Software Architectures for Reducing Priority Inversion
and Non-determinism in Real-time Object Request Brokers

Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and Aniruddha Gokhale
{schmidt,sumedh,sergio,gokha@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

Abstract ing applications using reusable components based on object-

. .) oriented (OO) middleware [3].
There is increasing demand to extend Object Request Bro-

ker (ORB) middleware to support applications with stringehficreased focus on QoS-enabled components and open sys-
real-time requirements. However, conventional ORBs, sUéms: There is increasing demand for remote method invo-
as OMG CORBA, exhibit substantial priority inversion ang@tion and messaging technology to simplify the collaboration
non-determinism, which makes them unsuitable for appli¢¥-open distributed application components [4] that possess
tions with deterministic real-time requirements. This pap&iingent QoS requirements.

provides two contributions to the study and design of real-tiny&reased focus on standardizing real-time middleware:
ORB middleware. First, it illustrates empirically why convenseyera] international efforts are currently addressing QoS for
tional ORBs do not yet support real-time quality of servicgyg middieware. The most prominent is the OMG CORBA
Second, it describes software architectures that reduce prigfsndardization effort [5]. CORBA is OO middleware that al-
ity inversion and non-determinism in real-time CORBA ORBgys clients to invoke operations on objects without concern
The results presented in this paper demonstrate the feasipil- \yhere the objects reside, what language the objects are
ity of using standard OO middleware like CORBA over COTgitten in, what OS/hardware platform they run on, or what

hardware and software. communication protocols and networks are used to intercon-
Keywords: Real-time CORBA Object Request Broker, QoSiect distributed objects [6].
enabled OO Middleware, Performance Measurements There has been recent progress towards standardizing [7, 8]

real-time CORBA. Several OMG groups, most notably the
Real-Time Special Interest Group (RT SIG), are actively inves-
1 Introduction tigating standard extensions to CORBA to support distributed
real-time applications. The intent of the real-time CORBA
1.1 Emerging Trends in Distributed Real-time standardization effort is to enable real-time applications to in-
Systems terwork throughout embedded systems and heterogeneous dis-
tributed environments.
Next-generation distributed and real-time applications, sucHNotwithstanding the significant efforts of the OMG RT SIG,
as video-on-demand, teleconferencing, and avionics, reqtipgvever, developing and standardizing distributed real-time
endsystems that can provide statistical and deterministic q@zPRBA ORBs remains hard. There are few successful exem-
ity of service (QoS) guarantees for latency [1], bandwidth, aptirs of standard, commercially available distributed real-time
reliability [2]. The following trends are shaping the evolutio@RB middleware. In particular, conventional CORBA ORBs
of software development techniques for these distributed rezte not well suited for performance-sensitive, distributed real-
time applications and endsystems: time applications due to (1) lack of QoS specification inter-
.)) faces, (2) lack of QoS enforcement, (3) lack of real-time pro-
Increased focus on middleware and integration frame- gramming features, and (4) general lack of performance and
works:' There is a gen('eral'mdustry trend away frqomo- predictability [9].
gramming real-time applications from scratch fategrat- ajthough some operating systems, networks, and protocols

*This work was supported in part by Boeing, CDI, DARPA contracrt]OW support real-time scheduling, they do not provide inte-

9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and QEated end'to'e.nd re?-l'time ORB endsystem solutions [10].
Sprint. Moreover, relatively little systems research has focused on

strategies and tactics for real-time CORBA. In particular, QoS real-time ORB endsystems.

research at the network and OS layers has not addressed key

requirements and programming aspects of CORBA middle-

ware. For instance, research on QoS for ATM networks has

focused largely on policies for allocating bandwidth on a vir- Our earlier work on CORBA and TAO explored several di-
tual circuit basis [11]. Likewise, research on real-time opiensions of real-time ORB endsystem design including real-
erating systems has focused largely on avoiding priority i¥me scheduling [10], real-time request demultiplexing [21],
versions in synchronization and dispatching mechanisms ffeal-time event processing [13], and real-time 1/O subsystem

multi-threaded applications [12]. integration [19]. This paper focuses on a previously unexam-
ined point in the real-time ORB endsystem design spaott:
1.2 Towards Real-time CORBA ware architectures that significantly reduce priority inversion

and non-determinism in CORBA ORB Core implementations

t&hents. The ORB Core also typically implements the transport

tectures presented in this paper are based on our eXpe”%rﬁQﬁ)oint demultiplexing and concurrency architecture used by

plevelopmg, profiling, anq optlmlzmg next-genergtlon aviony plications. Figure 1 illustrates how an ORB Core interacts
ics [13] and telecommunications [14] systems using real-tim

0O middleware such as ACE [15] and TAO [10]. with other CORBA components. Appendix A describes each
ACE is an OO framework that implements core concurrency
and distribution patterns [16] for communication software. It
provides reusable C++ wrapper facades and framework cor|
ponents that support high-performance, real-time applicatio
ACE runs on a wide range of OS platforms, including Win32,
most versions of UNIX, and real-time operating systems like
VxWorks, Chorus Classix, pSoS, and LynxOS.
TAO is a highly extensible, ORB endsystem written using
ACE. It is targeted for applications with deterministic and sta-
tistical QoS requirements, as well as best effort requirements

TAO is fully compliant with the latest OMG CORBA specifi-

cations [17] and is the first standard CORBA ORB endsyste| | GIOP/IIOP

that can support end-to-end QoS guarantees over ATM n DSTANDARD NTERFACE () STANDARD LanGUAGE
works. MAPPING

The TAO project focuses on the following topics related tO@D) ORB-seeCiFIC INTERFACE
real-time CORBA and ORB endsystems:

in args
operation()

out args + return value

SERVANT

A

IDL Y
SKELETON
ORB OBJECT

INTERFACE ADAPTER

O STANDARD PROTOCOL

¢ Identifying enhancements to standard ORB specifica—FIgure 1: Components in the CORBA Reference Model

tions, such as OMG CORBA, that will enable applica-
tions to specify their QoS requirements concisely to OREf
endsystems [18]. 0

e Empirically determining the features required to build This paper is organized as follows: Section 2 outlines the
real-time ORB endsystems that can enforce determirfi€neral factors that impact real-time ORB endsystem perfor-

tic and statistical end-to-end applications QoS guargRance and predictability; Section 3 describes software archi-
tees [10]. tectures for real-time ORB Cores, focusing on alternative ORB

)) . Core concurrency and connection architectures; Section 4
¢ Integrating the strategies for I/O subsystem archltectg(gfsents empirical results from systematically measuring the
and optimizations [19] with ORB endsystems to proviqgiciency and predictability of alternative ORB Core architec-
end_-to-.end bandV\{ldth, latency, and reliability guarantegsas in four contemporary CORBA implementations: COR-
to distributed applications. BAplus, miniCOOL, MT-Orbix, and TAO; Section 5 compares
e Capturing and documenting the key design patterns [2Qr research with related work; and Section 6 presents con-

necessary to develop, maintain, configure, and extesidding remarks.

these components in more detail.

2 Factors Impacting Real-time ORB priority inversions. Specific factors responsible for these in-
Endsystem Performance versions include improper connection management strategies,
inefficient sharing of endsystem resources, and excessive syn-

Meeting the QoS needs of next-generation distributed apﬁﬁ_romzatlon overhead in ORB protocol implementations.

cations requires much more than defining IDL interfaces &r ORB Core implementations and integration with
adding preemptive real-time scheduling into an OS. It requi®S services: The design of an ORB Core can yield
a vertically and horizontally integrat€dRB endsystem archi-excessive memory accesses, cache misses, heap alloca-
tecturethat can deliver end-to-end QoS guarantees at multbns/deallocations, and context switches [27]. In turn, these
ple levels throughout a distributed system. The key levédgtors can increase latency and jitter, which is unaccept-
in an ORB endsystem include the network adapters, OS HBle for distributed systems with deterministic real-time re-
subsystems, communication protocols, ORB middleware, afifrements. Specific factors that can cause problems include:
higher-level services. data copying, fragmentation/reassembly, context switching,
The main thrust of this paper is on software architecturggnchronization, checksumming, socket demultiplexing, timer
that are suitable for real-time ORB Cores. For completeandling, request demultiplexing, marshaling/demarshaling,
ness, Section 2.1 briefly outlines the general sources of o¥esming, error checking, connection and concurrency archi-
head in ORB endsystems. Section 2.2 then describes thetkeyures. Many of these problems are similar to those listed in
sources of priority inversion and non-determinism that affelstillet 2 above. Because they occur at the user-level rather than
real-time ORB endsystems. After this overview, Section 3 fat the kernel-level, however, it can be easier for ORB imple-
cuses specifically on alternative ORB Core concurrency aménters to solve them portably.
connection architectures. Figure 2 pinpoints where these various factors impact ORB
performance and where optimizations can be applied to reduce
key sources of ORB endsystem overhead, priority inversion,

2.1 General Sources of ORB EndSyStem OVer’and non-determinism. Below, we focus on the sources of over-

head

Our prior experience [21, 22, 23] measuring the throughg
and latency of CORBA ORBs indicated that the performant
overhead of real-time ORB endsystems stems from inefficien- — paTA
cies in the following components:

IDL
Ei_ SCHEDULING,
. IDL ORB < pemuxinG,
1. Network connections and network adapters: These e T (—‘ PR B
Y

endsystem components handle heterogeneous network ¢as
{ }} GIOP [~ MODELS

nections and bandwidths, which can significantly affect lat
cies and cause variability in performance. Inefficient desig J TRANSPORT
of network adapters can cause queueing delays and lost p{ convecTion OS KERNEL

............ in args

operation()

out args + return value
+—O0

CLIENT

ets [24], which are unacceptable in many real-time systemg MANAGENENT — ©
- . _ . o
2. Communication protocol implementations and integra- NETWORK ADAPTER

tion with the I/O subsystem and network adapters: Ineffi- Figure 2: Optimizing Real-time ORB Endsystem Performance
cient protocol implementations and improper integration with

/O subsystems can adversely affect endsystem performaRggy in ORB endsystems that are chiefly responsible for pri-
Specific factors that cause problems include the protocol OV&fity inversions and non-determinism.

head caused by flow control, congestion control, retransmis-

sion strategies, and connection management. Likewise, lack of o _

proper I/O subsystem integration yields excessive data cogy? Sources of Priority Inversion and Non-
ing, fragmentation, reassembly, context switching, synchro- determinism in ORB Endsystems

nization, checksumming, demultiplexing, marshaling, and de- o) o)
marshaling overhead [25]. Sources of priority inversion and non-determinism in ORB

endsystems generally stem from resources that are shared by
3. ORB transport protocol implementations: Inefficient multiple threads or processes. Common examples of shared
implementations of ORB transport protocols such as t@dRB endsystem resources include (1) TCP connections used
CORBA Internet inter-ORB protocol (IIOP) [5] and Simpldy CORBA IIOP, (2) threads used to transfer requests through
Flow Protocol (SFP) [26] can cause performance overhead alient and server end-points, (3) process-wide dynamic mem-

ory managers, and (4) internal ORB data structures like camtsion. For instance, a high-priority client may need to wait
nection tables and socket/request demultiplexing maps. Be-the connection establishment of a lower-priority client. In
low, we describe key sources of priority inversion and noaddition, the time required to establish connections can vary

determinism in conventional ORB endsystems. widely, ranging from hundreds of microseconds to millisec-
onds, depending on endsystem load and network congestion.
2.2.1 1/0 Subsystem Connection establishment overhead is hard to bound. For

instance, if an ORB needs to dynamically establish connec-
The I/O subsystems of general-purpose operating systetias between the client and server, it is hard to provide a
such as Solaris and Windows NT, do not perform preemptiveasonable guarantee of the worst-case execution time since
prioritized protocol processing [19]. In particular, the protocahis time also includes the (variable) connection establishment
processing of lower priority packetsri®tdeferred due to thetime. Moreover, connection establishment often occurs out-
arrival of higher priority packets. Instead, incoming packeside the scope of general end-to-end OS QoS enforcement
are processed by their arrival order rather than by their prisfechanisms [28]. To support applications with deterministic
ity. real-time QoS requirements, therefore, it is generally neces-

For instance, if a low-priority request arrives immediatelary for ORB endsystems to pre-allocate connec@omsori.

before a high priority request, the 1/O subsystem will process, -qnnection multiplexing: Conventional ORB Cores

the lower priority packet and pass it to an application servaplica|ly use a single TCP connection for all object references

before the higher priority packet. The time spent in the 10y 5 server process that are accessed by threads in a client

priority servant represents the degree of ORB priority i”"eﬁfocess. Thigonnection multiplexings shown in Figure 3.

sion.) , o .. The goal of connection multiplexing is to minimize the num-
[19] examines key issues that cause priority inversion in I/O

subsystems and describes how TAO’s real-time I/O subsys APPLICATION [SERVANTS]
avoids priority inversion by co-scheduling pools of user-le *i *i >
and kernel-level real-time threads. Interestingly, the result

Section 4 illustrate that the majority of the overhead, priori

inversion, and non-determinism in ORB endsystems dm{]
stem from the I/O subsystem but instead from the softwaZg
architecture of the ORB Core. /O SUBSYSTEM

ONE TCP -»i -»i -»i *i]
LSl /0 SUBSYSTEM

COMMUNICATION LINK |

2.2.2 ORB Core

A CORBA ORB Core implements the general inter-ORB pro- Figure 3: A Multiplexed Connection Architecture

tocol (.GIOP) [5], which del_‘ines a standard format for inteB’er of connections open to each server, which is commonly
operating between (potentially heterogeneous) ORBs. O d to build scalable servers over TCP. However, connec-

Core mechanisms establish connections and implement,{jg multiplexing can yield substantial packet-level priority

concurrency architecture to process GIOP requests. The R\llérsions and synchronization overhead, as shown in Sec-
lowing discussion outlines common sources of priority inveﬁbns 421and4.2.2

sion and non-determinism in conventional ORB Core imple-)
mentations. Concurrency architecture: The ORB Core’s concurrency

architecture has a substantial impact on its real-time behavior.
Connection architecture: The ORB Core’s architecture forrherefore, another key challenge for developers of real-time
managing connections has a major impact on real-time ORRBs is to select a concurrency architecture that correctly
behavior. TherEfore, a key Challenge for developers of regﬂTareS the aggregate processing Capacity of an ORB endsys_
time ORBs is to select a connection architecture that can @m and its application operations in one or more threads of
ficiently and predictably utilize the transport mechanisms gbntrol. The following outlines the key sources of priority in-

an ORB endsystem. The following discussion outlines the k@tsion and non-determinism exhibited by conventional ORB
sources of pI’iOI’iW inversion and non-determinism eXhibit@bre concurrency architectures:

by conventional ORB Core connection architectures: . . .
e Twoway operation reply processing: On the client-

e Dynamic connection management: Conventional side, conventional ORB Core concurrency architectures for
ORBs typically create connections dynamically in responseoway operations can incur significant priority inversion. For
to client requests. However, dynamic connection managestance, multi-threaded ORB Cores that use connection mul-
ment can incur significant run-time overhead and priority itiplexing incur priority inversions when low-priority threads

awaiting replies from a server block out higher priority threadtep 6: The IDL skeleton locates the appropriate operation,
awaiting replies from the same server. demarshals the request buffer into operation parameters, and

. rforms th ration Il.
e Thread pools: On the server-side, ORB Core concwEe orms the operation upca

rency architectures often utiead pooldo select a thread to

process an incoming request. However, conventional ORBs din general, layered demultiplexing is inappropriate for high-
not provide programming interfaces to allow real-time applperformance and real-time applications for the following rea-
cations to determine the priority of threads in this pool. Thergens [29]:

fore, the priority of a thread in the pool is often inappropriate

for the priority of the servant that ultimately executes the recreased efficiency: Layered demultiplexing reduces per-

quest, thereby increasing the potential for priority inversionformance by increasing the number of internal tables that must
be searched while incoming client requests ascend through

2.2.3 Object Adapter th'e processing layers in an ORB endsy§tem. Demultlplex]ng
client requests through all these layers is expensive, particu-

A standard GIOP-compliant client request contains the idéatly when a large number of operations appear in an IDL in-
tity of its remote object and remote operation. A remote ot¢rface and/or a large number of servants are managed by an
ject is represented by an object kegtet sequence anda ORB.

remote operation is represented astring . Conventional o) o

ORBs demultiplex client requests to the appropriate operatifreased priority inversion and non-determinism: Lay-

of the servant implementation using the steps shown in FRjed demultiplexing can cause priority inversions because
servant-level QoS information is inaccessible to the lowest-

re 4.
ure level device drivers and protocol stacks in the 1/0 subsystem
. v of an ORB endsystem. Therefore, the Object Adapter may
é é é LAVERED demultiplex packets according to their FIFO order of arrival.
(= s FIFO demultiplexing can cause higher priority packets to wait
§ § E DEMUXING for an indeterminate period of time while lower priority pack-
6: DEMUX TO ets are demultiplexed and dispatched.
OPERATION IDL DL DL
(SKEIL 1) (SK!%L 2) I QKEJL M) Conventional implementations of CORBA incur significant
5‘:}:}3’;&? I demultiplexing overhead. For instance, [22, 30] show that con-
GERVANT 1) GERVANT 2) oo GERVANT N) ventional ORBs speng17% of the total server time process-
4: DEMUX TO [I] ing demultiplexing requests. Unless this overhead is reduced
SERVANT and demultiplexing is performed predictably, ORBs cannot
(OBJECT ADAPTER) provide uniform quality of service guarantees to applications.

3:DEMUX TO |

e AT [21] presents alternative ORB demultiplexing techniques

and describes how TAO's real-time Object Adapter provides

2 . S . o
]I;(E)MUX T(;E OS KERNEL optlmgl demultlple_xmg strateglgs th_at lexgcute Qetermlmstl
HAND! cally in constant time and avoid priority inversion via de-

0S 1/0 SUBSYSTEM 1 i
1: DEMUX THRU — layered demultiplexing.

Figure 4: Layered CORBA Request Demultiplexing 3 Alternative ORB Core Concurrency
and Connection Architectures

These steps perform the following tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the inLhis seqtion des'cribes alternative ORB Core concurrency and
coming client request multiple times, g, through the data connection archltectures.. Each of these archltegtures is used
link, network, and transport layers up to the user/kernel boufy-One or more commercial or research CORBA implementa-
ary and the ORB core. tions. Below, we qualitatively evaluate how each architecture
manages the aggregate processing capacity of ORB endsys-
Steps 3, 4, and 5: The ORB core uses the addressing ilem components and application operations. Section 4 then
formation in the client's object key to locate the appropriai#esents quantitative results that illustrate how efficient and
Object Adapter, servant, and the skeleton of the target IDL @Redictable these alternatives are in practice.
eration.

3.1 Alternative ORB Core Connection Archi- APPLICATION

tectures 1: invoke_twoway()

A

There are two general strategies for structuring connection ar- __7: dequeue()
chitecture in an ORB Coranultiplexedandnon-multiplexed 2: enqueue(y _ & return
We describe and evaluate various design alternatives for each
approach below, focusing on client-side connection architec-

tures for our examples. 3: dequeue()

& write(5: read()
3.1.1 Multiplexed Connection Architectures

4: select()

Many ORBs multiplex client requests from a single process —]
through one TCP connection to its corresponding server pro- —
cess. This architecture is commonly used to build scalable I/O0 SUBSYSTEM
ORBSs by minimizing the number of TCP connections open to
each server. When multiplexing is used, the key challenge is Figure 5: Active Connection Architecture

to design an efficient ORB Core connection architecture that

supports concurrent reads and writes.
Multiple threads cannot portably read or write from th? 'I_'he gdvantage of the actlvg conne.ctlon arc_:hltecture IS _that
| sdmpllfles the ORB connection architecture implementation

same socket concurrently because TCP provides untyBe e
. sing a uniform queueing mechanism. In addition, if every
bytestream data transfer semantics. Therefore, concurr nﬂ(

write requests to a socket shared within an ORB process mslﬁ[)s(i et handles p'ac.k.e ts of the same priority level, pack-
ets of different priorities are not received on the same socket,

be serialized. Serialization is typically implemented by havi ﬁ . . X
all client threads in a process acquire a lock before writingq o active connection can handle these packets in FIFO order

a shared socket. WIEPr?eu El?:;ds\;g%tzrlce)zr\lltai/thn}[/rﬁ;s;&itecture however, is that the

For oneway operations, there is no need for additional IOcaifétive connectiongforces an extra contex,t switch c;n all out-
ing or processing once a requestis sent. Implementing twowaé{n incoming oberations. As a result. manv ORBS use a
operations over a shared connection is more complicated, g op ' ’ y R

) variant of this model called tHeader/followerconnection ar-
however. In this case, the ORB Core must support concurren S .
. chitecture, which is described next.

read access to a shared socket endpoint.

If server replies are multiplexed through a single conndgeader/followers connection architecture: An alternative
tion then multiple threads cannot read simultaneously frdmthe active connection approach is {eader/followersar-
that socket endpoint. Instead, the ORB Core must demultiptitecture shown in Figure 6. As before, an application thread

incoming replies to the appropriate client thread by using the

GIOP sequence number sent with the original client request APPLICATION
and returned with the servant’s reply. i
Several common ways of implementing connection mul- *2 : invoke_twoway()

tiplexing to allow concurrent read and write access are de-
scribed below.

Active connection architecture: One approach is thactive
connectionarchitecture shown in Figure 5. An application
thread () invokes a twoway operation, which enqueues the
request in the ORBZ). A separate thread in the ORB Core

LEADER FOLLOWERS

* SAVIIHL dIMoWd0d

4: read()

BORROWED THREAD

services this queus) and performs a write operation on the 000
multiplexed socket. The ORB threaglect s* (4) on the SEMAPHORES
socket waiting for the server to reply, reads the reply from the L >
socket B), and enqueues the reply in a message quaué&i- .
L . . 2: write()

nally, the application thread retrieves the reply from this queue
(7) and returns back to its caller. I/O SUBSYSTEM

1Theselect call is typically used since a client may have multiple mul-
tiplexed connections to multiple servers. Figure 6: Leader/Follower Connection Architecture

invokes a twoway operation call). Rather than enqueueing APPLICATION)
the request in an ORB message queue, however, the request is 1: invoke twoway()
sent across the socket immediate2y, ising the thread of the

application to perform the write. Moreover, no single thread § i *2

in the ORB Core is dedicated to handling all the socket I/O in E =5 return()—\

the leader/follower architecture. Instead, the first thread that a

attempts to wait for a reply on the multiplexed connection will % 4: read()

block inselect waiting for a reply 8). This thread is called &

theleader K @1 Py P3 P‘D 6’1 Py P3 P‘D
To avoid corrupting the socket bytestream, only the one "E 3: select() A

leader thread cagelect on the socket(s). Thus, all client

threads that “follow the leader” to read replies from the shared

socket will block on semaphores managed in FIFO order by

the ORB Core. If replies return from the server in FIFO order

this strategy is optimal since there is no unnecessary process- I/O SUBSYSTEM

ing or context switching. However, replies may arrive in non-

FIFO order. For instance, the next reply arriving from a server Figure 7: Non-multiplexed Connection Architecture

could be for any one of the threads blocked on semaphores.

When the next reply arrives from the server, the leader reads

e e e et e wrte cperaond) an eslect (9, read), and e
. : urn (5) operations can occur without contending for ORB re-

reply. If the reply is for the leader's own request, the Ieadéacr)urces with other threads in the process

releases the semaphore of the next follovi@rand returns to '

its caller §). The next follower becomes the new leader and The primary benefit of a non-multiplexed connection archi-

blocks onselect . tecture is that it enables clients to preserve end-to-end pri-
If the reply isnot for the leader, however, the leader mustities and prevent priority inversion while sending requests

signal the semaphore of the appropriate thread. The signdlt@ugh ORB endsystems and across communication links. In

thread then wakes up, retrieves its reply, and returns toagdition, this design incurs low synchronization overhead be-
caller. Meanwhile, the leader thread continuesdtect for cause no additional locks are required in the ORB Core when

the next reply. sending/receiving twoway requests since connections are not

Compared with active connections, the advantage of gfeared.
leader/follower connection architecture is that it minimizes the The drawback with a non-multiplexed connection architec-
number of context switches incurrédeplies arrive in FIFO ture is that it can use a larger number of socket endpoints
order. The drawback, however, is that the complex implemetiran the multiplexed connection model, which may increase
tation logic can yield significant locking overhead and priofhe ORB endsystem memory footprint. Therefore, it is most
ity inversion. The locking overhead stems from the need dffective when used for statically configured real-time applica-
acquire mutexes when sending requests and to block onttbgs, such as avionics mission computing systems [19], which

semaphores while waiting for replies. The priority inversigsbssess a small, fixed number of connections.
occurs if the priority of the waiting threads is not considered

by the leader thread when it demultiplexes replies to client
threads.

3.2 Alternative ORB Core Concurrency Archi-
3.1.2 Non-multiplexed Connection Architectures tectures

One technique for minimizing ORB Core priority inversion is

to use a non-multiplexed connection architecture, such as Timere are several strategies for structuring the concurrency ar-
one shown in Figure 7. In this connection architecture, eadtitecture in an ORB Core. The most common design for real-

client thread maintains a table of pre-established connectitinee ORBs is some variant dfiread pool This architecture

to servers in thread-specific storage. A separate connecticspiawns a pool of threads to service incoming client requests.
maintained in each thread for every priority levely, P, P>, In this subsection, we describe and evaluate several alternative
P3, etc. As a result, when a twoway operation is invokéd (thread pool designs, focusing largely on server-side concur-
it shares no socket endpoints with other threads. Therefoency architectures.

3.2.1 Worker Thread Pool Architecture (SERVANTS]
4

This ORB concurrency architecture uses a design similar to : dispatch upcall().

the active connection architecture described in Section 3.1.1.

The structure of this design is illustrated in Figure 8. The pri- ORB CORE
LEADER FOLLOWERS

(SERVANTS 2: read()

() sEMAPHORE

3: release()

I/0 SUBSYSTEM

Figure 9: Server-side Leader/Follower Concurrency Architec-
ture

become the new leade3)(and the leader thread dispatches the
I/0 SUBSYSTEM upcall @). After the upcall is dispatched, the original leader
thread becomes a follower and returns to the thread pool. New
Figure 8: Server-side Worker Thread Pool Concurrency Akquests are queued in socket endpoints until a thread in the
chitecture pool is available to execute the requests.

o o Compared with the worker thread design, the chief advan-
mary components in this design include an I/O thread, a {gge of the leader/follower concurrency architecture is that it
quest queue, and a pool of worker threads. The 1/O thregfhimizes context switching overhead incurred by incoming
select s (1) onthe socket endpoints, read few client re- requests. This is because it is not necessary to transfer the
quests, andj) inserts them into the tail of the request queUgsquest from the thread that read it from the socket endpoint
A worker thread in the pool dequeues the next request from another thread in the pool that processes it. The disadvan-

the head of the queue and dispatcheS)it (tages of the leader/follower architecture are the same as with
The chief advantage of the worker thread pool concurrengy worker thread design.

architecture is that it is straightforward to implement. The
disadvantages of this model stem from the excessive contf t
switching and synchronization required to manage the request
queue, as well as priority inversion caused due to connectimore flexible way to implement an ORB concurrency archi-
multiplexing. Since different priority requests share the samture is to allow application developers to customize hooks
transport connection, a high priority request may wait untilgovided by a gener#hreading frameworkOne way of struc-
lower priority request that arrived earlier is processed. Mot@ring this approach is shown in Figure 10. The design in
over, additional priority inversions can occur if the priority ofhis figure is based on the MT-Orbix thread filter concurrency
the thread that dispatches the request is different than the fpsimework, which is a variant of the Chain of Responsibility
ority of the servant that processes the request. pattern [16]. In MT-Orbix, an application can install a thread
filter at the top of a chain of filters. Filters are application-
programmable hooks that can perform a number of tasks such
as intercepting, modifying, or examining each request sent to
This ORB concurrency architecture is an optimization of ttaad from the ORB.

worker thread pool model. Its design, which is similar to A thread in the ORB Core reads$)(a request from a socket

the leader/follower connection architecture discussed in Sendpoint and enqueues the request on a request queue in the
tion 3.1.1 is shown in Figure 9. A pool of threads is allocat€dRB Core 2). Another thread then dequeues the requ@st (
and a leader thread is chosensilect (1) on connections and passes it through each filter in the chain successively. The
for all servants in the server process. When a request arritepmost filter {.e., the thread filter) determines which thread
this thread read<?] it into an internal buffer. If this is a valid should handle this request. In thileread-poolmodel, the
request for a servant, a follower thread in the pool is releasedhead filter enqueues the request into a queue serviced by a

3 Threading Framework Architecture

3.2.2 Leader/Follower Thread Pool Architecture

>3 SERVANT [SERVANTS j

E
E

52
£ 9
g

——{,S SERVANT

3: dequeue, — SKELETONS |

filter (rypuap 4: dispatch
Sonqnone T upeall(TTE TIR (TTE
q @ P CT NNN C NNN c[|NNN C
I‘.'Il‘ NNN E NNN E NNN E
-> EEE P EEE P EEE P
@ ADAPTER read()r ccecrffcece T
TTT O TTT O TTT O

J Al

CTOR |(REACTOR |(REACTOR
(Py) (P7) (P3)

I/0 SUBSYSTEM

Figure 11: Server-side Thread-per-Priority Concurrency Ar-

Figure 10: Server-side Thread Pool Framework Concurrency
Architecture tasks in fixed priority threads corresponding to thtes(e.g,
20 Hz, 10 Hz, 5 Hz, and 1 Hz) at which operations are called
] . o) by clients.
thread with the appropriate priority. This thread then PasSeSy minimize context switching, each thread in the ORB
control back to the ORB, which performs operation demulﬁfore can be configured withlﬁeac;tor [31]. A Reactor

plexing aqd dispatches the upca!}.(o . demultiplexes J) all incoming client requests to the appro-
The main advantage of a threading framework is its ﬂex'bB'riate connection handlee, connect, connect, etc. The

ity. The thread filter mechanism can be programmed by Ser(ghnection handler readg)(the request and dispatchd it
applications to support various concurrency strategies. FOrdfi, servant that execute at its thread priority.
stance, to implementtaaread-per-requestoncurrency policy, Each Reactor in a server is also associated with an

the filter can spawn a new thread and pass the request toAr&léeptor [32]. TheAcceptor s a factory that listens on
new thread: i . . . a particular port number for clients to connect to that thread
_There are several disadvantages with this design, howeygh iy and creates a connection handler to process the GIOP
First, since there is only a single chain of filters, extensiyg, ests. In the example in Figure 11, there is a listener port
priority inversion can occur since each request must trave priority. Thus, ports 10020, 10010, 10005, 10001 corre-

the filter chain in FIFO order. Second, there may be FI Q)ond to the 20 Hz, 10 Hz, 5 Hz, and 1 Hz rate group thread
queueing at multiple levels in the ORB endsystem. Therefoﬁﬁorities respectivély. ’ '

a high priqrity request may only ne pfocess‘?d after sever he advantage of the thread-per-priority concurrency ar-
lower priority requests that arrived earlier. Third, the threagﬁitecture is that it minimizes priority inversion and non-
ing framework may increase locking overhead, the thread d e}

! . - erminism. Moreover, it reduces context switching and syn-
filter must acquire locks to enqueue requests into the AUeUEQYonization overhead by only locking the state of servants
the appropriate thread.

if they interact across different thread priorities. In addition,

this concurrency model supports scheduling and analysis tech-

3.2.4 Thread-per-Priority Thread Pool Architecture niques that associate priority with rate, such as Rate Mono-
]) _tonic Scheduling (RMS) and Rate Monotonic Analysis (RMA)

In this approach, the server associates each servant wifz 34].

thread ysin_g the thread-per-priority concurrency architecturerpe thread-per-priority concurrency model can be inte-

shown in Figure 11. The ORB Core can be configured o pggated seamlessly with the non-multiplexed connection model

allocate a real-time thread for each priority level. Forinstangfsscribed in Section 3.1.2 to provide end-to-end priority

avionic mission computing systems commonly execute thﬁﬁaservation in real-time ORB endsystems, as shown in Fig-

2The thread-per-request architecture is generally unsuited for real-timeun-e 12. Once a client connects, t.heceptor Creates a new

al i .
plications since the overhead of creating a thread for each request is exce%&féket queue and connection handler to service tha.t queue.
and non-deterministic. The 1/0 subsystem uses the port number contained in arriv-

CLIENT APPLICATION SERVER ORB CORE @ R (((servics [= 1)
-»i -»i *i ‘ @ @ =
i i C, C, .. C, [_e% | ObjectAdapter || =

CLIENT ORB CORE

~HAmZzZ0A
eHAmZZOA
wHAmZZ00
TOHTEAA>
~HSAamzz0oAn
wHAmZzZzOA
wHAmZZOA
ZTOHNEOAO>
~=samzz0on
mHAaEmZZOA
wsAmZz200
~samzzon
vmHamZZOA
w=sAmZz200
XOoHTEAA>

— @ —4
CONNECTOR CONNECTOR CONNECTOR R q R aqu eﬂ S E ’E‘ :IZ
M A D At A S NSt Mt S MGt M \CI |erlt / \%r Va" /
/O SUBSYSTEM /O SUBSYSTEM x —— E
COMMUNICATION LINK _E
ST ATM Switch T,
Figure 12: End-to-end Real-time ORB Core Software Archi{J|tra 2 Ultra 2

tecture
Figure 13: Testbed for ORB Endsystem Evaluation

ing requests as a demultiplexing key to associate requests with

the appropriate socket queue. This design minimizes prigri.1 Hardware Configuration

ity inversion through the entire distributed ORB endsystem b)]] S .
eagerly demultiplexing [11] incoming requests onto the aﬁée experimental testbed is depicted in Figure 13. The experi-

propriate real-time thread that services the priority level of tHeENtS were conducted using a Bay Networks LattisCell 10114
target servant. ATM switch connected to two dual-processor UltraSPARC-

2s running SunOS 5.5.1. The LattisCell 10114 is a 16-Port,
OC3 155 Mbps/port switch. Each UltraSPARC-2 contains
: 2 168 MHz CPUS$ with a 1 Megabyte cache per-CPU, 256
4 Real-t_lme ORB Core Performance Megabytes of RAM, and an ENI-155s-MF ATM adaptor card
Experlments that supports 155 Megabits per-sec (Mbps) SONET multi-
mode fiber. The Maximum Transmission Unit (MTU) on the
This section describes the results of experiments that me&H ATM adaptor is 9,180 bytes. Each ENI card has 512
sure the real-time behavior of several commercial and reseafblytes of on-board memory. A maximum of 32 Kbytes is
ORBs, including IONA's MT-Orbix 2.2, Sun miniCOOL 43 allotted per ATM virtual circuit connection for receiving and
Expersoft CORBAplus 2.1.1 and TAO 1.0. MT-Orbix antfansmitting frames (for a total of 64 K). This allows up to
CORBAplus are not real-time ORB&ge., they were not ex- eight switched virtual connections per card.
plicitly designed to support applications with real-time QoS
requirements. Sun miniCOOL is a subset of the COOL ORB1.2 Client/Server Configuration and Benchmarking
that is specifically designed for embedded systems with small Methodology
memory footprints. TAO was designed at Washington Univer- . i . o
sity to support real-time applications with deterministic ane€"ver benchmarking configuration: As shown in Fig-

statistical quality of service requirements, as well as best &f¢ 13, our testbed server consists of two servants within the
fort requirements. Object Adapter. One servant runs in a higher priority thread

than the other. Each thread processes requests that are sent to
its servant by client threads on the other UltraSPARC-2.

4.1 Benchmarking Testbed Solaris real-time threads [35] are used to implement ser-
vant priorities. The high-priority servant thread hashighest

This section describes the experimental testbed we desigred-time priority available on Solaris and the low-priority ser-

to systematically measure sources of latency and throughgt has théowestreal-time priority.

overhead, priority inversion, and non-determinism in ORB The server benchmarking configuration is implemented in

endsystems. The architecture of our testbed is depicted in ki@ various ORBs as follows:

umrgnltja-::?j::crgk\;ve adrebﬁgﬁystc:;tlv(\)/\?vre components in the experg CORBAplus: which uses the worker thread pool archi-

tecture described in Section 3.2.1. In version 2.1.1. of COR-

3COOL was previously developed by Chorus, which was recently acquired*To ensure that all the real-time threads were competing for the same CPU,
by Sun. the second CPU was disabled using the Solgsimdm(1M) utility.

10

BAplus, by default, every multi-threaded application has dlient threads, which then execute in an arbitrary order deter-
least two threads: an initial (main) thread of execution, antined by the Solaris real-time thread dispatcher. Each client
an event dispatching thread. The latter receives the requéestskes 4,000 CORBA twoway requests at the prescribed rate.
and passes them on to the user threads, that processes them.

e MiNICOOL: which uses the leader/follower thread podt.2 Performance Results
acrggtlt_a (z:;ltlj(;\?vgzzglli?:z(tji(;2-i(\a/gtllggn?gir.rzén\clsr;%?rgll31?rl:em;|j)l-wo categories of tests were used in our benchmarking exper-
o ' iments:blackboxandwhitebox
plication developer can choose between thread-per-request or
thread-pool. The thread-pool concurrency architecture wBleckbox benchmarks: We computed the average twoway
used for our benchmarks since it is better suited than threegbponse time incurred by various clients. In addition, we
per-request for deterministic real-time applications. In tltemputed twoway operation jitter, which is the standard de-
thread-pool concurrency architecture, the developer initiaitiation from the average twoway response time. High levels
spawns a fixed number of threads. In addition, miniCOOL dgf latency and jitter are undesirable for deterministic real-time
namically spawns threads on behalf of server applicationsaggplications since they complicate the computation of worst-
handle requests, whenever the initial threads are insuffici@ase execution time and reduce CPU utilization. Section 4.2.1
as shown in Figure 9. explains the blackbox results.

e MT-Orbix: which uses the thread pool architecturd/hitebox benchmarks: To precisely pinpoint theourceof
based on the Chain of Responsibility pattern described in SRiority inversion and performance non-determinism, we em-
tion 3.2.3. The server creates two threads at startup time. Pieyed whitebox benchmarks. These benchmarks used pro-
high-priority thread is associated with the high-priority servafiing tools such as UNIXruss(1) andQuantify [36].
and the low-priority thread is associated with the low-prioritjhese tools trace and log the activities of the ORBs and mea-
servant. Incoming requests are assigned to these thread$Wi§ the time spent on various tasks, as explained in Sec-
ing the Orbix thread filter mechanism, as shown in Figure 1®n 4.2.2.

Each priority has its own queue of requests, to avoid prior-r,qether. the blackbox and whitebox benchmarks indicate
ity inversion within the queue, which can otherwise occur s and_to-end latencyjitter incurred by CORBA clients and
a high priority servant and a low-priority servant dequeue figs|, eypiain the reason for these results, respectively. In
quests from the same queue. general, the results reveal why ORBs like MT-Orbix, COR-

e TAO: which uses the thread-per-priority ConcurrencI§Aplus, and miniCOOL are not yet suited for applications
architecture described in Section 3.2.4. Version 1.0 of TAO ifyith deterministic real-time performance requirements. Like-
tegrates the thread-per-priority concurrency architecture witkse, the results illustrate empirically how and why the ORB
the non-multiplexed connection architecture, as shown in Ffgere architecture used by TAO is more suited for these types
ure 12. In contrast, the other three ORBs multiplex all cliefit applications.
requests over a single connection to the server.

4.2.1 Blackbox Results

Client benchmarking configuration: ~ Figure 13 shows how As the number of low-priority clients increases, the number
the benchmarking test used one high-priority cli€gtandn of |ow-priority requests sent to the server also increases. Ide-
low-priority clients,C; ... Cy. The high-priority client runs gjly, a real-time ORB endsystem should show no variance in
in a high-priority real-time OS thread and invokes operatiofife latency observed by the high-priority client, irrespective
at 20 Hz,i.e, it invokes 20 CORBA twoway calls per secof the number of low-priority clients. However, our measure-
ond. The low-priority clients run in lower-priority OS threddsments of end-to-end twoway ORB latency yielded the results
and invoke operations at 10 Hze., they invoke 10 CORBA i Figure 14. This figure also shows that as the number of
twoway calls per second. In each call, the client sends a va\R-priority clients increases, MT-Orbix and CORBApIus in-
of typeCORBA::Octet to the servant. The servant cubes thgyr significantly higher latenciese., 7 times as much as TAO.
number and returns it to the client. In addition, the MT-Orbix and miniCOOL low priority clients

When the test program creates the client threads, they blegkibit very high levels of jitterj.e., 100 times as much as
on a barrier lock so that no client begins work until the otheta0 in the worst case, as shown in Figure 15.

are created and ready to run. When all threads inform the maiﬂrhe blackbox results for each ORB are exp|ained below.

thread they are ready to begin, the main thread unblocks all)
CORBAplus results: The excessive use of user-level locks

5All low-priority clients have the same OS thread priority. in CORBAplus, as shown in Figure 24, caused it to incur the

11

highest overhead of the ORBs we tested. Moreover, COR-
BAplus incurs priority inversion at various points in the graph.

24 B . . .
After displaying a high amount of latency for a small num-
‘128222‘;!22?5":}7113 S oniommion oot Lowiom ber of low-priority clients, the latency drops suddenly at 10
SSponm ey clients, then rises gradually. Clearly, this behavior is unsuit-
able for deterministic real-time applications. Section 4.2.2 re-

20 . . .
veals how the poor performance and priority inversions stem

largely from CORBAplus’ concurrency architectidre.

MT-Orbix results: MT-Orbix incurs substantial priority in-
16 version as the number of low-priority clients increase. Af-
ter the number of clients exceeds 10, the high-priority client
performs increasingly worse than the low-priority clients.
W Clearly, this behavior is not conducive to deterministic real-
. time applications. Section 4.2.2 reveals how these inversions
stem largely from the MT-Orbix concurrency architecture on
the server. In addition, the MT-Orbix ORB produces high lev-
els of jitter, as shown in Figure 15. This behavior is caused

8 by priority inversions in its ORB Core, as explained in Sec-
X tion 4.2.2.

miniCOOL results: As the number of low-priority clients
/\ increase, the latency observed by the high-priority client in-

4 J. \/\/ AN creases, reaching10 msec, at 20 clients, at which point it

12

Latency per Two-way Request in Milliseconds

decreases suddenly to 2.5 msec at the 25 client round. This
erratic behavior becomes more evident as the number of low-
priority clients increase. Although the latency of the high-
priority client is smaller than the low-priority clients, the non-
linear behavior of the clients makes miniCOOL unsuitable for
deterministic real-time applications.

Figure 14: Comparative Latency for CORBAplus, MT-Orbix, The difference in latency between the high- and the low-
miniCOOL, and TAO priority client is also non-deterministic. For instance, it
evolves from 0.55 msec to 10 msec. Section 4.2.2 reveals how
this behavior stems largely from the connection architecture
used by the miniCOOL client and server.

The jitter incurred by miniCOOL is also fairly high, as
shown in Figure 15. This jitter is not as high as that observed
with the MT-Orbix ORB, however, since miniCOOL's concur-
rency architecture does not perform as much locking overhead
or use as many FIFO queues.

1 5 10 15 20 25 30 35 40 45 50
Number of Low Priority Clients

TAO results: Figure 14 reveals that as the number of low-
priority clients increases from 1 to 50, the latency observed
by TAO's high-priority client grows by-0.7 msecs. However,

the difference between the low and the high priority clients
starts at 0.05 msec and ends at 0.27 msec. In contrast, in mini-
ormnctonroy, COOL, it evolves from 0.55 msec to 10 msec. Also, TAO's
orexneioy — rate of increase is significantly lower than both MT-Orbix and
coongmen SUN MINICOOL. In particular, when there are 50 low-priority
o clients competing for the CPU and network bandwidth, the la-
Number of Low Priority Clients B tency observed with MT-Orbix is more than 7 times that of
Figure 15: Comparative Jitter for MT-Orbix, miniCOOL and—;

TAO

Jitter (millisec)
i

Note to reviewers: due to bugs with the latest version of CORBAplus,
jitter results for this ORB are not yet available. We plan to include them in
Figure 15 for the final version of this paper.

12

TAO and the miniCOOL latency is-3 times that of TAO in As shown in Figure 16 CORBAplus displays synchroniza-

the low priority clients. tion overhead using kernel-level locks in the client side.
TAO's high-priority client always performs better than its
lower priority clients. This indicates that connection and con- Getmsg

7%

currency architectures in TAO's ORB Core are well suited for
maintaining real-time request priorities end-to-end. The key
difference between TAO and the other ORBs are that TAO'’s
GIOP protocol processing is performed on a dedicated con- Mutexes
nection by a dedicated real-time thread with a suitable end-to-
end real-time priority. Thus, TAO shares the minimal amount
of ORB endsystem resources, which substantially reduces op-
portunities for priority inversion and overhead. _
The TAO ORB produces very low jitter (less than 11 msecs) S reads &%
for the low-priority requests and negligible jitter (less than 1 0%
msec) for the high-priority requests. The stability of TAO'’s
latency is clearly desirable for applications that require PreFigure 16: Client-side Whitebox Results for CORBAplus
dictable end-to-end performance. In addition, these results il-
lustrate that improper choice of ORB Core concurrency and
connection software architectures can play a larger role in ex- Reads ,
acerbating priority inversion and non-determinism than the 1/O o Ve
subsystem.

ORB
Processing
35%

Getmsg

4.2.2 Whitebox Results 12%

For the whitebox tests, we used a configuration of ten con- ORB

current clients similar to the one described in Section 4.1. Pm;g;fmg

Nine clients were low-priority and one was high-priority. Each

client sent 4,000 twoway requests to the server, which had a

low-priority §ervant and high-priority servant thread. Figure 17: Server-side Whitebox Results for CORBAplus
Our previous performance studies suggested that locks

constitute a significant source of overhead, non-determinis

and potential priority inversion for real-time ORBs. Usin

Quantify andtruss , we measured the time consume

by the ORBs performing tasks like synchronization, 1/

and protocol processing. In addition, we computed a m

ric that records the number of calls made to user-level Iocu

(i.e, mutex _lock and mutex _unlock) and kernel-level

locks (.e, _lwp _mutex _lock , _lwp mutex _unlock ,

Jlwp _sema_post and _lwp _semawait). This metric

computes the average number of lock operations per request. CORBAplus connection architecture: The COR-

In general, kernel-level locks are considerably more expendBAplus ORB connection architecture uses a simple model of

since they incur mode switching overhead. the active connection architecture described in Section 3.1.1
These whitebox results are presented below. and depicted in Figure 8. This design multiplexes all requests

.] ~ through one TCP connection.
CORBAplus whitebox results: Our whitebox analysis

reveals that synchronization overhead from mutex and® CORBAplus concurrency architecture: The COR-

semaphore operations at the user-level consume a large B&plus ORB concurrency architecture uses the thread pool
centage of the total CORBAplus ORB processing time, aghitecture described in Section 3.2.1 and depicted in Fig-
shown in Figure 24. Synchronization overhead arises frofif 8. This architecture uses a single I/0 thread to accept and

mutex and Semaphore IOCklng operations that Impler'm_"”l7Note to reviewers: due to bugs with the latest version of CORBAplus,

the connection and concurrency architecture used by CQRthead from locks in the server side for CORBAplus are not yet available.
BApIus. We plan to include them in Figure 17 for the final version of this paper.

MEor each CORBA request/response, CORBAplus’s client
RB performs 199 lock operations, whereas the server per-
rms 216 user-level lock operations. This locking overhead
tems largely from excessive dynamic memory allocation, as
3scribed in Section 4.3. Each dynamic allocation causes two
er-level lock operationge., one acquire and one release.
The CORBAplus connection and concurrency architectures
are outlined briefly below.

13

read requests from socket endpoints. This thread enqueues the Mutexes Processing

8% 12%

request on a queue that is serviced by a pool of worker threads.

Writes
16%

The CORBAplus connection architecture and the server
concurrency architecture work well to reduce the number of Semaphores
simultaneous open connections and simplify the implementa- =
tion. However, concurrent requests to the shared connection
incur high-levels of synchronization and context switching, as
well as cause priority inversion. For instance, on the client-
side, threads of different priorities can share the same transport Privg
connection. Therefore, a high-priority thread may be blocked
until a lower priority thread finishes sending its request. In ad- _ .) o
dition, the priority of the thread that blocks on the semaphorefFigure 19: Server-side Whitebox Results for miniCOOL
to receive a reply from a twoway connection may not reflect
the priority of therequesthat arrives from the server, thereb
causing additional priority inversion.

Yhreads on Solaris, which require kernel intervention for all

synchronization operations.

miniCOOL whitebox results: Our whitebox analysis The miniCOOL connection and concurrency architectures

reveals that synchronization overhead from mutex aafk outlined briefly below.

semaphore operations consume a large percentage of the total i i o

miniCOOL ORB processing time. Synchronization overhead® MNICOOL connection architecture: The mini-

arises from mutex and semaphore locking operations that ffPOL ORB connection architecture uses a variant of the

plement the connection and concurrency architecture usedqﬁggr/followers archneqture described in Section 3.1.1. This

miniCOOL. architecture allows the first thread to perform the read on the
Locking overhead accounted fer50% on the client-side shared socket,e., the leader blocks inead . All following

(shown in Figure 18) and more than 40% on the server-sif&eads block on semaphores waiting for one of two condi-
(shown in Figure 19). tions: (1) the leader thread will read their reply message and

signal their semaphore or (2) the leader thread will read its own
reply and signal another thread to enter and blockeed |,
thereby becoming the new leader.
R Thus, miniCOOL multiplexes multiple object references in
16% one client process to a server process through a single con-
nection. This leader/follower connection architecture min-
wites imizes the number of simultaneous connections. However,
miniCOOL’s connection architecture also increases overhead
and potential for priority inversion. These problems arise
since connection multiplexing requires multiple threads to
read/write to a single socket connection shared by the threads.

Mutexes
24%

Semaphores
26%

23% e miniCOOL concurrency architecture: The Sun

miniCOOL ORB concurrency architecture uses the
leader/followers thread pool architecture described in
Section 3.2.2. This architecture initially uses a single thread

h / . s cli to wait for connections. Whenever a request arrives and
For each CORBA requestiresponse, miniCOOLs clieplyijation of the request is complete, the leader thread (1)

ORB performs 94 lock operations at _the user-level, W,here:ﬁﬁnals a follower thread in the pool to wait for incoming
the server performs 231 lock operations, as shown in Fn‘@huests and (2) services the request

ure 24. As with CORBAplus, this locking overhead stems

from excessive dynamic memory allocation. Each dynamicThe miniCOOL connection architecture and the server con-

allocation causes two user-level lock operatidres, one ac- currency architecture help reduce the number of simultaneous

quire and one release. open connections and the amount of context switching when
In addition, the number of calls per request to kernel-levelplies arrive in FIFO order. However, this design yields high

locking mechanisms at the server, (shown in Figure 25) deeels of priority inversion. For instance, threads of differ-

unusually high, due to the fact that miniCOOL uses “bounéht priorities can share the same transport connection on the

Figure 18: Client-side Whitebox Results for miniCOOL

14

client-side. Therefore, a high-priority thread may block untilgervant threads were created, each with the appropriate prior-
lower priority thread finishes sending its request. In additiaty, i.e., high-priority servants had a high-priority thread. A
the priority of the thread that blocks on the semaphore to &leread filter was then installed to look at each request, deter-
cess a connection may not reflect the priority of thgponse mine the priority of the request (by examining the target ob-
that arrives from the server, which yields additional priorigct), and pass the request to the thread with the correct pri-

inversion. ority. The thread filter mechanism is implemented by a high-
priority real-time thread to minimize the dispatch time.
MT-Orbix whitebox results: Figure 20 shows the whitebox The thread pool instantiation of the MT-Orbix mechanism

results for the client-side and Figure 21 shows the whiteb%%scr!bed In Section .3'2'3 IS erX|bIe_: a_nd_easy fo use. How-
: . ever, it suffers from high levels of priority inversion and syn-
results for the server-side of MT-Orbix.

chronization overhead. The MT-Orbix ORB provides oohe

ORB
Processing
14%

Writes

4%

Mutexes
36%

Semaphores
33%

Figure 20: Client-side Whitebox Results for MT-Orbix

ORB
Processing
13%

Writes
2%

Reads
6%

Mutexes
40%

Semaphores
39%

Figure 21: Server-side Whitebox Results for MT-Orbix

e MT-Orbix connection architecture: Like miniCOOL,

thread filter chain. Therefore, all incoming requests must be
sequentially processed by the filter before they are passed to
the servant thread with an appropriate real-time priority. As
a result, if a high-priority request arrives after a low-priority
request, it must wait until the low-priority request has been
dispatched before it can be processed.

In addition, a filter can only be called after (1) IIOP process-
ing has completed and (2) the Object Adapter has determined
the target object for this request. This ORB processing is se-
rialized since the MT-Orbix protocol engine is unaware of the
request priority. Thus, a higher priority request that arrived
after a low-priority request must wait until the lower priority
request has been processed by the ORB Core.

The concurrency architecture is chiefly responsible for the
substantial priority inversion exhibited by MT-Orbix, as shown
in Figure 14. This figure shows how the latency observed by
the high-priority client increases rapidly, from2 msecs to
~14 msecs as the number of low-priority clients increase from
1to 50.

In addition, the MT-Orbix filter mechanism causes an in-
crease in synchronization overhead. Because there is just one
filter chain, concurrent requests must acquire and release locks
to be processed by the filter. The MT-Orbix client-side per-
forms 175 user-level lock operations per request, while the
server-side performs 599 user-level lock operations per re-
guest, as shown in Figure 24. Moreover, MT-Orbix also dis-
plays a high number of kernel-level locks per request as shown
in Figure 25.

TAO whitebox results: As shown in Figures 22 and 23,
TAO exhibits negligible synchronization overhead. TAO per-
forms 41 user-level lock operations per request on the client-
side, and 100 user-level lock operations per request on the
server-side. This low amount of synchronization results from
the design of TAO’s ORB Core, which allocates a separate

MT-Orbix uses the leader/follower connection arChiteCtUr&Bnnection for each priority, as shownin Figure 12. Therefore’
described in Section 3.2.2. Although this model minimizq%O’S ORB Core minimizes additional user-level |ocking op-

context switching overhead, it causes intensive priority inv@irations per request and uses no kernel-level locks in its ORB
sions, as explained in Section 3.2.2. Core.

e MT-Orbix concurrency architecture: In the MT- e TAO connection architecture: TAO uses a non-
Orbix implementation of our benchmarking testbed, multiptaultiplexed connection architecture, which pre-establishes

15

Locking overhead: Our whitebox tests measured user-level

Reads locking overhead (shown in Figure 24) and kernel-level lock-
36%
ORB
Processing
49%
700
Writes 600 599
[£
Figure 22: Client-side Whitebox Results for TAO =1
& 500
o Oclient
Reads % W server
24% c
o 400
ORB g
Processing o
42% o)
% 300 A
o
-
2 231 -
(] 199
—1 200
_ 175
Writes g
34%)
100 100 9
Figure 23: Server-side Whitebox Results for TAO "
0
. . . . TAO miniCOOL CORBAplus MT ORBIX
connections to servants, as described in Section 3.1.2. One ORBs Tested

connection is pre-established per priority level, thereby avoid-

ing the non-deterministic delay involved in dynamic connec-

tion setup. In addition, different priority levels have theirown Figure 24: User-level Locking Overhead in ORBs

connection, thus avoiding priority inversion due to the FIFO

ordering of packet transmission by the network and I/O subg overhead (shown in Figure 25) in the CORBAplus, MT-

system. Orbix, miniCOOL and TAO ORBs. User-level locks are typ-
ically used to protect shared resources within a process. A

. . common example is dynamic memory allocation since mem-
e TAO concurrency architecture: TAO supports a vari- P y y

ety of concurrency architectures, as described in [19]. Tﬂr s allocated from a global per process h.eap. :
o ; ernel-level locks are more expensive since they typically
thread-per-priorityarchitecture was used for the benchmarks "™ .
. S . : require mode switches between user-level and the kernel. The
described in this paper. In this concurrency architecture, a sep- ;)) i
. o . semaphore and mutex operations depicted in the whitebox re-
arate thread is created for each priority level, each rate . .

. S ults for the ORBs arise from kernel-level lock operations.
group. Thus, the low-priority client issues CORBA reques STAO limits user-level locking by using pre-allocated
at a lower rate (10 Hz) than the high-priority client (20 Hz).)) i .

() gn-p y () buffers. A single buffer is allocated per request. This buffer is

On the server-side, client requests sent to the high-priodfyh,jiiged to accommodate the various fields of the request.
servant are processed by a high-priority real-time thread. L'If@e'rnel-level locking is limited due to the fact that ORB re-

wise, client requests sent to the low-priority servant are hlli,rces are not shared between the threads.
dled by the low-priority real-time thread. Locking overhead

is minimized since these two servant threads share minimal _ _
ORB resources. In addition, the two threads service sepadiid Evaluation and Recommendations

client connections, thereby eliminating the priority inversion

that otherwise arises from connection multiplexing, as exhi-[)he results of our benchmarks illustrate the non-deterministic
ited by the other ORBs we tested ’ performance incurred by applications running atop conven-

tional ORBs. In addition, the results show that priority inver-

16

We recommend that real-time ORBs should allow applica-
tion developers to determine whether requests with different
priorities are multiplexed over shared connections. Currently,
neither miniCOOL, CORBAplus, nor MT-Orbix supports this
14 level of control, though TAO provides this flexibility.

16

14

13

3. Real-time ORBs should minimize dynamic memory al-
12 location: Thread-safe implementations of dynamic memory
Selient allocators require user-level locking. For instance, the C++
Wserver new operator allocates memory from a global pool shared by
10 all threads in a process. Likewise, the Cdelete opera-
tion, that releases allocated memory, also requires user-level
locking to update the global shared pool. This lock sharing
contributes to the overhead shown in Figure 24.

We recommend that real-time ORBs avoid excessive shar-
6 ing of dynamic memory locks via the use of OS features such
as thread-specific storage [37], which allocates memory from
. heaps that are unique in each thread.

Kernel Level Lock Operations per Request

4. Real-time ORB concurrency architectures should be
flexible, yet efficient and predictable: Many ORBSs, such
as miniCOOL and CORBAPIus, create threads on behalf of
server applications. This design prevents application develop-
0 o ° 0 ° 0 ers from customizing ORB performance by selecting an ap-
TAO miniCOOL CORBAplus MT ORBIX propriate concurrency architecture. Conversely, other ORB
ORBs Tested concurrency architectures are flexible, but inefficient and non-
deterministic, as shown in the Section 4.2.2 explanation of the
Figure 25: Kernel-level Locking Overhead in ORBs ~ MT-Orbix performance results. Thus, a balance is needed be-
tween flexibility and efficiency.

We recommend that real-time ORBs provide APIs that al-
sion and non-determinism are significant problems in convés application developers to select concurrency architectures
tional ORBs. As a result, these ORBs are currently unsuitati@t are flexible, efficienand predictable. For instance, TAO
for applications with deterministic real-time requirementsffers a range of concurrency architectures (such as thread-
Based on our results, and our past experience [21, 22, 23, @} priority, thread pool, and thread-per-connection) that are
measuring the performance of CORBA ORB endsystergarefully designed using thread-specific storage to minimize
we suggest the following recommendations to decrease n@necessary sharing of ORB resources.

determinism and limit priority inversionin real-time ORB end- . _
systems. 5. The real-time ORB endsystem architecture should be

) . .) guided by empirical performance benchmarks: Our prior
1. Real-time ORBs should avoid dynamic connection es-egearch on pinpointing performance bottienecks and opti-

tablishment; ORBs that establish connections dynr:1mical|¥|izing middleware like Web servers [38, 39] and CORBA
suffer from high jitter. Thus, performance seen by indivichBS [22, 21, 30, 23] demonstrates the efficacy of this

ual clients can vary significantly from the average. Neithﬁ{easurement-driven research methodology.
CORBAplus, miniCOOL, nor MT-Orbix provide APIS for —\ye recommend that the OMG adopt standard real-time

pre-establishing connections, though TAO does provide th?,%RBA benchmarking techniques and metrics. These bench-
APls as extensions to CORBA. marks will simplify the communication and comparison of

We recommend that APIs to control the pre-establishmenf . ; :
. . T)'% ormance results and real-time ORB behavior patterns.
of connections should be defined as an OMG standard. P

2. Real-time ORBs should avoid multiplexing requests

of different priorities over a shared connection: Sharing 5 Related Work

connections requires synchronization. Thus, high-priority re-

guests can be blocked until low-priority threads release #we increasing number of research efforts are focusing on in-
shared connection lock. tegrating QoS into CORBA. The work presented in this paper

17

is based on the TAO project [10]. This section compares TA®Werly complex for common application use-cases. Therefore,
with related work. the TAO programming model focuses on R& Operation
Krupp,et al, at MITRE Corporation were among the first tandRT_Info QoS specifiers, which can be expressed in stan-
elucidate the needs of real-time CORBA systems [40]. Thesrd OMG IDL.
identified key requirements and outlined mechanisms for supThe Epiq project [47] defines an open real-time CORBA
porting end-to-end timing constraints [41]. A system consigeheme that provides QoS guarantees and runtime scheduling
ing of a commercial off-the-shelf RTOS, a CORBA-compliarilexibility. Epig extends TAQ’s off-line scheduling model to
ORB, and a real-time object-oriented database managenpeotide on-line scheduling. In addition, Epiq allows clients to
system is under development [42]. Similar to the TAO ape added and removed dynamically via an admission test at
proach, the initial static scheduling approach is rate momantime. The Epiq project is work-in-progress and does not
tonic, but a strategy for dynamic deadline monotonic schedyt have empirical results.
ing support has been designed [41]. Other dynamic schedulinfhe ARMADA project [48] defines a set of communication
approaches may be considered in the future. and middleware services that supports fault-tolerant and end-
Wolfe, et al, are developing a real-time CORBA system ab-end guarantees for real-time distributed applications. AR-
the US Navy Research and Development Laboratories (NRAMADA provides real-time communication services based on
and the University of Rhode Island (URI) [43]. The syshe X-kernel and the Open Group’s MK microkernel. This
tem supports expression and enforcement of dynamic eimfrastructure serves as a foundation for constructing higher-
to-end timing constraints through timed distributed operati@@vel real-time middleware services. TAO differs from AR-
invocations TDMIs) [44]. A TDMI corresponds to TAO’s MADA in that most of the real-time features in TAO are built
RT_Operation [19] and anRT_Environment structure using TAO’s ORB Core. In addition, TAO implements the
contains QoS parameters similar to those in TARBInfo OMG’s CORBA standard, while also providing the hooks that
[10]. are necessary to integrate with an underlying real-time 1/0O
One difference between TAO and the URI approachsisbsystem. Thus, the real-time services provided by AR-
is that TDMIs [41] express required timing constraintdylADA's communication system can be utilized by TAO's
e.g, deadlines relative to the current time, whereas TAGBRB Core to support a vertically integrated real-time system.
RT_Operation s publish their resource.g, CPU time, re-
guirements. The difference in approaches may reflect the dif-
ferent time scales, seconds versus milliseconds, respectivlly, Concluding Remarks
and scheduling requirements, dynamic versus static, of the ini-
tial application targets. However, the approaches should@eanventional CORBA ORBs exhibit substantial priority in-
equivalent with respect to system schedulability and analysigrsion and non-determinism. Consequently, they are not yet
The QuO project at BBN [45] has defined a model for corsuited for distributed, real-time applications with determinis-
municating changes in QoS characteristics between applit@-QoS requirements. Meeting these demands requires that
tions, middleware, and the underlying endsystems and @RB Core software architectures be designed to reduce pri-
work. The QuO model uses the concept of a connection bety inversion. The TAO ORB Core described in this paper
tween a client and an object to define QoS characteristics, amdimizes priority inversion by using a priority-based concur-
treats these characteristics as first-class objects. These objeotsy architecture and non-multiplexed connection architec-
can then be aggregated to enable the characteristics to beute-that share a minimal amount of resources among ORB
fined at various levels of granularity,g, for a single method Core threads. The architectural principles used in TAO can be
invocation, for all method invocations on a group of objectpplied to other ORBs and other real-time software systems.
and similar combinations. The model also uses several Q0FAO has been used to develop a real-time ORB endsys-
definition languages (QDLs) that describe the QoS chargem for avionics mission computing applications. These
teristics of various objects, such as expected usage patteapplications manage sensors and operator displays, navi-
structural details of objects, and resource availability. gate the aircraft's course, and control weapon release. To
The QuO architecture differs from our work on real-timmeet the scheduling demands of mission computing appli-
QoS provision since QuO does not provide hard real-timations, TAO supports real-time scheduling and dispatch-
guarantees of ORB endsystem CPU scheduling. Furthermarg, of periodic processing operations, as well as effi-
the QuO programming model involves the use of several QBlent event filtering and correlation mechanisms [13]. The
specifications, in addition to OMG IDL, based on the sepai@++ source code for TAO and ACE is freely available at
tion of concerns advocated by Aspect-Oriented Programmimgw.cs.wustl.edu/ ~schmidt/TAO.html . This re-
(AOP) [46]. We believe that while the AOP paradigm is quitease also contains the real-time ORB benchmarking test suite
powerful, the proliferation of definition languages may b#escribed in Section 4.1.

18

Acknowledgments [19]

We gratefully acknowledge Expersoft, IONA, and Sun for
providing us with their ORB software for the benchmarki
testbed. In addition, we would like to thank Frank Buschmann
for extensive comments on this paper.

[21]

References

[22]
[1] R. Gopalakrishnan and G. Parulkar, “Bringing Real-time Scheduling
Theory and Practice Closer for Multimedia Computing,”SIGMET-
RICS ConferencdPhiladelphia, PA), ACM, May 1996. (23]

[2] S. Landis and S. Maffeis, “Building Reliable Distributed Systems with
CORBA,” Theory and Practice of Object Systempr. 1997.

[3] R.Johnson, “Frameworks = Patterns + Componer@sihmunications
of the ACM vol. 40, Oct. 1997. [24]

[4] Z. Deng and J. W.-S. Liu, “Scheduling Real-Time Applications in an
Open Environment,” ifProceedings of the 18th IEEE Real-Time Systems
SymposiumlEEE Computer Society Press, Dec. 1997.

[5] Object Management Grou;he Common Object Request Broker: ArL25]

chitecture and Specificatio2.0 ed., July 1995.

[6] S. Vinoski, “CORBA: Integrating Diverse Applications Within Dis-
tributed Heterogeneous Environmenti2EE Communications Maga-
zine vol. 14, February 1997.

[26]

[7] Object Management Grouplinimum CORBA - Request for Proposal [27]
OMG Document orbos/97-06-14 ed., June 1997.

[8] Object Management GroufRealtime CORBA 1.0 Request for Propos-
als, OMG Document orbos/97-09-31 ed., September 1997. [28]

[9] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A High-
Performance Endsystem Architecture for Real-time CORBEEE [29]
Communications Magazineol. 14, February 1997.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request BrokeGgmputer Communica- [30]
tions vol. 21, pp. 294-324, Apr. 1998.

[11] z.D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC Approach
to High Performance Network Interface Design: Protected DMA and
Other Techniques,” irProceedings of INFOCOM ’97(Kobe, Japan), [31]
IEEE, April 1997.

[12] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchronization
Protocols for Multiprocessors,” iRroceedings of the Real-Time Systems
Symposium(Huntsville, Alabama), December 1988. [32]

[13] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,Pioceedings of
OOPSLA '97 (Atlanta, GA), ACM, October 1997.

[14] D.C. Schmidt, “A Family of Design Patterns for Application-level Gate[-3 3l
ways,” The Theory and Practice of Object Systems (Special Issue on
Patterns and Pattern Languagespl. 2, no. 1, 1996. [34]

[15] D. C. Schmidt, “ACE: an Object-Oriented Framework for Develop—3
ing Distributed Applications,” irProceedings of thét" USENIX C++
Technical ConferenggCambridge, Massachusetts), USENIX Associa-
tion, April 1994. (35]

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns: El-
ements of Reusable Object-Oriented Softw&eading, MA: Addison-
Wesley, 1995.

[36]
[17] Object Management GroupSpecification of the Portable Object[37]
Adapter (POA)OMG Document orbos/97-05-15 ed., June 1997.

[18] A. Gokhale and D. C. Schmidt, “Design Principles and Optimizations
for High-performance ORBs,” in2t" OOPSLA Conference, poster
session, (Atlanta, Georgia), ACM, October 1997.

19

D. C. Schmidt, R. Bector, D. Levine, S. Mungee, and G. Parulkar, “An
ORB Endsystem Architecture for Statically Scheduled Real-time Appli-
cations,” inProceedings of the Workshop on Middleware for Real-Time
Systems and ServicgSan Francisco, CA), IEEE,d&aember 1997.

0] D.C. Schmidt and C. Cleeland, “Applying Patterns to Develop Extensi-

ble and Maintainable ORB MiddlewareCommunications of the ACM,
to appear 1998.

A. Gokhale and D. C. Schmidt, “Evaluating the Performance of Demul-
tiplexing Strategies for Real-time CORBA,” Proceedings of GLOBE-
COM '97, (Phoenix, AZ), IEEE, November 1997.

A. Gokhale and D. C. Schmidt, “Measuring the Performance of Com-
munication Middleware on High-Speed Networks,” RPmoceedings of
SIGCOMM 96 (Stanford, CA), pp. 306—317, ACM, August 1996.

A. Gokhale and D. C. Schmidt, “The Performance of the CORBA Dy-
namic Invocation Interface and Dynamic Skeleton Interface over High-
Speed ATM Networks,” irProceedings of GLOBECOM '9¢London,
England), pp. 50-56, IEEE, November 1996.

Z.D. Dittia, J. Jerome R. Cox, and G. M. Parulkar, “Design of the APIC:
A High Performance ATM Host-Network Interface Chip,” IBEE IN-
FOCOM '95 (Boston, USA), pp. 179-187, IEEE Computer Society
Press, April 1995.

N. C. Hutchinson and L. L. Peterson, “Thekernel: An Architecture
for Implementing Network Protocols/EEE Transactions on Software
Engineering vol. 17, pp. 64—76, January 1991.

Object Management Grouggontrol and Management of A/V Streams
Request For Proposagl©MG Document telecom/96-08-01 ed., August
1996.

A. Gokhale and D. C. Schmidt, “Principles for Optimizing CORBA
Internet Inter-ORB Protocol Performance,” itawaiian International
Conference on System Scienckmuary 1998.

W. R. StevensTCP/IP lllustrated, Volume .2Reading, Massachusetts:
Addison Wesley, 1993.

D. L. Tennenhouse, “Layered Multiplexing Considered Harmful,” in
Proceedings of the st International Workshop on High-Speed Net-
works May 1989.

A. Gokhale and D. C. Schmidt, “Evaluating Latency and Scalability of
CORBA Over High-Speed ATM Networks,” iRroceedings of the In-
ternational Conference on Distributed Computing SystéBualtimore,
Maryland), IEEE, May 1997.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concur-
rent Event Demultiplexing and Event Handler Dispatching,Pattern
Languages of Program Desidd. O. Coplien and D. C. Schmidt, eds.),
pp. 529-545, Reading, MA: Addison-Wesley, 1995.

D. C. Schmidt, “Acceptor and Connector: Design Patterns for Initializ-
ing Communication Services,” ifattern Languages of Program Design
(R. Martin, F. Buschmann, and D. Riehle, eds.), Reading, MA: Addison-
Wesley, 1997.

C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time EnvironmentJACM, vol. 20, pp. 46—61, January
1973.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. HarboAr,
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Mono-
tonic Analysis for Real-Time SystenMorwell, Massachusetts: Kluwer
Academic Publishers, 1993.

S. Khanna and et. al., “Realtime Scheduling in SunOS 5.®rateed-
ings of the USENIX Winter Conferengmp. 375-390, USENIX Associ-
ation, 1992.

P. S. Inc. Quantify User's GuidePureAtria Software Inc., 1996.

D. C. Schmidt, T. Harrison, and N. Pryce, “Thread-Specific Storage
— An Object Behavioral Pattern for Accessing per-Thread State Effi-
ciently,” in The 4t Pattern Languages of Programming Conference
(Washington University technical report #WUCS-97;3%eptember
1997.

[38] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact of Evest OS platform: CORBA runs on many OS platforms, in-

Dispatching and Concurrency Models on Web Server Performance O(Yﬁﬁding Win32. UNIX. MVS. and real-time embedded sys-
High-speed Networks,” iProceedings of the”d Global Internet Con- - ' ' !
ference IEEE, November 1997 tems like VxWorks, Chorus, and LynxOS.

[39] J. Hu, S. Mungee, and D. C. Schmidt, “Principles for Developing andCommunication protocols and interconnects: The com-
Measuring High-performance Web Servers over ATMPioceeedings mynjication protocols and interconnects that CORBA can run

ofINFOCOM 98 Marchipril 1988, _oninclude TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
[40] B. Thuraisingham, P. Krupp, A. Schafer, and V. Wolfe, “On Real-Time

Extensions to the Common Object Request Broker Architecture,” ﬁ{net’ and embedded system baCkplanes'

Proceedings of the Object Oriented Programming, Systems, Language . ; it ;
and Applications (OOPSLA) Workshop on Experiences with COR ,Aﬂardware' CORBA shields applications from differences

ACM, Oct. 1994. in hardware such as RISC vs. CISC instruction sets.

[41] G.Cooper, L. C. DiPippo, L. Esibov, R. Ginis, R. Johnston, P. Kortman,
P. Krupp, J. Mauer, M. Squadrito, B. Thurasignham, S. Wohlever, and The components in the CORBA reference model shown in

V. F. Wolfe, “Real-Time CORBA Development at MITRE, NRaD, Tri-r=; ; ; _
Pacific and URI,” inProceedings of the Workshop on Middleware fo'r:Igure 26 provide the transparency described above. The com

Real-Time Systems and Servid&an Francisco, CA), IEEE,é&zember
1997.

[42] “Statement of Work for the Extend Sentry Program, CPFF Project
ECSP Replacement Phase II,” Feb. 1997. Submitted to OMG in re
sponse to RFI ORBOS/96-09-02.

[43] V.F.Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, I. Zykh,
and R. Johnston, “Real-Time CORBA,” iRroceedings of the Third
IEEE Real-Time Technology and Applications Symposiimontréal,
Canada), June 1997.

[44] V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupp, “Real-
time Method Invocations in Distributed Environments,” Tech. Rep. 95-

244, University of Rhode Island, Department of Computer Science al
Statistics, 1995. GIOP/1IOP
[45] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support fol

in args
operation()

out args + return value

IDL y
SKELETON
ORB OBJECT

CLIENT SERVANT

SELBS INTERFACE ADAPTER

Quality of Service for CORBA ObjectsTheory and Practice of Object O STANDARD INTERFACE O STANDARD LANGUAGE
Systemsvol. 3, no. 1, 1997. MAPPING

[46] G. Kiczales, “Aspect-Oriented Programming,” Rroceedings of the () ORB-SPECIFIC INTERFACE () sTanparp PrOTOCOL
11th European Conference on Object-Oriented Programmihgne
1997.

[47] W. Feng, U. Syyid, and J.-S. Liu, “Providing for an Open, Real-Time Figure 26: Componentsin the CORBA Reference Model
CORBA," in Proceedings of the Workshop on Middleware for Real-Time
Systems and ServicgSan Francisco, CA), IEEE,édember 1997. ponents in CORBA include the following:

[48] T. Abdelzaher, S. Dawson, W.-C.Feng, F.Jahanian, S. Johnsgn, . . .
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang, and H. Zou, “AR-D€rvant: This component implements the operations de-

MADA Middleware Suite,” inProceedings of the Workshop on Middlefined by an OMG Interface Definition Language (IDL) in-
ware for Real-Time Systems and Servi¢&an Francisco, CA), IEEE, (arface. In languages like C++ and Java that support object-

December 1997. oriented (OO) programming, servants are implemented usin
[49] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A prog 9 P 9

Flexible, Optimizing IDL Compiler,” inProceedings of ACM SIGPLAN one or more objects. A servant is identified bydtgect refer-
'97 Conference on Programming Language Design and Implementatiemce which uniquely identifies the servant in a server process.
(PLDI), (Las Vegas, NV), ACM, June 1997. . . . L

Client: This program entity performs application tasks by

] obtaining object references to servants and invoking opera-
A Overview of the CORBA ORB Ref- tionsonthe servants. Servants can be remote or co-located rel-
ative to the client. Ideally, accessing a remote servant should

erence Model be as simple as calling an operation on a local objeet,

CORBA Object Request Brokers (ORBs) allow clients to iﬁbject->operatlon(args) - Figure 26 shows the com-

voke operations on distributed objects without concern for: pgnents that ORBs use to transml'F requests tyansparently from
client to servant for remote operation invocations.
e Object location: CORBA objects can be located locally

with the client or remotely on a server, without affecting thetl E%g%reéor\évgergg C;'ﬁ;tjllgv%ljege?icgﬁsrattrllznrgnl?essirt\(l) a;;[é
implementation or use; b g d

_ servant and returning a response, if any, to the client. For ser-
e Programming language: The languages supported byants executing remotely, a CORBA-compliant [5] ORB Core

CORBA include C, C++, Java, Adagd5, and Smalltalk, amoRgmmunicates via the General Inter-ORB Protocol (GIOP)
others.

20

and the Internet Inter-ORB Protocol (IIOP), which runs atop
the TCP transport protocol. An ORB Core is typically im-
plemented as a run-time library linked into client and server
applications.

ORB Interface: An ORB is a logical entity that may be im-
plemented in various way®.g, one or more processes or a
set of libraries. To decouple applications from implementation
details, the CORBA specification defines an abstract interface
for an ORB. This ORB interface provides standard operations
that convert object references to strings and back. The ORB
interface also creates argument lists for requests made through
the dynamic invocation interface (DIl) described below.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as the “glue” between the client and servants, respec-
tively, and the ORB. Stubs provide a strongly-typed, static
invocation interface (Sll) that marshals application data into
a common packet-level representation. Conversely, skeletons
demarshal the packet-level representation back into typed data
that is meaningful to an application. An IDL compiler au-
tomatically transforms OMG IDL definitions into an applica-
tion programming language like C++ or Java. IDL compil-
ers eliminate common sources of network programming errors
and provide opportunities for automated compiler optimiza-
tions [49].

Dynamic Invocation Interface (DII): The DIl allows a
client to access the underlying request transport mechanisms
provided by the ORB Core. The DIl is useful when an ap-
plication has no compile-time knowledge of the interface it
is accessing. The DIl also allows clients to maleferred
synchronousgalls, which decouple the request and response
portions of twoway operations to avoid blocking the client un-
til the servant responds. In contrast, Sll stubs only support
twoway (.e., request/response) and onewig.(request only)
operations.

Dynamic Skeleton Interface (DSI): The DSl is the server's
analogue to the client’s DIl. The DSI allows an ORB to deliver
requests to a servant that has no compile-time knowledge of
the IDL interface it is implementing. Clients making requests
need not know whether the server ORB uses static skeletons
or dynamic skeletons.

Object Adapter: An Object Adapter associates a servant
with an ORB, demultiplexes incoming requests to the servant,
and dispatches the appropriate operation upcall on that servant.
While current CORBA implementations are typically limited

to a single Object Adapter per ORB, recent CORBA porta-
bility enhancements [17] define the Portable Object Adapter
(POA), which supports multiple nested POAs per ORB.

21

