
CrossTalk - February 2024 32

Introduction
Advances in software engineering and artificial intelligence (AI) are providing critical and innovative
capabilities across almost every domain, but the potential remains to do far more, particularly for
applications that demand high levels of trustworthiness. To inform a community strategy for building
and maintaining U.S. leadership in software engineering and AI engineering, the Software Engi-
neering Institute (SEI) and the Networking and Information Technology Research and Development
(NITRD) Program in the White House Office of Science and Technology Policy co-hosted a workshop
at the National Science Foundation on June 20-21, 2023.

The event gathered thought leaders from federal research funding agencies, research laboratories,
mission agencies, and commercial organizations to explore the fundamental research needed to
support progress toward this goal. The workshop used the SEI’s Architecting the Future of Software
Engineering: A National Agenda for Software Engineering Research and Development (see further
readings) as a starting point because the areas of focus identified in the study have been confirmed
as even more critical and urgent, particularly due to the rapid advances of generative AI in the two
years since its release. Specifically, three research areas from the study were identified by partici-
pants as having direct relevance: AI-augmented Software Development, Assuring Continuously Evolv-
ing Software Systems, and Engineering AI-Enabled Software Systems. Speakers and participants at
the event worked to explore software-related challenges that are critical for multidisciplinary research
across domains of importance to the nation, as well as the promising research that is needed to engi-
neer the necessary systems reliably and well.

Workshop Goals and Motivation
The workshop organizers brought together participants to encourage new partnerships that will
advance U.S. leadership and national interests through the disciplines of software and AI engineering,
and positively impact progress across virtually all scientific domains. Specific objectives for the work-
shop included:

CrossTalk - February 2024 33

• Characterize how software engineering capabilities are having a direct impact on the future of
our nation.

• Inform a community strategy for building and maintaining U.S. leadership in software engi-
neering and AI engineering. Produce a report that summarizes challenges, opportunities, and
strategic priorities.

• Identify research questions that energize the computing community and spark new collabora-
tions.

• Identify updates to the CMU SEI National Agenda for Software Engineering National Study &
Roadmap.

Executing and advancing the closely related disciplines of software engineering and AI engineering
are indispensable to our ability to develop and deploy intelligent software systems effectively and
rapidly. While the engineering of AI capabilities has unique and challenging requirements, these
capabilities are implemented in software. To date, there has been significant research within software
engineering on technologies and practices needed to build such AI-enabled systems with confidence.
While comparatively more recent, the fundamental theories, practices, and knowledge base for AI
engineering are receiving significant research attention to ensure that AI capabilities are incorporated
into systems with expected trustworthiness and responsibility.

There has also been considerable excitement around the idea of using AI to help in the engineering
of software systems at scale. Approaches exploiting large language models are already automating
some tasks that were thought to require human creativity, including some aspects of software engi-
neering. As the boundaries of software and AI engineering blend, the tools and techniques available
to engineers to develop top priority capabilities are also changing. The rapidly changing technical
environment creates further urgency to prioritize areas of most critical need and allocate multidisci-
plinary resources to the most challenging and essential areas of concern.

Critical Needs
and Priorities:
Five Primary

Themes
In keynote speeches, breakout sessions,
and lightning talks, participants almost
unanimously remarked on the rapid accel-
eration of new technologies in the software
development lifecycle and the role of AI in
shaping the future of software systems. As
the critical need for new approaches to nav-
igate both the opportunities and the chal-
lenges was discussed, five main themes
emerged.

CrossTalk - February 2024 34

AI is transforming the software engineering
process and how we engineer software
systems. The increasing symbiosis of
humans and machines is transforming
every phase of the software development
lifecycle.

In software engineering, we are witnessing the emergence of a symbiotic workforce, where auton-
omous, intelligent assistants will work with software engineers to develop systems. This revolu-
tion in the way we approach software development will reshape the entire lifecycle, giving rise to
approaches that promise to enhance productivity, quality, and efficiency. Software engineering should
utilize AI tools and technology in the lifecycle, and software engineering principles should serve as a
foundation for the development, evolution, and evaluation of AI-enabled software. The use of AI will
likely make it possible to automate much harder programming and software quality problems. While
we recognize that tasks, skills, and tools will inevitably undergo transformation in this new paradigm,
the specifics are not yet fully evident.

Current technological advances, especially those related to AI and machine learning (ML) tools, will
fundamentally alter the ways in which applications are built – from design-to-code platforms and tools,
to ML models that automatically generate code, to models that automate elements of application test-
ing. ML-generated code is already in commercial codebases, and the overall percentage is already
rapidly growing.

In fact, the experimental application of large language models (LLMs) shows promise across the
entire lifecycle. Effective application of LLMs may enable the ultimate “shift left” approach, where
tasks that are traditionally done at a later stage of the process, such as testing or performance eval-
uation, can be done early, often before any code is written, or incorporated effectively throughout
software development. Design-to-code platforms and tools could make it easier for developers to
bring their ideas to fruition as models automatically generate code and streamline repetitive coding
tasks. Leveraging advanced automation techniques, including AI- and LLM-enabled capabilities for
everything from coding and code review to deployment at scale, integration test, and debugging,
could streamline workflows, improve code quality, and accelerate the development cycle. Research
exploring how to apply LLMs is only in its early phases, however, and many potential issues must be
addressed, including the following:

• A substantial number of solutions have been trained on a single proprietary data source or on
proprietary algorithms, and as a result it is not clear how robust their inferences and conclu-
sions are.

• Filtering issues can make conclusions hard to replicate, especially since it is not always clear
what kind of filtering has been done. Some models are trained on data that specifically omits
some knowledge, and in other instances, the companies that own the models decide to censor
some results.

• More diversity in models, systems, and applications is needed, and the research community
should not put too much trust in a single model. Public funding might help address this issue

CrossTalk - February 2024 35

by generating models and software/hardware infrastructures that remove the proprietary or
black-box decision-making that influences results.

• Given the speed with which innovations can be developed in this space, the software research
community has become increasingly focused on quick prototypes as opposed to long-term,
systematic research.

• Most effective techniques will likely be based on hybrid solutions, that is, a combination of LLM,
other AI, and data-driven automation approaches. Investigations of hybrid solutions should be
accelerated.

While these new technologies promise to bring many benefits, they also have the potential to quickly
multiply negative effects, such as security problems and AI debt (i.e., the cost of the complex mix of
processes and procedures needed to discover, train, and deploy predictive models that are accurate
and dependable). We need to develop sound and empirically based methods now for determining
what approaches to consider successful and how to guide future software development lifecycle
optimizations. Moreover, successful integration of AI in software development also relies on many
non-technical factors, including the need for a “smart assistant” to understand team dynamics and
roles and respond appropriately to human interactions and needs.

While generative AI has reached a level of
sophistication that may seem to resemble
human intelligence, it is considerably harder
to determine the level of trust that should
be placed in the outputs.

The assurance of mission- and safety-critical cyber-physical systems (CPS) has become increasingly
challenging due to the growing complexity of these systems. The introduction of AI elements further
compounds these difficulties because they can create large bodies of new code quickly, complicate
the understanding of system behavior, and introduce new attack vectors, including the poisoning
of training data and prompt injection, in which AI prompts can include code to generate pernicious
behaviors.

As a result, while it is already clear that generative AI can make software developers more produc-
tive (in terms of producing code), there are well-founded worries about the quality and sustainability
of the code produced. These new AI tools may already be producing a huge wave of technical debt
that could overwhelm downstream software engineering efforts. In some studies, generative AI tools
regurgitated old defects as often as they produced good fixes. Novice developers may lack the exper-
tise to understand the limitations of the code being produced. AI-produced code will co-exist along-
side human-built code for a long time. We have few options to help end users and developers decide
whether or not to trust code generated by tools, and how this should compare to trust in human-writ-
ten code. Do we trust an AI tool more or less than a human, even if humans may make more mis-
takes? Where do we address trust: in the ML models themselves, in the software engineering, in
testing, in how users interact with the system, or all of the above?

CrossTalk - February 2024 36

Research has already begun on identifying the factors that can increase software developers’ trust
in AI tools. Key factors include source reputation; interaction (e.g., validation support and feedback
loops provided); control (degree of ownership and autonomy); system features (e.g., ease of installa-
tion and performance measures); expectations (e.g., how good of a fit is the tool for style/goal of the
developers). “Explainability” is not a proxy for “trustability.” By their nature, many of our AI systems
cannot explain cogently why they arrive at their conclusions.

One goal should be increasing our ability to build trustable systems out of untrusted components.
A second goal to explore is adopting AI to generate evidence about a resulting system that can be
independently verified (e.g., analogous to the development of proof-carrying code, or AI-generated
code that comes with its own evidence). Another aspect of trust that requires research is whether AI
tools leak intellectual property. It’s possible a model might learn on a proprietary codebase and then
recommend pieces of that codebase to inappropriate users. Today we don’t trust AIs – but we don’t
always trust humans either. Rather than focusing on making AI trustworthy, we could use it to help
us increase trust, using techniques such as generating evidence and incorporating AI into software
testing and reviews.

Data assurance is another new frontier in the assurance of AI. In fact, it is one of the key compo-
nents that makes assurance hard for AI, given the difficulty of understanding how data affects the
final behavior of the system. The scalability of assurance for large AI models also poses a significant
hurdle. Although some verification techniques have improved, the rapid increase in model size out-
paces these approaches, which can render current verification methods inadequate from the outset.

Redefining the discipline of software
engineering to encompass the use of new
technologies (including but not limited to
generative AI) is imperative, along with
rethinking the associated curricula, tools,
and technologies. This effort is key to
designing and building, evolving, and
evaluating trustworthy software systems in
a responsible, ethical way.

Redefining the software engineering discipline with AI is leading toward a revolution that changes how
engineering solutions are explored, systems are built, and AI aids in the operation of systems. Educa-
tion is a crucial aspect of any transformation effort brought about by AI, with new degrees and curric-
ula incorporating AI into various engineering disciplines.

To keep up with the rapid advancement of AI technologies, software engineering curricula must
include instruction on both the application of AI in the software engineering lifecycle and on how tools
can facilitate the design, development, training, testing, and authorization of AI-enabled software. This
evolution of software engineering curricula, both at the undergraduate and graduate levels, requires
a dynamic component to ensure that the workforce is well-equipped to effectively use these tools in
supporting the development lifecycle.

Care must also be taken to make curricula equitable. Some initial observations as AI tools start to be
used in software classes indicate that groups that are under-represented in technology disciplines

CrossTalk - February 2024 37

are also less comfortable using these technologies. Factors such as this should be considered to
avoid creating an environment where people with access to AI tools have clear advantages and other
groups without equitable access get left behind. Retaining talent in academia is also a concern. PhD
students and faculty often face financial challenges due to the demanding nature of research and the
need to secure funding. Efforts to make PhD programs more attractive, reduce funding restrictions,
and provide sustained funding can help address these issues. The cost of undergraduate education
is also a significant concern. Government involvement in addressing the educational system’s chal-
lenges can contribute to producing a workforce better equipped to address the nation’s challenges
effectively.

Enhancing fluidity between academia and other sectors can promote knowledge exchange. Incentiv-
izing collaboration between universities and industry is crucial to address important research needs
effectively. Key elements in fostering such collaboration include establishing public-modeled prob-
lems, data repositories, and testbeds to facilitate joint research efforts. Government agencies can
also play a role by effectively utilizing commercial solutions and services where they prove beneficial,
identifying bottlenecks that hinder progress.

New technologies, including generative AI,
seem to hold the promise of making almost
everyone a programmer. As a result, AI
literacy and the development of new skills
are needed throughout the workforce.

The landscape of programming is evolving dramatically. Instead of relying solely on those with tra-
ditional technical skills and expertise in software systems, and AI engineering, new tools promise to
enable almost everyone to become a “programmer.” For this approach to be successful, new skills
and abilities must be cultivated across a much wider range of people. These new skills and abilities
include problem solving and critical thinking and a general understanding of AI and ML.

The skills needed by professionally trained software programmers and engineers will also shift. While
many traditional software engineering skills will likely become less valuable given AI tool capabilities,
the value of the remaining skills may increase dramatically. For example, research results from Micro-
soft about their Copilot tool that generates code via LLMs indicate that users need to spend less time
writing code, but more time understanding and reasoning about code.

Software engineers will need a firm grasp of uncertainty and probabilistic reasoning, an increased
capacity to detect problems and make informed design decisions, strong systems thinking skills, and
a keen awareness of the ethics of AI. The discipline of prompt engineering is beginning to gain trac-
tion, which involves programming in natural language and has potential applications in various stages
of software development. Different prompts given to code models result in the generation of different
code, highlighting the challenge of obtaining trustworthy output from these models.

Moreover, the potential impact on society and the economy of using AI in software systems necessi-

CrossTalk - February 2024 38

tates that decision-makers and leaders in all domains comprehend the fundamental principles of AI
and be competent in asking the critical questions to enable their trustworthy development and respon-
sible use. Initiatives can be launched to provide training, workshops, and resources to ensure that
individuals in positions of influence and authority are equipped to make informed decisions regard-
ing AI technologies and their applications. By empowering leaders with AI literacy, we can foster the
responsible and beneficial integration of AI in our lives.

The use of AI tools such as LLMs can
mask the tradeoffs being made between
the functionality of software systems and
their safety and security. Research is
needed to identify and make explicit the key
engineering tradeoffs being made during
the design, development, training, testing,
and authorization of systems that include
AI components.

Trust, trustworthiness, and confidence in software systems that include or are developed using AI
components are top priority considerations. To achieve trustworthiness, engineers must navigate key
tradeoffs in system development, ensuring the system performs as intended without overstepping its
boundaries. This trust should extend as the system inevitably changes over time, providing measur-
able confidence in the system’s evolving performance. Research is essential to enable this outcome
by providing mechanisms for identifying engineering tradeoffs throughout the specification, design,
training, testing, and authorization of critical systems.

Explicit tradeoffs that set limits on AI systems are also needed to address concerns for both direct
users and others potentially impacted by the system’s actions or data. Although technologies like
ChatGPT currently implement some features that prevent harm at the expense of performance,
explicit engineering tradeoffs are needed during system development to clarify the relationship
between functionality and safety/security. Research in AI-enabled systems must identify and analyze
these tradeoffs explicitly to maintain safety and security throughout the software engineering lifecycle.

Additionally, AI-enabled tools should be designed to show explicitly the tradeoffs involved in develop-
ing a system instead of obfuscating or concealing them from key decision-makers. Transparency in
engineering tradeoffs is especially critical when incorporating technologies like smart coding assis-
tants to ensure the development of robust and trustworthy systems.

Research Needs
Software and AI capabilities are advancing rapidly around the world, and not just in high-resource
nation-states. They will continue to advance in complexity and sophistication, without bound, for the
foreseeable future. To bolster U.S. leadership in this incredibly competitive domain, participants at the
workshop identified a need to focus on research breakthroughs and development in software engi-
neering and AI engineering, system architectures, and defining trustable systems. Presentations and
discussion from multiple federal agencies showed the extent to which their plans for executing their

CrossTalk - February 2024 39

missions rely on advanced software and AI capabilities.

Workshop participants also discussed the importance of improving collaboration mechanisms among
academia, industry, and the federal space, including suggestions to invest in operationally relevant
datasets and testbeds to enhance collaboration. Likewise, participants highlighted the need for open
access to resources, such as models and data sets, in software engineering and the importance of
breaking down large models into smaller pieces for better understanding and progress. The signifi-
cance of social factors, access, and soft skills in AI and the importance of taking a multi-disciplinary
approach were also acknowledged. The high priority themes identified also revealed a significant
need for intentional crosscutting progress in data, standards, and all tradeoffs and aspects of trust.
Specific areas of needed research discussed included:

• Software architectures for modern software needs. Architectures for AI-based systems should
be developed so that they are resilient to attack and support federated data sources. The
development of modeling and analysis techniques is needed to guide early design decisions,
facilitate downstream test and evaluation (T&E), and enable evidence creation.

• AI engineering practices for trustworthy use of ML and LLM capabilities. Research is needed
to enable the development of trustworthy systems to mitigate weaknesses in ML and LLMs
and support ongoing updates to ML- and LLM-based capabilities as algorithms and training
improve.

• Data-intensive software engineering. Software repositories have a wealth of information
regarding current and older projects. There is a need to support repository mining for defect
repair, API compliance, refactoring, synthesis, transformation, and evidence-based T&E. Data
federation, privacy protection, and multi-institutional data collaboration are important chal-
lenges in integrating various types of data, such as health and environmental data.

• Diverse, advanced technical models and analyses to support development, evolution, and
T&S. The use of modeling and analysis is essential in modern practice. Modeling and analysis
must be integrated into practice in a way that allows for a diversity of tools. More robust code
models must be built by considering different code properties such as syntax, semantics, and
evolution, and incorporating them into the model’s design and loss functions.

• Cybersecurity considerations for AI-reliant and software-reliant systems. Systems are growing
in interconnection and complexity, with larger external and internal attack surfaces, including AI
attack surfaces. A focus on cyber risk is needed, including how to measure and manage attack
surfaces since threats are growing in sophistication and scale. Architectures devised for secu-
rity and resiliency are needed, as well as models and tools to enhance cybersecurity.

• Clear standards and guidance. There is a need for clarity in the development of standards for
AI systems, as they are often asked to meet a large and varied number of requirements related
to trustworthiness, security, privacy, and ethical considerations.

Conclusion and Next Steps
This workshop delved into various aspects of software and AI engineering, addressing challenges,
opportunities, and ethical considerations. It highlighted the paradigm shift brought about by AI and
large language models, requiring alignment between models, researchers, and diverse user groups.
Participants emphasized the need for transparency, trustworthiness, and collaboration across differ-
ent sectors to effectively navigate the evolving landscape of AI technology.

The workshop also highlighted the impact of AI on various domains, including workforce, cybersecu-
rity, and autonomous systems, and the importance of collaboration and engagement with stakehold-
ers was emphasized. The growing influence of AI in society, along with the acceleration of technology
in general, demands interdisciplinary collaboration, technical advocacy for broader use cases, and

CrossTalk - February 2024 40

policy development informed by the research community.

Making investment decisions in the right technical domains and fostering powerful partnerships is key
to meeting the critical needs and priorities of the U.S. for software and AI engineering. For example,
the figure above shows the actions taken to avoid the risks of a U.S. economy dependent on foreign
chip manufacturing, which industry investments of around $50 billion and a proposed government
investment of another $50 billion. AI technology investment followed a similar path, where a possible
U.S. technology gap motivated major government and industry investment. The increasing aware-
ness of the risks to national security and the U.S. economy motivated action in those cases, and such
concerns also underscore the importance of making a similar strategic investment in software engi-
neering research.

Copyright
Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Gov-
ernment position, policy, or decision, unless designated by other documentation.

The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANT-
ABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGE-
MENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Figure 1. Investment in U.S. Software Technology.

CrossTalk - February 2024 41

Internal use:* Permission to reproduce this material and to prepare derivative works from this
material for internal use is granted, provided the copyright and “No Warranty” statements are
included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is
required for any other external and/or commercial use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM23-0890

Further Readings
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=741193 to
download a copy of the study.

https://www.sei.cmu.edu/publications/annual-reviews/2022-
year-in-review/year_in_review_article.cfm?customel_data-
pageid_315013=493993

https://insights.sei.cmu.edu/library/envisioning-the-future-of-soft-
ware-engineering/

https://insights.sei.cmu.edu/news/to-lead-software-and-ai-engineering-
us-faces-five-critical-needs-says-workshop-summary/

Anita Carleton is an Executive Leadership Team
Member and Division Director of the Software Solutions
Division at the Carnegie Mellon University Software
Engineering Institute with more than 35 years of senior
leadership experience. She has most recently led a
national study titled “Architecting the Future of Software
Engineering: A National Agenda for Software Engineer-
ing Research & Development.” Carleton serves as the
chair of the IEEE Software Advisory Board. Carleton
received her MBA from the MIT Sloan School of Man-
agement where she was the recipient of the MIT Sloan
Leadership Fellowship.

Anita Carleton

Division Director

Software Engineering Institute

adc@sei.cmu.edu

About the Authors

CrossTalk - February 2024 42

Dr. Doug Schmidt is the Cornelius Vanderbilt Pro-
fessor of Engineering, Associate Chair of Computer
Science, and a Senior Researcher at the Institute
for Software Integrated Systems, all at Vanderbilt
University. He is also a Visiting Scientist at the Soft-
ware Engineering Institute at Carnegie Mellon Uni-
versity. Dr. Schmidt is an internationally renowned
and widely cited researcher whose work focuses on
pattern-oriented middleware, Java concurrency and
parallelism, and generative AI.

Dr. Doug Schmidt

Professor of Engineering

Vanderbilt University

d.schmidt@vanderbilt.edu

Dr. Forrest Shull is the Principal Director for
Advanced Computing and Software at the Office of
the Under Secretary of Defense for Research and
Engineering (OUSD (R&E)). Dr. Shull provides stra-
tegic direction for implementing advanced comput-
ing and software solutions across the Department
of Defense (DoD), while coordinating scientific and
technical development activities. Prior to his current
role, Dr. Shull served as the Lead for Defense Soft-
ware Acquisition Policy Research at the Software
Engineering Institute at Carnegie Mellon.

Dr. Forrest Shull

Principal Director

Office of the Under Secretary of Defense (R&E)

forrest.j.shull.civ@mail.mil

CrossTalk - February 2024 43

Dr. Ipek Ozkaya is a principal researcher and the
technical director of the Engineering Intelligent Soft-
ware Systems group at the Software Engineering
Institute. Her areas of work include software archi-
tecture, software design automation, and managing
technical debt in software-reliant and AI-enabled
systems. At the SEI, she has worked with several
government and industry organizations in domains
including avionics, power and automation, IoT,
healthcare, and IT. Ozkaya is the co-author of a
practitioner book titled Managing Technical Debt:
Reducing Friction in Software Development.

Dr. Ipek Ozkaya

Technical Director

Software Engineering Institute

ozkaya@sei.cmu.edu

John Robert is a Principal Engineer at the Software
Engineering Institute and the Deputy Director for
the Software Solutions Division. Mr. Robert pro-
vides leadership for software engineering research
and the development of technologies in partnership
with Department of Defense (DoD) programs and
industry to enable the broad transition of new soft-
ware engineering approaches. Mr. Robert has led
multiple SEI technical partnerships with high priority
DoD programs, resulting in high customer value
and beneficial connections to SEI research.

John Robert

Principal Engineer

Software Engineering Institute

jer@sei.cmu.edu

