately predict the effects of reducing sensor data 
consumption rates on power utilization.  To provide the most accurate readings and 
results, device sensors would be polled as frequently as they sample data.  This method 
consumes the most possible power, however, by not only requiring that the sensor be 
enabled constantly, but by also increasing the amount of data the device must process.  
In turn, reducing the time that the sensor is active significantly reduces the 
effectiveness and accuracy of the readings. Determining the exact amount of power 
saved by a reduction in polling rate or other sensor accuracy change is difficult without 
profiling such a change on a device. 

 Challenge 5: Accurately assessing effects of different communication protocols on 
performance is hard without real-world analysis. Each communication protocol has a 
specific overhead associated with it that directly affects its overall throughput.  The 
natural choice would be to select the protocol with the lowest overhead.  While this 
decision yields the highest performance, it also results in a tightly coupled architecture 
[11] and substantially increases production time.  That protocol would only be useful 
for the specific data set for which it was designed, in contrast to a standardized 
protocol, such as HTTP.  Standardized protocols often support features that are unne-
cessary for many mobile applications, however, making the additional data required 
for HTTP transactions completely useless. It is challenging to predict how much of a 
tradeoff in performance is required to select the more extensible protocol because the 
power cost of such protocols cannot be known without profiling them in a real-world 
usage scenario. 

Discussions on performance optimization have often focused on hardware- or 
firmware-level changes and ignored potential application layer enhancements [3] [5] [6].  
Interestingly, this corresponds to the level of abstraction present in each layer: device 
drivers and hardware have little or no abstraction while software applications are often 
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more thoroughly abstracted.  It is this level of abstraction, however, that makes such 
optimizations challenging because often the developer has little or no control over the final 
machine code.  Application code thus cannot be benchmarked until it has been fully 
developed and compiled.   

Moreover, problems identified after the code is developed are substantially more 
costly to correct than those that can be identified at design time.  The value of optimizing 
the performance of an application before any code is written is therefore invaluable.  
Moreover, because power consumption is generally hardware-specific [1] such 
optimizations result in a tightly coupled architecture that requires the developer to rewrite 
code to benchmark other configurations.   

3 Model‐Based Testing and Performance Analysis 

This section describes the architecture of our current work in developing a modeling 
language extension to the Generic Eclipse Modeling System (GEMS) 
(www.eclipse.org/gmt/gems)[17], called the System Power Optimization Tool (SPOT) for 
optimizing performance and power consumption of mobile applications at design time. 
GEMS is an MDE tool for building DSMLs for the Eclipse platform. The goal of SPOT is 
to allow developers to rapidly model potential application architectures and obtain 
feedback on the performance and power consumption of the architecture without manual 
implementation. The performance data is produced by generating instrumented 
architectural emulation code from the architectural model that is then run on the target 
hardware. After execution, cumulative results can be downloaded from the target device 
for analysis. This section describes the modeling language, emulation code generation, and 
performance measurement infrastructure that we are developing to address the five 
challenges described in Section 2.2. 

3.1 Mobile Application Architecture Modeling and Power Consumption Estimation with 

SPOT 

To accurately model mobile device applications, SPOT provides a domain-specific 
modeling language (DSML) with components that (1) represent key, resource-consuming 
aspects of a mobile application’s architecture and (2) allows developers to specify visual 
diagrams of a mobile application architecture, as shown in the workflow diagram in Figure 
2.  SPOT’s DSML, called the System Power Optimization Modeling Language (SPOML), 
allows developers to build architectural specifications from the following types of model 
elements: 

 CPU consumers, which represent computationally intense code-segments such as 
location-based notifications that require distance calculations on hundreds of points.  

 Memory consumers, which represent sections of application code that will incur 
heavy memory operations reducing performance and increasing power consumption, 
e.g., displaying an image, stored on disk, on the screen, etc. 
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 Sensor data consumers, which will poll device sensors at user-defined intervals.  

 Network consumers, which periodically utilize network resources emulating actual 
application traffic   

 Screen drawing agents, which interact with device graphics libraries, such as 
OpenGL, to consume power by rendering images to the display.  

 

Fig. 2. SPOT Analysis Cycle 

The sensor and network data consumers operate independently of application logic and 
simply present an interface through which their data can be accessed.  The CPU consumer, 
however, need to incorporate application-specific logic, as well as logic from other aspects 
of the application.  The CPU consumer module also allows for developers to integrate 
actual logic application as it becomes available to replace emulation code that is generated 
by SPOML.   

To provide the software developer with the most flexibility and extensibility possible, 
SPOML provides them with many key power consumptive architectural options that 
would be present if they were actually writing device code.  For example, if the device 
presents 10 possible options for granularity of GPS readings, SPOML provides all 10 
possibilities via visual elements, such as drop down menus and check boxes.  SPOML also 
provides for constraint checking that warns developers at design time if certain 
configuration options are unlikely to work together. Ultimately, SPOT provides 
developers with the ability to modify design characteristics rapidly and model their system 
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without any application-specific logic, as well as provides them with a means to 
incorporate actual application code. 

3.2 Architectural Emulation Code Generation 

Due to the difficulty of estimating power consumption for an arbitrary device and 
software architecture it is essential to evaluate application performance on the actual 
physical hardware in production conditions.  To accomplish this task, SPOT can 
automatically generate instrumented code to perform the functions outlined by the 
architecture modeled in SPOML.  This code generation is done by traversing the in-
memory object graph of the model and outputting optimized code to perform the resource-
intensive operations specified in the model. 

The architectural emulation code is constructed from several basic building blocks, as 
described above.  The sensor consumers remain largely the same between applications and 
require little input from the user developing the model.  The only variable in their 
construction is the rate at which they poll the sensor. They present an interface through 
which their data can be accessed.   

The network consumer itself consists of several modules: a protocol, a transmission 
scheme and a payload interface.  The payload interface defines methods that allow other 
components of the application to utilize the network connection and, for the purposes of 
emulation and analysis, this interface also helps define the structure of the data to transmit.  
The protocol module allows the developer to select from a set of pre-defined protocols 
(e.g., HTTP or SOAP) or create a custom protocol with a small amount of code.  The 
transmission scheme defines a set of behaviors for how to transmit data back to the server, 
which allows developers to specify whether the application should transmit as soon as data 
is available, wait until a certain amount of data is available, or even wait until a certain 
connection medium is available (such as Wi-Fi or EDGE).  Finally, the screen rendering 
agent allows users to specify the interval at which the screen is refreshed or invalidated for 
a given view.  

Each module described above relies almost entirely on prewritten and optimized code.  
Of greater complexity for users are the CPU and memory consumers.  Users may elect to 
utilize prewritten code that closely resembles the functionality they wish to provide.  
Alternatively, they can write their own code to use in these modules profile their 
architecture more accurately.  This iterative approach allows developers to quickly model 
their architecture without writing detailed application logic and then as this code becomes 
available, refine their analysis to better represent the performance and behavior of the 
ultimate system.  

3.3 Performance and Resource Consumption Management 

When generating emulation code, SPOT also generates instrumentation code to record 
device performance and track power consumption.  This code writes these metrics to a file 
on the device that can later be downloaded to a host machine for analysis after testing.  
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This approach allows developers to quantitatively compare metrics such as application 
responsiveness (by way of processor idle time, etc), network utilization and throughput 
and battery longevity.  These comparisons provide the developer with a means to quickly 
and accurately design a system that minimizes power consumption without sacrificing 
performance.  In some instances, this analysis could even highlight simple changes such as 
reducing the size of XML tags to reduce the overhead associated with downloading 
information from a server.   

In each challenge presented in Section 2.2 we establish that through current methods, 
certain characteristics of a design can only be fully understood post-implementation.  
Additionally, with newer platforms such as Google’s Android, the mobile device has 
become an embedded multi-application system. Since each device has significantly less 
resources than their tethered brethren, however, individual applications must be cognizant 
of their resource consumption.  The value of understanding a given application’s power 
consumption profile is thus greatly increased.   

The solutions to each of these challenges lie within the same space: utilization of a 
model that can be used to accurately assess battery life. SPOT addresses mobile 
application performance analysis through the use of auto-generated code specified by a 
DSML, which allows users to estimate performance and power consumption early in the 
development process.  Moreover, developers can perform continuous integration testing 
by replacing faux code with application logic as it is developed.  

4 Concluding Remarks 

The capabilities of mobile devices have increased substantially over the last several years 
and with platforms, such as Apple’s iPhone and Google’s Android, will no doubt continue 
to expand.  These platforms have ushered in a new era of applications and have presented 
developers with a wealth of new opportunities.  Unfortunately, with these new 
opportunities have come new challenges that developers must overcome to make the most 
of these cutting-edge platforms.  In particular, predicting performance characteristics of a 
given design is hard, especially those characteristics associated with power consumption.  

A promising approach to address these challenges is to enhance model-driven engineering 
(MDE) tools to enable developers to quickly understand the consequences of architectural 
decisions.  These conclusions can be drawn long before implementation, significantly 
reducing production costs and time while substantially increasing battery longevity and 
overall system performance. From our experience developing SPOT, we have learned the 
following lessons: 

 By utilizing MDE it becomes possible to quantitatively compare design decisions and 
deliver some level of optimization with regards to power consumption, 

 Developing applications for platforms such as Android require extensive testing as 
hardware configurations can greatly influence performance, and 
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 It is impossible to completely profile a system configuration because ultimate device 
performance and power consumption depends on user interaction, network traffic and 
other applications on the device. 

The WreckWatch application is available under the Apache open-source license and 
can be downloaded at http://vuphone.googlecode.com.   
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