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Abstract
Research in the past several years has boosted the performance
of automatic speaker verification systems and countermeasure
systems to deliver low Equal Error Rates (EERs) on each sys-
tem. However, research on joint optimization of both sys-
tems is still limited. The Spoofing-Aware Speaker Verification
(SASV) 2022 challenge was proposed to encourage the devel-
opment of integrated SASV systems with new metrics to evalu-
ate joint model performance. This paper proposes an ensemble-
free end-to-end solution, known as Spoof-Aggregated-SASV
(SA-SASV) to build a SASV system with multi-task classifiers,
which are optimized by multiple losses and has more flexible
requirements in training set. The proposed system is trained
on the ASVSpoof 2019 LA dataset, a spoof verification dataset
with small number of bonafide speakers. Results of SASV-EER
indicate that the model performance can be further improved by
training in complete automatic speaker verification and coun-
termeasure datasets.
Index Terms: spoofing aware speaker verification, spoof detec-
tion

1. Introduction
Automatic speaker verification (ASV) systems have shown the
ability to provide biometric authentication of users for applica-
tions that require robust reliability in changing acoustic environ-
ments, including resistance to malicious attacks [1, 2, 3, 4, 5].
However, current ASV systems are still vulnerable to spoofing
attacks, such as text-to-speech (TTS) [6, 7, 8] and voice conver-
sion (VC) [9]. ASV systems can also be deceived and manipu-
lated by malicious entities using generated speech.

To overcome bottlenecks in spoofing and countermeasure
research for ASVs, a series of ASVSpoof challenges have been
proposed since 2015 to help encourage the development of ro-
bust countermeasure (CM) systems [10, 11, 12, 13], which can
complement ASV systems with an anti-spoof model. The anti-
spoof model provides a ”spoof confidence” score to help fil-
ter out spoofing attacks. Metrics on the ASVSpoof challenge
are based on the minimum tandem detection cost function (t-
DCF) [14], which can evaluate the performance of CM sys-
tems on fixed ASV systems with pre-determined output scores.
Rather than developing CM and ASV systems independently, a
neglected research question is whether we can develop an in-
tegrated system where CM and ASV system can be optimized
together, so that a single verification score is able to determine
whether an input speech sample is a target speaker, while also
accounting for potential spoofing attacks.

To encourage research on integrated Spoofing-Aware
Speaker Verification (SASV) systems, the SASV Challenge
2022 [15] was proposed using the ASVSpoof 2019 Logical Ac-
cess Dataset with new metrics, SASV-EER. In the challenge, a

single score determines if the input speech sample is the target
speaker. Non-target inputs include zero-effort and spoofed im-
postors. The SASV challenge provides two baseline systems
by applying different fusion strategies (score-level fusion and
embedding-level fusion) to pre-trained ASV and CM systems.

Figure 1 shows potential solutions to the SASV problem.
Red/green lines indicate the following training stages: (a) Cas-
caded ASV/CM systems, (b) Fusions of scoring prediction,
(c)Fusions of scoring and feature embedding, (d)Fusions of fea-
ture embedding, and (e)End-to-End SASV systems.

Figure 1: Feasible Solutions to Build Integrated SASV Systems.

This paper proposes a fully trainable end-to-end SASV sys-
tem, called Spoof-Aggregated Spoofing Aware Speaker Verifi-
cation System (SA-SASV), that combines a pre-trained ASV
system with a lightweight raw waveform encoder to form the
overall encoder [16]. This paper expands upon our prior experi-
ence that showed how encoding can be a key aspect of these
types of anomaly detection problems [16, 17, 18]. Multiple
classifiers and spoof-source-based triplet loss functions are em-
ployed to enhance model performance in generating the shared
SASV feature space.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews related research on SASV systems; Section 3 dis-
cusses the model architecture of our SA-ASAV Systems; Sec-
tion 4 analyzes experiment results; and Section 5 presents con-
cluding remarks.

2. Related Work
The SASV system aims to build a single system to reject ut-
terances from zero-effort and spoofed speech. Previous work
focused on two solutions to this problem: ensemble SASV so-




