
Optimizing DRE System Performance with
the SMACK Cache Efficiency Metric

1Brian Dougherty,2Jules White,3Russell Kegley,
3Jonathan Preston,1Douglas C. Schmidt, and1Aniruddha Gokhale

1Vanderbilt University, {briand,schmidt,gokhale}@dre.vanderbilt.edu*
2Virginia Tech, julesw@vt.edu*

3Lockheed Martin Aeronautics, {russell.b.kegley,jonathan.d.preston}@lmco.com∗

Abstract

Distributed real-time and embedded (DRE) systems are
often subject to stringent timing constraints. Schedul-
ing techniques, such as rate monotonic scheduling, can
be used to ensure that real-time deadlines are met. Al-
though a processor cache can reduce the time required for
a task schedule to execute, multiple task execution sched-
ules may exist that meet deadlines but differ in cache uti-
lization efficiency. It is hard to determine which task exe-
cution schedules will utilize the processor cache most ef-
ficiently and provide the greatest reductions in execution
time without jeopardizing real-time deadlines.

The work in this paper provides three key contributions
to predictive performance evaluation of processor caching
in DRE systems. First, we present the System Metric
for Application Cache Knowledge (SMACK), which is
a novel approach to quantify the expected cache utiliza-
tion efficiency of different schedules. Second, we employ
SMACK to predict the relative execution time and cache
misses of 11 simulated software systems with 2 different
execution schedules per system. Third, we empirically
evaluate the impact of using SMACK as a heuristic to al-
ter task schedules to reduce system execution time. Our
results show that heuristic scheduling with SMACK in-
creases cache performance, reduces execution time, and
satisfies real-time scheduling constraints and safety re-
quirements without requiring significant hardware or soft-
ware changes.

∗This work was sponsored in part by the Air Force Research Lab.

1 Introduction

Current trends and challenges. Distributed real-time
and embedded (DRE) systems, such as integrated avionics
systems, are subject to stringent timing constraints. These
systems must minimize execution time to ensure that real-
time deadlines are met. One approach to reduce execution
time is to reduce the time spent loading data from memory
by efficiently utilizing processor caches.

Several research techniques utilize processor caches
more efficiently to reduce execution time. For example,
Bahar et al. [4] examined several different cache tech-
niques for reducing execution time by increasing cache hit
rate. Their experiments showed that efficiently utilizing a
processor cache can result in as much as a 24% reduction
in execution time. Likewise, Manjikian et al. [13] demon-
strated a 25% reduction in execution time as a result of
modifying the source-code of the executing software to
use cache partitioning.

Many optimization techniques [18, 14, 23] increase
cache hit rate by enhancing source code to increasetem-
poral locality of data accesses, which defines the prox-
imity with which shared data is accessed in terms of
time [11]. For example, loop interchange and loop fusion
techniques can increase temporal locality of accessed data
by modifying application source code to change the order
in which application data is written to and read from a
processor cache [11, 13]. Increasing temporal locality in-
creases the probability that data common to multiple tasks
persists in the cache, thereby reducing cache-misses and
software execution time [11, 13].

Open problem⇒ Increasing cache hit rate of inte-
grated applications without source code modifications.

Integrated applications are built from separate pieces
of software that must be scheduled to execute in con-
cert with one another. Prior work has generally focused
on source-code level modifications for individual applica-
tions instead of integrated applications, which is problem-
atic for DRE systems built from multiple integrated appli-
cations. DRE systems based on the integration of multiple
applications (such as the architecture shown in Figure 1)
often prohibit code-level modifications due to restricted
access to proprietary source code and the potential to vi-
olate safety certifications [20] by introducing overflow or
other faulty behavior.

Figure 1: Example of an Integrated Avionics System

Solution approach→ Heuristic-driven schedule al-
teration of same-rate tasks to increase cache hit rate.
Priority-based scheduling techniques can help ensure
DRE system software executes without missing real-time
deadlines. For example, rate-monotonic scheduling [17]
is a technique for creating task execution schedules that
satisfy timing constraints by assigning priorities to tasks
based on the task periodicity and ensuring utilization
bounds are not exceeded. These tasks are then split into
sets that contain tasks of the same priority/rate.

Rate monotonic scheduling specifies that tasks of the
same rate can be scheduled arbitrarily [7] as long as prior-
ity inversions between tasks are not introduced. Figure 2
shows two different valid task execution schedules gener-
ated with rate monotonic scheduling. Since task A2 and
task B2 share the same priority, their execution order can
be swapped without violating real-time constraints. This
paper shows how to improve cache hit rates for DRE sys-
tems built from multiple integrated applications by intelli-

Figure 2: Valid Task Execution Schedules

gently ordering the execution of tasks within the same rate
to increase temporal locality of task data accesses. We re-
fer to this technique asmetascheduling, which involves no
source code modifications.

This article presents a novel real-time scheduling op-
timization technique that uses metascheduling to improve
cache effects in integrated DRE systems without violating
real-time scheduling constraints or causing priority inver-
sions. Since this technique requires no source code mod-
ifications, it can be applied to integrated DRE systems
without requiring source software permissions or com-
pletely invalidating safety certifications. To quantify the
temporal locality of the scheduling order of a set of same-
rate tasks, known as themetaschedule, and guide the
schedule modification process, we have created theSys-
tem Metric for Application Cache Knowledge(SMACK)
metric.

SMACK considers several factors, such as cache size
and task execution schedule, to allow developers to de-
termine which orderings of same-rate tasks result in a
higher cache hit rate. Since DRE systems are subject to
extremely tight resource constraints, reducing execution
time by as little as 1% often frees enough resources to
increase system capabilities or safety margins. Reaping
these gains through increasing cache hit rate is particu-
larly attractive to cost-conscious DRE system designers
since no additional hardware or software is required.

This article provides the following contributions to
R&D on real-time scheduling optimizations to increase
cache hit rate in integrated DRE systems:
• We present a real-time metascheduling heuristic that

satisfies real-time scheduling constraints and safety re-
quirements, increases cache hits, and requires no new

2

hardware or software.
• We provide a formal methodology for calculating the

“SMACK score,” which provides a rough estimation of
the temporal locality of different metaschedules in an in-
tegrated DRE system to help developers select better exe-
cution schedules.
• We present empirical results of 2 task execution

schedules performance and demonstrate that the calcu-
lated SMACK score correlates with an increased cache
hit rate.

Paper organization.The remainder of the paper is or-
ganized as follows:Section 2 summarizes the challenges
of creating a metric that predicts integrated DRE system
performance at design time and guides execution schedule
modifications; Section 3 explains how the SMACK met-
ric can be calculated to predict DRE system performance
and applies it to create cache-effective execution sched-
ules; Section 4 analyzes the results of experiments that
evaluate how effectively SMACK creates schedules with
fewer cache misses; Section 5 compares SMACK with re-
lated work; and Section 6 presents concluding remarks.

2 Challenges of Analyzing and Op-
timizing Integrated DRE System
Architectures for Cache Effects

This section presents the challenges that DRE system in-
tegrators face when attempting to optimize application in-
tegration to improve cache hit rate. Safety-critical DRE
systems are often subject to multiple design constraints,
such as safety requirements and real-time deadlines, that
may restrict which optimizations are applicable. This
section describes three key challenges that must be over-
come to optimize application integration by improving the
cache hit rate of safety-critical DRE systems.

Challenge 1: Altering application source code may
invalidate safety certification. Existing cache optimiza-
tion techniques, such as loop fusion and data padding [10,
16], increase cache hit rate but requiring application
source code modifications, which may invalidate previ-
ous safety certifications by introducing additional faults,
such as overflow. Re-certification of system applications
is a slow and expensive process, which increases cost and
delays deployment. Moreover, the source code of pro-

prietary applications may not be accessible to integrators.
Even if application source code is available, integrators
may not have the expertise required to make reliable mod-
ifications. What is needed, therefore, are techniques that
alter the DRE system to improve cache hit rates without
modifying system software.

Challenge 2: Optimization techniques must sat-
isfy real-time scheduling constraints. Safety-critical
DRE systems are often subject to stringent scheduling
constraints and commonly use priority-based scheduling
methods, such as rate monotonic scheduling, to ensure
that software tasks execute predictably [24, 9]. These con-
straints prohibit many simple solutions that ignore task
priority, such as executing all task sets of each applica-
tion, that would greatly increase cache hit-rate. These
techniques can cause the system to behave unpredictably,
with potentially catastrophic results due to missed dead-
lines and priority inversions. What is needed, therefore,
are techniques that can be applied and re-applied when
necessary to increase the cache hit-rate and decrease sys-
tem execution time without violating timing constraints.

Challenge 3: System complexity and limited access
to source code. Current industry practice [2] for increas-
ing cache hit rate require collecting detailed, instruction-
level information that describe application behavior with
respect to the memory subsystem and data structure place-
ment. Obtaining system information of this granularity,
however, can be an extremely laborious and time consum-
ing for large-scale DRE systems, such as flight avionics
that contain millions of lines of codes and dozens of ap-
plications. Moreover, large-scale DRE systems, such as
flight avionics, may be so complex that it is not realis-
tically feasible to collect this information. System inte-
grators can more easily obtain higher level information,
such as the percentage of total memory accesses made by
a given task. What is needed, therefore, are techniques
that allow system integrators to increase the cache hit rate
of DRE systems without requiring intricate, low-level sys-
tem knowledge.

3

3 Cache Aware Metascheduling to
Improve Cache Hit Rate

This section presents cache-aware metascheduling, which
is a technique for increasing cache hit rate through re-
ordering the execution schedule of same-rate tasks.

3.1 Re-ordering Same-rate Tasks with
Cache-aware Metascheduling

Rate mononotonic scheduling can be used to create task
execution schedules that ensure real-time deadlines are
met. This technique, however, allows the definition of
additional rules to determine the schedule of same-rate
tasks [15, 3, 12]. As shown in Figure 3, reordering same-
rate tasks, or metascheduling, can produce multiple valid
execution schedules.

For example, Figure 3 shows how Task A1 can execute
before or after Task B1. Either ordering of these same
rate tasks meets real-time scheduling constraints. Since
the original schedule satisfies real-time constraints and re-
ordering same rate tasks does not introduce priority inver-
sions, schedules generated by metascheduling are valid.
Moreover, metascheduling does not require alterations to
application source code or low-level system knowledge.

The motivation behind metascheduling is that although
different execution orders of same-rate tasks do not vio-
late real-time constraints, they can impact the cache hit-
rate. For example, if two same-rate tasks that share a large
amount of data execute sequentially, then the first task
may “warm up” the cache for the second task by preload-
ing data needed by the second task. This type of cache
warming behavior can improve the cache hit rate of the
second task.

Same-rate task orderings can also negatively affect
cache hit rate. For example, tasks from multiple applica-
tions often run concurrently on the same processor in an
integrated DRE system. These tasks may be segregated
into different processes, however, preventing tasks from
different applications from sharing memory. If two tasks
do not share memory there is no cache warmup benefit.
Moreover, the first task may write a large amount of data
to the cache and evict data needed by the second task from
the cache, reducing the cache hit rate of the second task.

Cache-aware metascheduling is the process of reorder-

ing the execution of same-rate tasks to increase beneficial
cache effects, such as cache warm up, and reduce neg-
ative effects, such as requiring reading data from main
memory. Cache-aware metascheduling is relatively sim-
ple to implement, does not require in-depth knowledge of
the instruction level execution details and memory lay-
out of a large-scale system, and can be achieved without
source code modifications to tasks. Section 4 shows that
reordering same-rate tasks does improve cache hit rates
and reduce execution time. A key question, however, is
what formal metric can be used to choose between multi-
ple potential same-rate task execution schedules.

3.2 Deciding Between Multiple Metasched-
ules

While cache-aware metascheduling can be used to pro-
duce multiple valid same-rate task execution schedules, it
is not always apparent which schedule will produce the
overall best hit-rate and application performance. For
example, Figure 3 shows a schedule generated with rate
monotonic scheduling and two additional valid schedules
created by permuting the ordering of same-rate tasks for
a flight controller (FC) application and a targeting system
(TS) application. The only difference between the task

Figure 3: Multiple Execution Schedules

execution schedules are the order in which tasks of the

4

SMACK(S) =
|S|−1

∑
i=0

CHL−1

∑
k=0

(CHit(Si),FR(Si),k)))∗O(Si),FR(Si ,k)) (1)

same-rate are executed.
It is not obvious which task execution schedule shown

in Figure 3 will produce the best cache hit-rate. For exam-
ple, Metaschedule 2 in Figure 3 shows 2 tasks of Applica-
tion FC executing sequentially, while no tasks of Appli-
cation TS execute sequentially. If the tasks in Application
FC share a large amount of data temporal locality should
increase compared to the original schedule since the cache
is “warmed up” for the execution of FC1 by FC2.

In Metaschedule 1, however, 2 tasks of Application TS
execute sequentially while no tasks of Application FC ex-
ecute sequentially. If Application TS shares more data
than Application FC, Metaschedule 1 will yield greater
temporal locality than both the original schedule and
schedule FC since the cached will be warmed up with
more data. It may also be the case that no data is shared
between any tasks of any application, in which case all
three schedules would yield similar temporal locality and
cache hit rates.

Figure 3 shows it is hard to decide which schedule will
yield the highest cache hit rate. Constructing a metric for
estimating temporal locality of a task execution schedules
could provide DRE system developers with a mechanism
for comparing multiple execution schedules and choosing
which one would most yield the highest cache hit rate.
It is hard to estimate temporal locality, however, due to
several factors, such as the presence and degree of data
sharing between tasks. Below, we formally define a hard
metric for comparing multiple task execution schedules
and guiding the metascheduling process.

3.3 Quantifying Temporal Locality with
SMACK

To estimate the temporal locality of task execution sched-
ules we developed theSystem Metric for Application
Cache Knowledge(SMACK). SMACK can estimate the
temporal locality of multiple execution schedules, such as
those shown in Figure 3. This metric can be used as a
heuristic for metascheduling to determine task execution

schedules that increase cache hit rate. The calculation of
the SMACK metric is shown in Equation 1 where:
• S is the set of tasks scheduled to execute.
• CHL determines how many sequential task execu-

tions can occur before cached data written by executing
the initial task may be overwritten as described in Sec-
tion 3.3.1.
• CHit yields the expected number cache hits due to a

task executing after an initial task completes execution.
• FR provides the task that will executek task execu-

tions after an initial task completes execution.
• O is a function that determines if two tasks are of the

same application.
The remainder of this section explains other factors that

impact cache hit-rate while. The components of SMACK
are then formally defined in detail in Section 3.4.

3.3.1 Cache Half-Life

We now explain the key factors that impact cache hit rate.
A beneficial effect occurs when task T1 executes before
task T2 and loads data needed by T2 into the cache. The
beneficial effect can occur if T1 and T2 execute sequen-
tially or if any intermediate task executions do not clear
out the data that T1 places into the cache that is used by
T2. Thecache half-lifeis this window of time between
which T1 and T2 can execute before the shared data is
evicted from the cache by data used for intermediate task
executions. While this model is simpler than the actual
complex cache data replacement behavior, it is effective
enough to give a realistic representation of cache perfor-
mance [19].

For example, assume there are 5 applications, each con-
sisting of 2 tasks, with each task consuming 20 kilobytes
of memory in a 64k cache. The hardware uses aLeast Re-
cently Used(LRU) replacement policy, which replaces the
cache line that remained the longest without being read
when new data is written to the cache. The cache half-life
formulation will differ for other cache replacement poli-
cies.

5

Executing the tasks will require writing up to 200 kilo-
bytes to cache. Since the cache can only store 64 kilo-
bytes of data, all data from all applications cannot persist
in the cache simultaneously. Assuming the cache is ini-
tially empty, it would take a minimum of 4 task execu-
tions writing 20 kilobytes each before any data written by
the first task potentially becomes invalidated. This system
would therefore have a cache half-life of 4.

3.3.2 Determining Total Cache Hits

Each sequential task execution occurring after a task ex-
ecutes yields a probability of a beneficial cache effect
based on the DRE system’s cache half-life. Each good
cache effect increases the cache hit rate of a specific task
and reduces the execution time of the system. The total
probabilistic expected cache hits due to these beneficial
cache effects yields the expected cache hits for this set of
tasks.

3.4 Defining and Calculating SMACK
Cache Metric

Section 3 provides a qualitative summary of our method
for calculating the cache metric of a system deployment.
Below, we define a formal method for determining the
relative execution time savings due to caching of system
deployments.

3.4.1 Calculating the Cache Half-Life

The cache half-life,CHL, estimates how many sequential
task executions can potentially lead to a cache hit before
all cached data from the original task is invalidated, as
shown in Equation 2.

CHL=
CS

((DW(T)/|T|)∗ (1−DS))
(2)

In this equation,CHL is calculated by dividing the size
of the cache,CS, by the average amount of data written
per task. To determine the average amount of data written
per task, the total amount of data written,DW is divided
by the number of tasks|T|, and multiplied by the percent
of task data shared between tasks,DS. DS is determined
by dividing the total number of variables that are read by

FR(Si,k) =

{

Fi+k i + k< M(MF)

F((i+k)−M(S))%M(S) i + k≥ M(MF)
(4)

both tasks by the sum of the total number of variables read
by both tasks.

3.4.2 Determining if Tasks Overlap

Our metric assumes that tasks of different applications
share no data. Cache hits can therefore only occur if two
tasks share the same application. Equation 3 returns 1 if
two tasks are a part of the same application and 0 if they
are not.

O(ti , t j) =

{

1 ti == t j

0 ti ! = t j
(3)

3.4.3 Quantifying Cache Hits for Variable Size Tasks

Software tasks of the same application may not read the
same amount of memory. The number of cache hits that
result from a task executing will therefore differ based on
the amount of common data read. Equation 5 defines the
maximum cache hits that can be expected if a task of an
application executes after another task of the same appli-
cation.

CHit(Sj ,Sy) = DS∗DR(Sy) (5)

The maximum cache hits is equal to the percentage of data
shared by the tasks multiplied by the amount of data read
by the task executing later.

3.4.4 Cache Hits due to Sequential Task Executions

We calculate the cache hit probability “CHit” for all se-
quential executions of tasks on/off the processor in the
schedule “S.” After a task executes, the number of sequen-
tial executions that can occur before all data written by the
task to the cache is invalidated is determined by the CHL.
Each transition that occurs before the CHL is reached can
therefore potentially yield a cache hit and must be inves-
tigated.

Determining which task executesk executions after an
initial task executes is shown in Equation 4. We define

6

M(S) as the number of tasks that execute in a given sched-
ule. Two cases must be considered:

• A task may executek steps ahead of a task, but in the
same as shown in the first case of Equation 4.

• Since execution schedules are assumed to repeat, we
must also take into account the impact of sequential
task executions between sequential schedule execu-
tions. Incrementing byk transitions may exceed the
boundary of the schedule, whereby the task is de-
termined by wrapping back to the beginning of the
schedule and incrementing any remaining schedule
executions as shown in the second case of Equa-
tion 4.

Equation 1 accounts for all cache hits due to all se-
quential task executions in the execution scheduleS. The
first summation in Equation 1 accounts for all tasks in
the scheduleS′. The innermost summation in Equation 1
sums the expected cache hits CHit for tasks that share the
same application, as given by O.

4 Empirical Results

This section analyzes the results of a performance anal-
ysis of multiple DRE systems with different SMACK
scores. These systems differ in task execution schedules
and the amount of memory shared between tasks. We
investigate potential correlations between the SMACK
score and L1 cache misses and runtime reductions for
each system.

4.1 Overview of the Hardware and Soft-
ware Testbed

To examine the relationship between SMACK score and
DRE system performance, we collaborated with members
of the Lockheed Martin Corporation to create multiple
software systems that mimic the scale, execution schedule
and data sharing of cutting-edge industry flight avionics
systems. We specified the number of applications, num-
ber of tasks per application, the distribution of task prior-
ity, and the maximum amount of memory shared between
each task for each system. We created a Java-based code
generator to create C++ system code that possessed these

characteristics. Rate monotonic scheduling was used to
create a deterministic priority based schedule for the gen-
erated tasks that adheres to rate monotonic scheduling re-
quirements.

The systems were compiled and executed on a Dell Lat-
itude D820 with a 2.16Ghz Intel Core 2 processor with 2
x 32kb L1 instruction caches, 2 x 32 kb write-back data
caches, a 4 MB L2 cache and 4GB of RAM running Win-
dows Vista. For each experiment, each system was exe-
cuted 50 times to obtain an average runtime. The cache
performance of these executions were profiled using the
Intel VTune Amplifier XE 2011.

4.2 Experiments: Correlating SMACK
with Increased Cache Hit-rate and Run-
time Reductions

Experiment design.The execution schedule of tasks can
potentially impact both the runtime and number of cache
misses of a system. We manipulated the execution order
of a single software system with 20% shared data proba-
bility between 5 applications consisting of 10 tasks each
to create 2 new execution schedules. First, rate monotonic
scheduling was use to create the baseline schedule. This
schedule was then permuted to change the total number
of instances in which the execution of two tasks from a
common application executing could potentially cause a
cache hit to create the SMACK Optimized schedule.

The baseline execution schedule generated by rate
monotonic scheduling resulted in a SMACK score of
3.82651x1010 . Metascheduling was used to reorder
same rate tasks to increase the SMACK score. This
SMACK Optimized resulted in a a SMACK score of
4.679442x1010.

Analysis of results.

4.2.1 Experiment 1: Using Cache-Aware
Metascheduling to Reduce Cache Misses

Altering the task execution schedule can raise or lower
the temporal locality of a sequence of data accesses.
We hypothesized that using cache-aware metaschedul-
ing to increase temporal locality would reduce the num-
ber of cache misses. Figure 4 shows the L1 cache
misses for both execution schedules. The baseline exe-
cution schedule resulted in 3.5076x109 L1 cache misses

7

while the SMACK Optimized execution schedule gener-
ated 3.484x109 cache misses. Therefore, this data vali-
dates our hypothesis that cache miss rates can be reduced
by using cache-aware metascheduling to increase tempo-
ral locality.

Figure 4: Execution Schedules vs L1 Cache Misses

4.2.2 Experiment 2: Reducing Execution Time with
Cache-Aware Metascheduling

While Experiment 1 showed that applying cache aware
metascheduling can reduce cache misses, we further hy-
pothesized that execution time can be reduced as well.
Figure 5 shows the average runtimes for the different exe-
cution schedules. As shown in this figure, the task execu-
tion order can have a large impact on runtime. The base-
line execution schedule executed in 3,374 milliseconds.
The SMACK Optimized execution schedule completed in
3,299 milliseconds, which was an 2.22% reduction in ex-
ecution time from the baseline execution schedule.

4.2.3 Experiment 3: Impact of Data Sharing on
Cache-Aware Metascheduling Effectiveness

Figure 5 shows the execution time of two execution sched-
ules at only 20% data sharing. Data sharing of indus-
try DRE systems, however, may vary to a large extent.
Therefore, we created 10 other systems with different data
sharing characteristics. We examine the impact of data

Figure 5: Runtimes of Various Execution Schedules

sharing on execution time reductions due to cache-aware
metascheduling .

The execution time for the baseline and SMACK Op-
timized schedules is shown in Figure 6. The SMACK
Optimized schedule consistently executed faster than the
baseline schedule with an average execution time reduc-
tion of 2.54% without requiring alteration to application
source-code and without violating real-time constraints.
Moreover, this reduction required no purchasing nor im-
plementing of any additional hardware or software or ob-
taining any low-level knowledge of the system. These re-
sults demonstrate that cache-aware metascheduling can be
applied to reduce the execution time of an array of DRE
systems, such as avionics systems, regardless of cost con-
straints, restricted access to software source code, real-
time constraints, or instruction level-knowledge of the un-
derlying architecture.

5 Related Work
This section compares our cache-aware metascheduling
heuristic for increasing cache hit-rate with other tech-
niques for optimizing cache hit rate.

Software cache optimization techniques.Many tech-
niques change the order in which data is accessed to in-
crease cache hit rate by altering software at the source
code level. These optimizations, known as data access op-
timizations [11], focus on changing the manner in which

8

Figure 6: Runtimes of Multiple Levels of Data Sharing

loops are executed. One technique, known asloop in-
terchange[26], can be used to reorder multiple loops to
maximize the data access of common elements in respect
to time, referred to astemporal locality[1, 27, 26, 21].

Another technique, known asloop fusion[22], is of-
ten applied to further increase cache hit rate. Loop
fusion maximizes temporal locality by merging multi-
ple loops into a single loop and altering data access or-
der [22, 10, 25, 5]. Yet another technique for improving
cache hit rate is to utilizeprefetchinstructions, which re-
trieves data from memory into the cache before the data
is requested by the application [11]. Prefetch instructions
inserted manually into software at the source code level
can significantly reduce memory latency and/or cache
miss rate [6, 8].

While these techniques can increase cache hit rate of
applications, they all require source code optimizations.
Many systems, such as avionic systems are safety crit-
ical and must undergo expensive certification and rig-
orous development techniques. The fundamental differ-
ence, however, between cache-aware metascheduling and
these methods is that no modifications are required to
the underlying software that is executing on the system,
thereby achieving performance gains without requiring
source code access or additional re-certification of hard-
ware or software.

6 Concluding Remarks
Processor data caching can substantially increase DRE
system performance. It is hard, however, to create valid
task execution schedules that increase cache effects and
satisfy timing constraints. Metascheduling can be used to
generate multiple valid execution schedules with various
levels of temporal locality and different cache hit rates.
Without a formal methodology for quantifying the tem-
poral locality of an task execution schedule, moreover, it
is hard to determine which task execution schedule will
yield the highest cache hit rate.

This paper presents a cache-aware metascheduling
heuristic that uses theSystem Metric for Application
Cache Knowledge(SMACK) to quantify the performance
gains of processor caching of a system. The temporal lo-
cality of multiple cache task execution schedules can be
quantified and compared based on SMACK score. We
empirically evaluated four task execution schedules with
different SMACK scores in terms of L1 cache misses and
execution time. We learned the following lessons from in-
creasing cache hit rate with our cache-aware metaschedul-
ing heuristic:
• Cache-aware metascheduling increases cache hit

rate. Using cache-aware metascheduling led to runtime
reductions of as much as 5% without requiring code-level
modifications, violating real-time scheduling constraints
or implementing any additional hardware, middleware, or
software, and thus can be applied to broad range of DRE
systems.
• Relatively minor system knowledge yields effec-

tive cache performance assessments.Calculating the
SMACK value of a system does not require an expert un-
derstanding of the underlying software. Reasonable es-
timates of data sharing and knowledge of the executing
software tasks are all that is required to determine sched-
ules that yield effective reductions in computation time.
• Algorithmic techniques to maximize SMACK are

needed to optimize cache-hit rate.The task execution
schedule was shown to have a large impact on system per-
formance and SMACK score. Moreover, the performance
of task execution schedules differed based on the cache
half-life. Our future work will examine algorithmic tech-
niques that use cache-aware metascheduling and SMACK
as a heuristic for determining the optimal execution order
for tasks in specific systems to maximize cache hit rate.

9

The source code simulating the avionics sys-
tem discussed in Section 4 can be downloaded at
ascent-design-studio.googlecode.com.

References
[1] J. Allen and K. Kennedy. Automatic loop interchange. In

Proceedings of the 1984 SIGPLAN symposium on Com-
piler construction, page 246. ACM, 1984.

[2] A. Asaduzzaman and I. Mahgoub. Cache Optimization for
Embedded Systems Running H. 264/AVC Video Decoder.
In Computer Systems and Applications, 2006. IEEE Inter-
national Conference on., pages 665–672. IEEE, 2006.

[3] A. Atlas and A. Bestavros. Statistical rate monotonic
scheduling. InReal-Time Systems Symposium, 1998. Pro-
ceedings., The 19th IEEE, pages 123–132. IEEE, 1998.

[4] R. Bahar, G. Albera, and S. Manne. Power and perfor-
mance tradeoffs using various caching strategies. InLow
Power Electronics and Design, 1998. Proceedings. 1998
International Symposium on, pages 64–69. IEEE, 2005.

[5] K. Beyls and E. Dâ̆AŹHollander. Reuse distance as a met-
ric for cache behavior. InProceedings of the IASTED Con-
ference on Parallel and Distributed Computing and sys-
tems, volume 14, pages 350–360. Citeseer, 2001.

[6] T. Chen and J. Baer. Reducing memory latency via non-
blocking and prefetching caches.ACM SIGPLAN Notices,
27(9):51–61, 1992.

[7] S. Dhall and C. Liu. On a real-time scheduling problem.
Operations Research, 26(1):127–140, 1978.

[8] J. Fu, J. Patel, and B. Janssens. Stride directed prefetch-
ing in scalar processors. InProceedings of the 25th an-
nual international symposium on Microarchitecture, pages
102–110. IEEE Computer Society Press, 1992.

[9] S. Ghosh, R. Melhem, D. Mossé, and J. Sarma. Fault-
tolerant rate-monotonic scheduling.Real-Time Systems,
15(2):149–181, 1998.

[10] K. Kennedy and K. McKinley. Maximizing loop paral-
lelism and improving data locality via loop fusion and dis-
tribution. Languages and Compilers for Parallel Comput-
ing, pages 301–320, 1994.

[11] M. Kowarschik and C. Weiß. An overview of cache op-
timization techniques and cache-aware numerical algo-
rithms. Algorithms for Memory Hierarchies, pages 213–
232, 2003.

[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. InReal Time Systems Symposium, 1989.,
Proceedings., pages 166–171. IEEE, 1987.

[13] N. Manjikian and T. Abdelrahman. Array data layout for
the reduction of cache conflicts. InProceedings of the
8th International Conference on Parallel and Distributed
Computing Systems, pages 1–8. Citeseer, 1995.

[14] B. Nayfeh and K. Olukotun. Exploring the design space
for a shared-cache multiprocessor. InProceedings of the
21ST annual international symposium on Computer archi-
tecture, page 175. IEEE Computer Society Press, 1994.

[15] J. Orozco, R. Cayssials, J. Santos, and E. Ferro. 802.4
rate monotonic scheduling in hard real-time environments:
Setting the medium access control parameters.Informa-
tion Processing Letters, 62(1):47 – 55, 1997.

[16] P. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Aug-
menting loop tiling with data alignment for improved
cache performance.Computers, IEEE Transactions on,
48(2):142–149, 2002.

[17] S. Pingali, J. Kurose, and D. Towsley. On Comparing the
Number of Preemptions under Earliest Deadline and Rate
Monotonic Scheduling Algorithms. 2007.

[18] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing
predictability of cache replacement policies.Real-Time
Systems, 37(2):99–122, 2007.

[19] J. Robinson and M. Devarakonda. Data cache management
using frequency-based replacement.ACM SIGMETRICS
Performance Evaluation Review, 18(1):134–142, 1990.

[20] P. Rodríguez-Dapena. Software safety certification: amul-
tidomain problem.Software, IEEE, 16(4):31–38, 1999.

[21] W. Shiue and C. Chakrabarti. Memory design and explo-
ration for low power, embedded systems.The Journal of
VLSI Signal Processing, 29(3):167–178, 2001.

[22] S. Singhai and K. McKinley. A parametrized loop fu-
sion algorithm for improving parallelism and cache local-
ity. The Computer Journal, 40(6):340, 1997.

[23] E. Sprangle and D. Carmean. Increasing processor perfor-
mance by implementing deeper pipelines. InComputer Ar-
chitecture, 2002. Proceedings. 29th Annual International
Symposium on, pages 25–34. IEEE, 2002.

[24] D. Stewart and M. Barr. Rate monotonic scheduling.Em-
bedded Systems Programming, pages 79–80, 2002.

[25] S. Verdoolaege, M. Bruynooghe, G. Janssens, and
P. Catthoor. Multi-dimensional incremental loop fusion
for data locality. InApplication-Specific Systems, Archi-
tectures, and Processors, 2003. Proceedings. IEEE Inter-
national Conference on, pages 17–27. IEEE, 2003.

[26] M. Wolf, D. Maydan, and D. Chen. Combining loop trans-
formations considering caches and scheduling. Inmicro,
page 274. Published by the IEEE Computer Society, 1996.

[27] Q. Yi and K. Kennedy. Improving memory hierarchy per-
formance through combined loop interchange and multi-
level fusion. International Journal of High Performance
Computing Applications, 18(2):237, 2004.

10

