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Abstract communication protocol, and CORBA-compliant middleware

o ] ) components and features shown in Figure 1.
There is increasing demand to extend Object Request Bro-

ker (ORB) middleware to support applications with stringent in args
quality of service (QoS) requirements. However, convention o5 operation()
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ing end-to-end QoS for applications with deterministic real
time requirements. This paper provides two contributions to
the study of real-time ORB middleware. First, it describes y Y
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ORB endsystems that support real-time applications running STUBS SCHEDUSER ADAPTER

on “off-the-shelf” hardware and software. Second, it illus-
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trates how integrating a real-time ORB with a real-time 1/0O
subsystem can reduce latency bounds on end-to-end comm
cation between high-priority clients without unduly penalizing

low-priority and best-effort clients. REAL-TIME 1/0
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1 Introduction Figure 1: Components in the TAO Real-time ORB Endsystem

Object Request Broker (ORB) middleware like CORBA TAO’s real-time I/O (RIO) subsystem runs in the OS ker-
[1], DCOM [2], and Java RMI [3] is well-suited for re-nel. Ituses a pool of real-time threads to send/receive requests

quest/response applications with best-effort quality of serv%from clients across high-speed networks or I/O backplanes.

(QoS) requirements. However, ORB middleware has hi 2O's ORB Core, Object Adap.ter, and servants run in user-
torically not been well-suited for performance-sensitive, di pace. TAO’s ORB Core contains a pool of real-time threads

tributed real-time applications. In general, conventional OR t are co-scheduled with the RIO subsystem’s thread pool.

suffer from (1) lack of QoS specification interfaces, (2) lack Jlogether, these threads process client requests in accordance

QoS enforcement, (3) lack of real-time programming featur%th their QoS requirements. TAO’s Object Adapter uses per-

and (4) lack of performance optimizations [4]. ¢t hashing [6] and active demultiplexing [7] to demultiplex
To address these shortcomings, we have develsbed\CE these requests to application-level servant operations in con-
ORB(TAO) [5]. TAO is a high-performance, real-time ORBSta\l/r\}toh(l) tlme.d TAO t h kev di . f real-ti
endsystem targeted for applications with deterministic andsr{? -Be a(\j/e ufe desi 0 r'eStIaaOrl'c etyt.lmgnsmdnsdo rea- wge
tistical QoS requirements, as well as best effort requireme endsystem design including static [5] and dynamic [8]

The TAO ORB endsystem contains the network interface dg&il—time scheduling, real-time request demultiplexing [7],
" redl-time event processing [9], and the performance of vari-

“This work was supported in part by Boeing, NSF grant NCR-962821@US commercial [10] and re?-"time rese?-rCh ORBs [111- ThiS'
DARPA contract 9701516, and US Sprint. paper focuses on an essential, and previously unexamined, di-




mension in the real-time ORB endsystem design spéue:

OS kernel to support end-to-end QoS for TAO; Section 4
presents empirical results from systematically benchmarking ORB CORE
the efficiency and predictability of TAO and RIO over an ATM
network; and Section 6 presents concluding remarks.

development and empirical analysis of a real-time 1/O (RIO) [ g CLIENTS SERVANTS
subsystem that enables TAO to support the QoS requirement U [ STUBS ] [ SKELETONS ] z
of statically scheduled applications. N E
The paper is organized as follows: Section 2 describes the (SERVANT DEMUXER) R
architectural components in TAO’s ORB endsystem that sup- . o
port statically scheduled applications; Section 3 explains how| I OBJECT C
our real-time 1/0 (RIO) subsystem enhances the Solaris 2.5.1M ADAPTER o
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2 The Design of the TAO Real-time
ORB Endsystem
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2.1 Real-time Support in TAO
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To support the QoS demands of distributed object computing
applications, an ORB endsystem must be flexible, efficient,
predictable, and convenient to program. To meet these re- ATM PORT INTERFACE
guirements, TAO provides end-to-end QoS specification and CONTROLLER (APIC) =5
gn.forcement mephanlsms and optimizations [5, 7, 11] for' Gf'Figure 2: TAO's Real-time ORB Endsystem Architecture
ficient and predictable request dispatching. The following

overview of the real-time support in TAO’'s ORB endsystem
explains how its components can be configured to support g8k Run-time Scheduler: A real-time scheduler [16]

(WHFGUHIOUJ

ically scheduled real-time applicatiohs. maps application QoS requirements, such as include bound-
ing end-to-end latency and meeting periodic scheduling dead-
2.1.1 Architectural Overview lines, to ORB endsystem/network resources, such as ORB

_ _ _ endsystem/network resources include CPU, memory, network
Figure 2 illustrates the key components in TAO’s ORB endonnections, and storage devices. TAO's run-time scheduler

system. TAO supports the standard OMG CORBA referengigoports both static [5] and dynamic [8] real-time scheduling
model [1], with the following enhancements designed to ovefrategies.

come the shortcomings of conventional ORBs [11] for high- i _ . )
performance and real-time applications: Real-time ORB Core: An ORB Core delivers client re-

guests to the Object Adapter and returns responses (if any) to
Real-time IDL Stubs and Skeletons: TAO’s IDL stubs and clients. TAO'’s real-time ORB Core [11] uses a multi-threaded,
skeletons efficiently marshal and demarshal operation pargmeemptive, priority-based connection and concurrency archi-
eters, respectively [13]. In addition, TAO’s Real-time IDltecture [13] to provide an efficient and predictable CORBA
(RIDL) stubs and skeletons extend the OMG IDL specificHOP protocol engine.
tions to ensure that application timing requirements are sp

i- _ : ,
fied and enforced end-to-end [14]. Real-time 1/0 subsystem: TAO's real-time 1/O subsystem

extends support for CORBA into the OS. TAO's I/O subsystem

Real-time Object Adapter: An Object Adapter associatesassigns priorities to real-time 1/O threads so that the schedu-
servants with the ORB and demultiplexes incoming requektbility of application components and ORB endsystem re-

to servants. TAO's real-time Object Adapter [15] uses perfexsiurces can be enforced. TAO also runs efficiently and rel-
hashing [6] and active demultiplexing [7] optimizations to distively predictably on conventional 1/O subsystems that lack

patch servant operations in constéi(il) time, regardless of advanced QoS features.

the number of active connections, servants, and operationﬁ_cﬁah_speed network interface: At the core of TAO's I/O
fined ntert ;

ITAO's architecture for dynamically scheduled real-time applications &/PSystem is a “daisy-chained” network interface consisting
described in [12]. of one or more ATM Port Interconnect Controller (APIC)



chips [17]. APIC is designed to sustain an aggregate kélation mechanisms. To support these requirements, TAO's
directional data rate of 2.4 Gbps. In addition, TAO run®RB Core supports the priority-based concurrency and con-
on conventional real-time interconnects, such as VME baclection architectures described below.

planes, multi-processor shared memory environments, as WeI.I

as Intemnet protocols like TCP/IP. TAO’s priority-based concurrency architecture:

TAO’s ORB Core can be configured to allocate a real-time
TAO is developed atop lower-level middleware calleghread for each application-designated priority level. Ev-
ACE [18], which implements core concurrency and distribery thread in TAO's ORB Core can be associated with a
tion patterns [19] for communication software. ACE prcReactor , which implements the Reactor pattern [21] to pro-
vides reusable C++ wrapper facades and framework compigie flexible and efficient endpoint demultiplexing and event

nents that support the QoS requirements of high-performanmndler dispatching.

real-time applications. ACE runs on a wide range of OS plat-When playing the role of a server, TAOReactor (s) de-

forms, including Win32, most versions of UNIX, and real-timgultiplex incoming client requests to connection handlers that

operating systems like Sun/Chorus ClassiX, LynxOS, and \perform GIOP processing. These handlers collaborate with

Works. TAQO's Object Adapter to dispatch requests to application-level
servant operations. Operations can either execute with one of

2.1.2 Configuring TAO for Statically Scheduled Real- the following two models [16]:

time Applications , . L
¢ Client propagation modet The operation is run at the

TAO can be configured to support different classes of applica- priority of the client that invoked the operation.
;!ongtqosnr:ﬂg"imnegs' ':srz'nss’;antﬁf]’. tgg S)?SBtaetnéjz;IyStsi?ecin; Server sets model The operation is run at the priority
'guration Shown In Figure 2 1S optimiz atically . of the thread in the server’s ORB Core that received the
uled applications with periodic real-time requirements. Fig-

ure 3 illustrates an example of this type of application from the operation.
domain of avionics mission computing, where TAO has begRe server sets priority model is well-suited for determinis-
deployed in mission computing applications at Boeing [9]. tic real-time applications since it minimizes priority inversion
and non-determinism in TAO’s ORB Core [11]. In addition, it
reduces context switching and synchronization overhead since
servant state must be locked only if servants interact across
different thread priorities.

TAQ's priority-based concurrency architecture is optimized
for statically configured, fixed priority real-time applications.

IS In addition, it is well suited for scheduling and analysis tech-

2:PUSH (EVENTS) nigues that associate priority withte, such as rate monotonic
scheduling (RMS) and rate monotonic analysis (RMA) [22,
23]. For instance, avionics mission computing systems com-
monly execute their tasks nates groupsA rate group assem-

Sensor Sensor

ProYy/ |\ proxy bles all periodic processing operations that occur at particular
) rates,e.g, 20 Hz, 10 Hz, 5 Hz, and 1 Hz, and assigns them to
a pool of threads using fixed-priority scheduling.
1: SENSORS %E . : . ,
GENERATE \ e TAO's priority-based connection architecture: Fig-
DATA £ ure 4 illustrates how TAO can be configured with a priority-

based connection architecture. In this model, each client
thread maintains &onnector [24] in thread-specific stor-
Figure 3: Real-time CORBA-based Avionics Mission Config€. EactConnector manages a map of pre-established
puting Application connections to servers. A separate connection is maintained
for each thread priority in the server ORB. This design en-
Mission Computing app”cations manage sensors and Op@HeS clients to preserve end-to-end priorities' as' req.uests tra-
tor displays, navigate the aircraft’s course, and control weaptgise through ORB endsystems and communication links [11].
release. These applications require an ORB endsystem e addition, TAO’s ORB Core can be configured to support other concur-

SUpp_ortS real-time scheduling anq qiSPatChing'Of periOdiC PF&cy architectures, including thread pool, thread-per-connection, and single-
cessing operations, as well as efficient event filtering and aireaded reactive dispatching [20].
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struct RT_Info {
Time worstcase_exec_time_;
Period period_;
Criticality criticality_;

Importance importance_;

}’ )

Figure 5: TAO’s QoS Specification Model

COMMUNICATION LINK

Figure 4: TAO'’s Priority-based Connection and Concurrency
Architectures

Figure 4 also shows how tHeeactor that is associated
with each thread priority in a server ORB can be configured to
use amAcceptor [24]. TheAcceptor is a socket endpointRT-Info IDL struct ~ shown in Figure 5.
factory that listens on a specific port number for clients to con-An RT_Operation is a scheduled operatigni.e, one
nect to the ORB instance running at a particular thread priorffjat has expressed its resource requirements to TAO using
TAO can be configured so that each priority level has its o/ RT-Info struct . RT.Info attributes include worst-
Acceptor port. For instance, in statically scheduled, ratéase execution time, period, importance, and data dependen-
based avionics mission computing systems [12], ports 1009€s. Using scheduling techniques like RMS and analysis ap-
10010, 10005, 10001 could be mapped to the 20 Hz, 10 REoaches like RMA, TAO's real-time static scheduling service
5 Hz, and 1 Hz rate groups, respectively. Requests arrivigfermines if there is a feasible schedule based on knowledge
at these socket ports can then be processed by the approffaa8 RT-Info  data for all theRT_Operations  in an appli-
fixed-priority real-time threads. cation. TAO’s QoS specification model is described further in
Once a client connects, tecceptor  in the server ORB [5]-
creates a new socket queue and a GIOP connection handler to
service that queue. TAO's I/O subsystem uses the portnumpeg  TAQO'’s Run-time Scheduling Model
contained in arriving requests as a demultiplexing key to asso- o . ]
ciate requests with the appropriate socket queue. This dedi§ Scheduling information used by TAO's run-time scheduler
minimizes priority inversion through the ORB endsystem v&10Wn in Figure 2 consists pfiorities andsubpriorities Ap-
early demultiplexing25, 26, 17], which associates requesfglcatlons can associate these with each servant operation, as
arriving on network interfaces with the appropriate real-tinfgllows:

thread that services the target servant. Early demultiplexpgority:  The priority is the (OS-dependent) thread priority

is used in TAO to vertically integrate the ORB endsystemy the highest priority thread that can execute the operation. It

QoS support from the network interface up to the applicatigfdetermined based on the maximeate at which servant op-

servants. erations can execute. For example, systems that are scheduled
using RMS can compute this information based on knowledge

2.2 Handling Real-time Client Requests in g;:]hoe computation timet’,, and period %, for each opera-

TAO - - .
Subpriority:  The subpriority orders servant execution

Real-time applications that use the TAO ORB endsystem aaithin each rate group. This ordering is based on two factors:
specify their resource requirements to TAGt&tic schedul- (1) data dependencies between servants and (2) the relative im-
ing service[5]. TAO's scheduling service is implemented aportance of servants. Data dependencies are expressed directly
a CORBA object,.e., it implements an IDL interface. Ap-to TAO’s scheduler via thRT_Info QoS specification mech-
plications can provide QoS information to TAO’s schedulingnism described in [5]. In most cases, these dependencies can
service on a per-operation basis, off-line,, before applica- be determined automatically.

tion execution. For CPU requirements, the QoS requirement¥he subpriority of an operation also depends onnitgor-

are expressed bRT_Operation s using the attributes of thetance Importance is an application-specific indication of rela-



tive operation importance. It is used by the run-time scheduReal-time support: Solaris attempts to minimize dispatch
as a “tie-breaker” when other scheduling parameterg,rate latency [30] for real-time threads. Moreover, its fine-grained
and data dependencies, are equal. locking of kernel data structures allows bounded thread pre-

emption overhead.
As described earlier, TAO’s static scheduling service sup-

ports RMA and RMS. Therefore, its run-time scheduler corivtulti-threading support:  Solaris supports a scalable
ponent is simply an interface to a table of scheduling infamulti-processor architecture, with both kernel-level (kthreads)
mation that is pre-computed off-line, described in [5]. TAO'and user-level threads.

dynamic scheduling service [12] uses the same interface to

drive more sophisticated on-line algorithms and retrieve tRynamic configurability:  Most Solaris kernel components

scheduling parameters interactively. are dynamically loadable modules, which simplifies debug-
ging and testing of new kernel modules and protocol imple-
mentations.
3 The DeSign of TAO’s Real-time 1/O Compliant to open system standards: Solaris supports the
Subsystem on Solaris over ATM POSIX 1003.1c [31] real-time programming application pro-

gramming interfaces (APIs), as well as other standard POSIX

Meeting the requirements of distributed real-time applicatiof§ 'S for multi-threading [32] and communications.

requires more than defining QoS interfaces with CORBAID+OO| support. There are many software tools and li-

?r dleve_ltoplng_an ?hRE.’ vt\nth r?.al-tln;fhthrggcépn%rl:lhes.l /Ig PaGraries [18] available to develop multi-threaded distributed,
icular, it requires the integration of the and the 1/O sUP= i e anplications on Solaris.

system to provide end-to-end real-time scheduling and real-

time communication to the ORB endsystem. Availability: ~ Solaris is widely used in research and industry.
This section describes how we have developed a real-time

I/0 (RI0) subsystem for TAO by customizing the Solaris 2.5Kernel source: Sun licenses the source code to Solaris,

OS kernel to support real-time network I/O over ATM/IP newhich allowed us to modify the kernel to support the multi-

works [27]. Below, we examine the components that affdtreaded, real-time I/O scheduling class described in Sec-

the performance and determinism of the RIO subsystem. @an 3.3.

main focus is on techniques that alleviate key sources of end-

system priority inversion to reduce non-deterministic applica-" 2ddition to Solaris, TAO runs on a wide variety of
tion and middleware behavior. real-time operating systems, such as LynxOS, VxWorks, and

Sun/Chorus ClassiX, as well as general-purpose operating sys-
tems with real-time extensions, such as Digital UNIX, Win-

3.1 Overview of Solaris dows NT, and Linux. We plan to integrate the RIO subsystem
architecture described in this section into other operating sys-
3.1.1 From VxWorks to Solaris tems that implement th & REAMSI/O subsystem architecture.

TAQ's original real-time 1/O subsystem ran over a proprietar ) ) )
VME backplane protocol integrated into VxWorks running oa-1-2  Synopsis of the Solaris Scheduling Model
a 200 MHz PowerPC CPU [9]. All protocol processing was

rformed at interrunt-level in a VixWorks device driver. Th cheduling classes: Solaris extends the traditional UNIX
pertormed at Interrupt-levetin a orks device er- |t’?me-sharing scheduler [33] to provide a flexible framework
design was optimized for low latenay,g, two-way ORB op-

erations Were.350 LSecs that allows dynamic linking of custostheduling classes$-or
H ' o instance, it is possible to implement a new scheduling policy
Unfortunately, the VME backplane driver is not portable Qs 5 scheduling class and load it into a running Solaris kernel.

a broad range of real-time systems. Moreover, it is N0t SUiy, jatayit, Solaris supports the four scheduling classes shown
able for more complex transport protocols, such as TCPAEye e hy decreasing global scheduling priority below:
which cannot be processed entirely at interrupt-level without

incurring excessive priority inversion [28]. Therefore, we de

veloped a real-time I/O (RIO) subsystem that is integrated int

gosri?nq(lj;irgaﬁgﬂ/cgls&ggs;sérrf;agjgﬁék' reEAmS[29] Real-Time (RT) 100 - 159 | Fixed priority scheduling
) . ) System (SYS) 60-99 OS-specific threads

We used Solaris as the basis for our research on TAO anfime Shared (TS) 0-59 Time-Shared scheduling

RIO for the following reasons:

|| Scheduling Class| Priorities | Typical purpose |
Interrupt (INTR) | 160-169 | Interrupt Servicing




The Time-Sharing (TS)class is similar to the traditionalGeneral structure of a STREAM: A Stream is composed
UNIX scheduler [33], with enhancements to support interaafa Stream head, a driver and zero or more modules linked to-
tive windowing systems. The System class (SYS) is usedgether by read queues (RQ) and write queues (WQ), as shown
schedule system kthreads, including I/O processing, and isindtigure 6. The Stream head provides an interface between a
available to user threads. The Real-Time (RT) scheduling class
uses fixed priorities above the SYS class. Finally, the higheg
system priorities are assigned to the Interrupt (INTR) schedu
ing class [34].

By combining a threaded, preemptive kernel with a fixed
priority real-time scheduling class, Solaris attempts to pro-
vide a worst-case bound on the time required to dispatch user
threads or kernel threads [30]. The RT scheduling class sup-
ports both Round-Robin and FIFO scheduling of threads. For
Round-Robin scheduling, a time quantum specifies the maxj-
mum time a thread can run before it is preempted by anot
RT thread with the same priority. For FIFO scheduling, t
highest priority thread can run for as long as it chooses, u
it voluntarily yields control or is preempted by an RT thre@
with a higher priority.

Timer mechanisms: Many kernel components use the So-

laris timeout facilities. To minimize priority inversion, So- NETWORK INTERFACH

laris separates its real-time and non-real-time timeout mecha- ©R PSEUDO-DEVICES(

nisms [30]. This decoupling is implemented via two callout

gueue timer mechanisms: (galtime _timeout , which @ @ %
supports real-time callouts and (&heout , which supports MESSAGE. MODULE WRITE ~ READ
non-real-time callouts. QUEUE QUEUE

The real-time callout queue is serviced at the lowest inter- ] _
rupt level, after the current clock tick is processed. In con- Figure 6: General Structure of a Stream
trast, the non-real-time callout queue is serviced by a thread

running with a SYS thread priority of 60. Therefore, non-reafSe" Process and a specific instance of a Stream in the kernel.

time timeout functions cannot preempt threads running in tlrﬁemp'es data across th? user/kernel boundary, notlf!es user
RT scheduling class. threads when data is available, and manages the configuration

of modules into a Stream.

Each module and driver must define a set of entry points
that handl@pen/close operations and process Stream mes-
3.1.3 Synopsis of the Solaris Communication I/O SubsyS-Sages. The message processing entry poinistreindsvc ,

tem which are referenced through the read and write queues. The

. N . uf function provides the mechanism to send messayges
The Solaris communication I/O subsystem is an enhan(g% onouslybetween modules, drivers, and the Stream head.
version of the SVR4TREAMS framework [29] with proto- ! :

s like TCP/ID il 3 i ul  In contrast, thesvc function processes messagesyn-
cols Tike Implemented USINGrREAMS modules and ., n 0 slywithin a module or driver. A background thread

drivers.sTREAMS provides a bi-directional path between user the kernel's SYS scheduling class r functions at
threads and kernel-resident drivers. In Solaris,ShREAMS rity 60. In addition;svc functions will run after certain

ri
framework has been extended to support multiple threadi?ﬁEAMsrelated system calls, such esad , write , and
control within a Stream [35] and TCP/IP is based on the M%’ctl When this occurs thx:.-\,/c function rt,ms in th,e con-
tat TCP/IP implementation for SVRIITREAMS text of the thread invoking the system call.

Below, we outline the key components of tsgREAMS , i
Jclow control:  Each module can specify a high and low wa-

framework and describe how they affect communication | ;
termark for its queues. If the number of enqueued messages

performance and real-time determinism.
FTS— . . . I e3<ceeds thellGH_WATERMARK the Stream enters the flow-
In this discussion we include the Interactive (IA) class, which is usé€

primarily by Solaris windowing systems, with the TS class since they sh&@ntrolled state. At this ppint, messages will be queued up-
the same range of global scheduling priorities. stream or downstream until flow control abates.




For example, assume &TREAM driver has queuedtransport layer header in STREAMS message to locate the
HIGH_WATERMARK+1 messages on its write queue. The firstansport protocol and port number that designates the correct
module atop the driver that detects this will buffer messaggsstream queue.
on its write quete, rather than pass them dovynstream. ?/Fdlti—threaded STREAMS: SolarissTREAMSallows mul-
cause the Stream is flow-controlled, thec function for the . le k | threads to b fve i /0 aul
module will not run. When the number of messages on gfge kemel threads 1o be aclive BTREAMS moatles,

s unis queve cops below e vrErar he (5 200 LIPS Sorrenty [, T
Stream will be re-enable automatically. At this point, Hve PP

function for this queue will be scheduled to run. currency, Wh!Ch are implemented using therimeters[35]
shown below:

STREAM Multiplexors:  Multiple STREAMS can be linked
together using a special type of driver callednaltiplexor Per-module with single threading
A multiplexor acts like a driver to modules above it and as || Per-queue-pair single threading
a Stream head to modules below it. Multiplexors enable Per-queue single threading
the STREAMS framework to support layered network protocol Any of the above with unrestrictedput_and svc
stacks [36]. Unrestricted concurrency

Figure 7 shows how TCP/IP is implemented using the So-
laris STREAMS framework. IP behaves as a multiplexor on

In Solaris, the concurrency level of IP is “per-module” with
ncurrentput , TCP andsockmod are “per-queue-pair,”
and UDP is “per-queue-pair” with concurreptit . These

- perimeters provide sufficient concurrency for common use-
cases. However., therg are cases where IP mustraise its quking
level when manipulating global tables, such as the IP routing
3 table. When this occurs, messages entering the IP multiplexor
. are placed on a special queue and processed asynchronously
¢ when the locking level is lowered [35, 34].
— 4 -1 Flojd----— H=ld--- Callout queue callbacks: The SolarissTREAMSframework
SUREA s SUREAGEEE  SUREA e provides functions to set timeouts and register callbacks. The
VA ! gtimeout function adds entries to the standard non-real-
Liar'?wg—rgf EanPerrrsEP e time callout queue. This queue is serviced by a system thread
wQ _rQ wQ_1Q wQ _1Q with a SYS priority of 60, as described in Section 3.1.2. So-
L laris TCP and IP use this callout facility for their protocol-
— ,7 specific timeouts, such as TCP keepalive and IP fragmenta-
P WQ IO WQ 1Q wQ 1Q tion/reassembly. . o o
Run/Sleep Queubs| P - Multiplexor Another mechanism for registering a callback function is
threado oo s bufcall . Thebufcall  function registers a callback func-
Threadd Frolocel Processing tion that is invoked when a specified size of buffer space be-
other in Interrupt Context comes available. For instance, when buffers are unavailable,
“t Q”Eires L bufcall  is used by asTREAM queue to register a function,
wQ Q such agllocb , which is called back when space is available
FIFO Queuing again. These callbacks are handled by a system thread with
ATM Driver priority SYS 60.

Network I/0:  The Solaris network 1/0O subsystem provides
Figure 7: Conventional Protocol Stacks in Sol&TREAMS  service interfaces that reflect the OSI reference model [36].
These service interfaces consist of a collection of primitives
joining different transport protocols with one or more linland a set of rules that describe the state transitions.
layer interfaces. Thus, IP demultiplexes both incoming andFigure 7 shows how TCP/IP is structured in the Solaris
outgoing datagrams. STREAMS framework. In this figure, UDP and TCP imple-
Each outgoing IP datagram is demultiplexed by locatimgent the Transport Protocol Interface (TPI) [38], IP the Net-
its destination address in the IP routing table, which detarerk Provider Interface (NPI) [39] and ATM driver the Data
mines the network interface it must be forwarded to. Likewiseink Provider Interface (DLPI) [40]. Service primitives are
each incoming IP datagram is demultiplexed by examining thged (1) to communicate control (state) information and (2)



to pass data messages between modules, the driver, anddwaded priority inversion. The reason is teat functions
Stream head. are called from a kernedvc thread, known as theTREAMS
Data messages (as opposed to control messages) in theb8ckground thread. This thread runs in the SYS scheduling
laris network I/O subsystem typically follow the traditionatlass with a global priority of 60.
BSD model. When a user thread sends data it is copied intdn contrast, real-time threads have priorities ranging from
kernel buffers, which are passed through the Stream head@0 to 159. Thus, it is possible that a CPU-bound RT thread
the first module. In most cases, these messages are then passgestarve thevc thread by monopolizing the CPU. In this
through each layer and into the driver through a nested chedise, thesvc functions for the TCP/IP modules and multi-
of put s [35]. Thus, the data are sent to the network interfagkexors will not run, which can cause unbounded priority in-
driver within the context of the sending process and typicalhgrsion.
are not processed asynchronously by modwie functions.  For example, consider a real-time process control applica-
At the driver, the data are either sent out immediately or ajén that reads data from a sensor at a rate of 20 Hz and sends
queued for later transmission if the interface is busy. status messages to a remote monitoring system. Because this
When data arrive at the network interface, an interrupttisread transmits time-critical data, it is assigned a real-time
generated and the data (usually referred to as a framepftrity of 130 by TAO's run-time scheduler. When this thread
packet) is copied into kernel buffer. This buffer is then passgflempts to send a message over a flow-controlled TCP con-
up through IP and the transport layer in interrupt contexiection, it will be queued in th& CP module for subsequent
where it is either queued or passed to the Stream headprigcessing by thevc function.
the socket module. In general, the usesot functionsis  Now, assume there is another real-time thread that runs
reserved for control messages or connection establishmengsynchronously for an indeterminate amount of time respond-
ing to external network management trap events. This asyn-

3.2 Limitations of the Solaris I/0O Subsystem chronous thread has an RT priority of 110 and is currently ex-

i . _ ecuting. In this case, the asynchronous RT thread will prevent
for Real-time Scheduling and Protocol Pro thesvc function from running. Therefore, the high-priority

cessing message from the periodic thread will not be processed until

Section 3.1.3 outlined the structure and functionality of the R a@synchronous thread completes, which can cause the un-
isting Solaris 2.5.1 scheduling model and communication IR§Unded priority inversion depicted in Figure 8.

subsystem. Below, we review the limitations of Solaris when

it is used as the I/O subsystem for real-time ORB endsyste Interrupt (INTR) - élnterrupt thread - protocol processing for low-priority thread
These limitations stem largely from the fact that the Sol

RT scheduling class is not well integrated with the Sola Preempts
STREAMSbased network I/0O subsystem. In particular, Sola eal-Time (RT) | High Priority 1/0-bound RT thread (130)
only supports the RT scheduling class for CPU-bound u Depends o

. . LT . —* C Low-Priority CPU-bound RT thread (110)
threads, which yields the priority inversion hazards for re é

time ORB endsystems described in Sections 3.2.1and 3.2  system (SYS) *gsmEAmsmread at SYS priority (60)

Time-Shared (TS)

3.2.1 Thread-based Priority Inversions

Thread-based priority inversion can occur when a higher prioijgre 8: Common Sources of Priority Inversion in Solaris
ity thread blocks awaiting a resource held by a lower priority

thread [41]. In Solaris, this type of priority inversion gener- .
ally occurs when real-time user threads depend on kernel prol—n addition, two othersTREAMSelated system kthreads

cessing that is performed at the SYS or INTR priority Ieve?é"‘tr?oﬁgIdTﬁ:(;ztilh'rrg;eJi'ronns V\.’Pheg gf’(esd Vr\{g?.treg]!'ggn:n%pﬁg;]_
[30, 28, 41]. Priority inversion may not be a general proble lons. un wi priority

for user applications with “best-effort’ QoS requirements. ¢ the callback functions associated with thécall — and

is problematic, however, for real-time applications that requi meout  system functions described in Section 3.1.3. This

bounded processing times and strict deadline guarantees. problem is further exacerbated by the fact that the priority of

The SolarissTREAMS framework is fraught with opportu-the thread that initially made the buffer request is not consid-

. S . . ered when thessvc threads process the requests on their re-
nities for thread-based priority inversion, as described below. "~ . L : o

spective queues. Therefore, it is possible that a lower priority
STREAMS-related svc threads: When used inappropri-connection can receive buffer space before a higher priority

ately, STREAMS svc functions can yield substantial unconnection.



Protocol processing with interrupt threads: Another based priority inversion will result when the OS kernel places
source of thread-based priority inversion in Sol&TREAMS packets from different connections in the same queue and pro-
occurs when protocol processing of incoming packets is peesses sequentially. Figure 7 depicts this case, where the
formed in interrupt context. Traditional UNIX implementagueues shared by all connections reside in the IP multiplexor
tions treat all incoming packets with equal priority, regardleasd interface driver.
of the priority of the user thread that ultimately receives theTo illustrate this problem, consider an embedded system
data. where Solaris is used for data collection and fault man-
In BSD UNIX-based systems [33], for instance, the iegement. This system must transmit both (1) high-priority
terrupt handler for the network driver deposits the incomimgal-time network management status messages and (2) low-
packet in the IP queue and schedules a software interrupt fhrérity bulk data radar telemetry. For the system to operate
invokes thdp _input function. Before control returns to thecorrectly, status messages must be delivered periodically with
interrupted user process, the software interrupt handler is stifict bounds on latency and jitter. Conversely, the bulk data
andip _input isexecuted. Thip _input function executes transfers occur periodically and inject a large number of radar
at the lowest interrupt level and processes all packets in itstielemetry packets into the 1/0 subsystem, which are queued at
put queue. Only when this processing is complete does conthal network interface.
return to the interrupted process. Thus, not only is the procesk Solaris, the packets containing high-priority status mes-
preempted, but it will be charged for the CPU time consumsdges can be queued in the network interfzetgindthe lower
by input protocol processing. priority bulk data radar telemetry packets. This situation yields
In STREAMS-based systems, protocol processing can eithgaicket-based priority inversion. Thus, status messages may ar-
be performed at interrupt context (as in Solaris) or veitlc  rive too late to meet end-to-end application QoS requirements.
functions scheduled asynchronously. Usewg functions
can yield the unbounded priority inversion described abo¥e3 R|O — An Integrated 1/0 Subsystem for

Similarly, processmg.all.mput papkets in interrupt context can Real-time ORB Endsystems
cause unbounded priority inversion.

Modern high-speed network interfaces can saturate the $yshancing a general-purpose OS like Solaris to support the
tem bus, memory, and CPU, leaving little time available f@oS requirements of a real-time ORB endsystem like TAO
application processing. It has been shown that if protocol pregquires the resolution of the following design challenges:
cessing on incoming data is performed in interrupt context this ) i )
can lead to a condition known asceive [28]. Livelock isa 1- Creating an extensible and predictable I/O subsystem
condition where the overall endsystem performance degrades framework that can integrate seamlessly with a real-time
due to input processing of packets at interrupt context. In ex-
treme cases, an endsystem can spend the majority of its tine Alleviating key sources of packet-based and thread-based
processing input packets, resulting in little or no useful work priority inversion.

being done. Thus, input livelock can prevent an ORB endsys; |mpjementing an efficient and scalable packet classifier
tem from meeting its QoS commitments to applications. that performs early demultiplexing in the ATM driver.

o ) 4. Supporting high-bandwidth network interfaces, such as
3.2.2 Packet-based Priority Inversions the APIC [17].

Packet-based priority inversion can occur when packets fdb. Supporting the specification and enforcement of QoS re-
high-priority applications are queued behind packets for low- quirements, such as latency bounds and network band-
priority user threads. In the Solaris 1/O subsystem, for in- width.

stance, this can occur as a result of serializing the processing Providing all these enhancements to applications via the
of incoming or outgoing network packets. To meet deadlines  gi4ndardsTrREAMS network programming APIs [36].
of time-critical applications, it is important to eliminate, or at

least minimize, packet-based priority inversion. This section describes the RIO subsystem enhancements we
Although TCP/IP in Solaris is multi-threaded, it incurapplied to the Solaris 2.5.1 kernel to resolve these design chal-
packet-based priority inversion since it enqueues network datages. Our RIO subsystem enhancements provide a highly
in FIFO order. For example, TAO's priority-based ORB Corgredictable OS run-time environment for TAO's integrated
described in Section 2.1.2, associates all packets destineddat-time ORB endsystem architecture, which is shown in Fig-
a particular TCP connection with a real-time thread of the ajre 9.
propriate priority. However, different TCP connections can beOur RIO subsystem enhances Solaris by providing QoS
associated with different thread priorities. Therefore, packspecification and enforcement features that complement



- 26, 42, 28]. RIO’s design schedules network interface band-
width and CPU time to minimize priority inversion and de-

TSClass TS Class crease interrupt overhead during protocol processing.

ORBCore $RT:110  § RT:105 s s Dedicated Streams: This feature isolates request packets
belonging to different priority groups to minimize FIFO
%est Eﬁow ¢ queueing and shared resource .Iocklng overhead [43]. RIO’s
= SH! [ I Epp design resolves resource conflicts that can otherwise cause
ernel . . . .
STREAM head STREAM head STREAMhead = STREAMhead | thregd-based and packet-based priority inversions.
UDP/TCP | | UDP/TCP UDP/TCP UDP/TCP Below, we explore each of RIO’s features and explain how
<timers> <timers> <timers> <timers> . . . . . -
wQ rQ wQ rQ wQ rQ wQ 1Q they alleviate the limitations with Solaris’ I/O subsystem de-
scheduler b ] scribed in Section 3.2. Our discussion focuses on how we re-
Run/Sleep Queugs solved the key design challenges faced when building the RIO
threadO
Thicads oar | pro WQ 1@ WO 1 subsystem.
other IP - Mod IP - Mod IP(r'oMilrjwlgtj'%eb)fgg)
Callout Queues wQ__ rQ 3.3.1 Early Demultiplexing
L
RIO Scheduler RT:§10 RT:105 Jovest Context: ATM is a gonnecnon—onented network protopol
yoMas My g ol that uses virtual circuits (VCs) to switch ATM cells at high
Hr I T, T T TIQ I speeds [27]. Each ATM connection is assigned a virtual cir-
\‘\\\ A // cuit identifier (VCI).
atw oriver | EEH Problem: In Solaris STREAMS, packets received by the

110
105
200

VCI

ATM network interface driver are processed sequentially and
passed in FIFO order up to the IP multiplexor. Therefore, any
information regarding the packets priority or specific connec-

Figure 9: Architecture of the RIO Subsystem and Its Relatidien Is lost.
ship to TAO Solution: The RIO subsystem uses a packet classifier [44] to
exploit the early demultiplexing feature of ATM [17] by verti-

L ) i cally integrating its ORB endsystem architecture, as shown in
TAQ's priority-based concurrency and connection archltectqf ure 10. Early demultiplexing uses the VCl field in a request

discussed in Section 2.1.2. The resulting real-time ORB endi ot to determine its final destination thread efficiently.
system contains user threads and kernel threads that can e,y gemultiplexing helps alleviate packet-based priority
scheduled statically. As described in Section 2.2, TAO's stafig o rsion because packets need not be queued in FIFO order.
schedullng service [5] runs oﬁ-llne to map periodic thread "istead, RIO supportsriority-based queueingvhere packets
quirements and task dependencies to a set of real-time glghalineq for high-priority applications are delivered ahead of
Solaris thread priorities. These priorities are then used on-lige, s iority packets. In contrast, the Solaris default network
by the Solaris kernel’s run-time scheduler to dispatch user emg subsystem processes all packets at the same priority, re-

kernel threads on the CPU(s). ) L 8ard|ess of the user thread they are destined for.
To develop the RIO subsystem and integrate it with TAO,

we extended our prior work on ATM-based I/0 subsystemslfgplementing early demultiplexing in RIO:  The RIO

provide the following features: endsystem can be configured so that protocol processing for
ach Stream is performed at different thread priorities. This
esign alleviates priority inversion when user threads run-

VCI
VCI

Early demultiplexing:  This feature associates packets WitE

the corrgct priorities gnd a'specific Stream early i,n the pac ﬁlig at different priorities perform network 1/O. In addition,
srpces??ng F'zsleoclue(zjncqz,e., n .th.e AT:\]/I ngt\évorkdmte_:rfgcg the RIO subsystem minimizes the amount of processing per-
river [17]. s design minimizes thread-based priority Ing, e ¢ interrupt level. This is necessary since Solaris does

version by vertlcqlly Integrating packets received gt Fhe nﬁtét consider packet priority or real-time thread priority when
work interface with the corresponding thread priorities 'iﬂvoking interrupt functions

TAO’s ORB Core. At the lowest level of the RIO endsystem, the ATM driver
Schedule-driven protocol processing: This feature per- distinguishes between packets based on their VCIs and stores
forms all protocol processing in the context of kernel threatteem in the appropriate RIO queu€)). Each RIO queue pair
that are scheduled with the appropriate real-time priorities [26 associated with exactly one Stream, but each Stream can be

10



ORB Core user thread be assigned a period and computation fineebound the total

»é throughput allowed on the best-effort connections.
”””””””””””””””””””” 'éPACKET 3.3.2 Schedule-driven Protocol Processing
S o o PROCESSING
PHlSriyl  [PHREYS [Py 4 (RTgitEh’j;ﬁS) Context: Many real-time applications require periodic 1/0

processing. For example, avionics mission computers must
process sensor data periodically to maintain accurate situa-
tional awareness [9]. If the mission computing system fails

T unexpectedly, corrective action must occur immediately.
\ KENQUEUE Problem: Protocol processing of input packets in Solaris
47 STREAMS is demand-driveri36], i.e., when a packet arrives
2. LOOK-UP the STREAMSI/O subsystem suspends all user-level process-
1 INTERRUPT Y ing and performs protocol processing on the incoming packet.
Vel QueuelD(ptr) Demand-driven I/O can incur priority inversiogg, when the
1 3232323 incoming packet is destined for a thread with a priority lower
DEVICE .
QUEUE 2 3435345 than the currently executing thread. Thus, the ORB endsys-
P s tem may become overloaded and fail to meet application QoS

requirements.

When sending packets to another host, protocol processing
is typically performed within the context of the user thread
that performed thevrite  operation. The resulting packet is
passed to the driver forimmediate transmission on the network
interface link. With ATM, a pacing value can be specified for
. . . : each active VC, which allows simultaneous pacing of multiple
associated with zero or more RIO quelas, there is a many . 4

: . ackets out the network interface. However, pacing may not
to one relationship for the RIO queues. The RIO protocol pr%— . . :
. . ; . be adequate in overload conditions since output buffers can
cessing kthread associated with the RIO queue then dellvoevrgncIOW therebv losina or delaving hiah-oriority packets
the packets to TAO’s ORB Core, as shown in Figure 9. o y g _ ying high-p yP o

Figure 9 also illustrates how all periodic connections ag@lution: RIO's solution is to performschedule-driven
assigned a dedicated Stream, RIO queue pair, and RIO kthr@dger than demand—driven, protocol processing of network
for input protocol processing. RIO kthreads typically serviddd requests. ~We implemented this solution in RIO by
their associated RIO queues at the periodic rate specified bdfling kernel threads that ave-scheduledith real-time user

application. In addition, RIO can allocate kthreads to procég&eads in the TAO’s ORB Core. This design vertically inte-
the output RIO queue. grates TAO's priority-based concurrency architecture through-

it the ORB endsystem.

G277z 72277772 NETWORK

Figure 10: Early Demultiplexing in the RIO Subsystem

For example, Figure 9 shows four active connections: of
periodic with a 10 Hz period, one periodic with a 5 Hz pdmplementing Schedule-driven protocol processing in
riod, and two best-effort connections. Following the standa®liO: The RIO subsystem uses thread pool[20] con-
rate monotonic scheduling (RMS) model, the highest priorityirrency model to implement its schedule-driven kthreads.
is assigned to the connection with the highest rate (10 HiEhread pools are appropriate for real-time ORB endsystems
In this figure, all packets entering on VCI 110 are placed &ince they (1) amortize thread creation run-time overhead and
RIO queuer®,. This queue is serviced periodically by RIG2) place an upper limit on the percentage of CPU time used
kthreadrkts, which runs at real-time priority 110. by RIO kthreads [11].

After it performs protocol processing, threakk, delivers Figure 11 illustrates the thread pool model used in RIO.
the packet to TAO's ORB Core where it is processed by a pehis pool of protocol processing kthreads, known as RIO
riodic user thread at real-time priority 110. Likewise, the 5 H¢threads, is created at I/O subsystem initialization. Initially
connection transmits all data packets arriving on VCI 105 atiese threads are not bound to any connection and are inactive
protocol processing is performed periodically by RIO kthreauntil needed.
rkt,, which passes the packets up to the user thread. Each kthread in RIO’s pool is associated with a queue. The

The remaining two connections handle best-effort netwdikeue links the various protocol modules in a Stream. Each

tr?‘ﬁic- The b?St_'eﬁort RIO queue(@o) is Ser\{iced by a I’?l- 4Periodic threads must specify both a per®dind a per period computa-
atively low-priority kthreadrkty,. Typically this thread will tion timeT.
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3. The reactor thread consumes TR ORB Core based priority in\./er.sion is minimized_in TAO’s ORB endsys-
the data tem by (1) associating a one-to-one binding between TAO user
user A threads ansTREAMS protocol kthreads and (2) minimizing

kernel 1 the work done at interrupt context.
2. RIO kthread *3 INTR e % Interrupt thread (Packet Classification)
executes the TCP/IP . Preempt
code and delivers N . . .
okt othe. Tgp(/jm :ﬁ High Priority 1/0 nggﬁldtsh(r)e
ORB CorelApplication (SEEE f 3 ? RIO thread at same priori
RT o
1. Interrupt thread consults the Packet ™ ? LOW-PI’IOth CPU bound thread
Classifier to enqueue the packet in
the appropriate queue Demultiplexing
/[ 3 ATM Driver ] SYS
> $ STREAMS thread
# o8 £
LI B
Packet Classifier TS

Figure 11: RIO Thread Pool Processing of TCP/IP with QoS

S t . I . L
uppor Figure 12: Alleviating Priority Inversion in TAO’s ORB End-

system

thread is assigned a particuleate, based on computations
from TAO’s static scheduling service [5]. This rate corre- . :
sponds to the frequency at which requests are specified to ?—d RIO protocol Kthread use Round-Robin schedghng. In.
rive from clients. Packets are placed in the queue by the Hys scheme, after either thread has a chance to run, its associ-

plication (for clients) or by the interrupt handler (for server .Ed thread is scheduled.. Fo.r instance, if th,e protocol kthread

Protocol code is then executed by the thread to shepherd. fA packets for the_ application, tReactor s user thre_ad

packet through the queue to the network interface card or'ip"e O.RB Core will consume the packets. Similarly if the

to the application. a pI|cat|on has consum(_ad or ggnerated packets, the protocol
An additional benefit of RIO’s thread pool design is its abi|(-thread will send or receive additional packets.

ity to bound the network I/O resources consumed by best-

effort user threads. Consider the case of an endsystem thit

supports both real-time and best-effort applications. Assutgntext: The RIO subsystem is responsible for enforcing

the best-effort application is a file transfer utility ik . If QoS requirements for statically scheduled real-time applica-
an administrator downloads a large file to an endsystem, gjg@s with deterministic requirements.

no bounds are placed on the rate of input packet protocol %O'blem' Unbounded priority inversions can result when
cessing, the system may become overloaded. However, iR : u priority Invers uit w

the RIO kthreads the total throughput allowed for best-effif %ketts are prt(?[cetisgd gsy.rtlchronously in the I/O subsystem
connections can be bounded by specifying an appropriate\%— outrespectio Iheir prionty.

riod and computation time. Solution: The effects of priority inversion in the 1/0 subsys-

In statically scheduled real-time systems, kthreads in #@&" is minimized by isolating data paths througfREAMS
pool are associated with differerate groups This design Such that resource contention is minimized. This is done in
complements thReactor -based thread-per-priority concurRIO by providing adedicatedStream connection path that (1)
rency model described in Section 2.1.2. Each kthread co@fiocates separate buffers in the ATM driver and (2) associates

sponds to a different rate of execution and hence runs at a kfitnel threads with the appropriate RIO scheduling priority
ferent priority. for protocol processing. This design resolves resource con-

To minimize priority inversion throughout the ORB endflicts that can otherwise cause thread-based and packet-based

system, RIO kthreads are co-scheduled with ORB Read?§P"ty Inversions.

threads. Thus, a RIO kthread processes I/O requests inlthplementing Dedicated Streams in RIO: Figure 9 de-
sTREAMSframework and its user thread equivalent processasts our implementation of Dedicatsd REAMSin RIO. In-
client requests in the ORB. Figure 12 illustrates how threatbming packets are demultiplexed in the driver and passed to

Both the ORB CordReactor user thread and its associ-

3 Dedicated Streams
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packet should be placed on a queue or processed at inte
context. = 0c3

Typically, low-latency connections are processed in int ZEEETH) 155 Mbps
rupt context. All other connections have their packets pla
on the appropriate Stream queue. Each queue has an a: Ult e
ated protocol kthread that processes data through the Str ATM Switch
These threads may have different scheduling parameter
signed by TAO’s scheduling service.

Akey feature of RIO’s DedicatesiTREAMSdesign is its use
of multiple output queues in the client's ATM driver. With th
implementation, each connection is assigned its own transmis-
sion queue in the driver. The driver services each transmis-
sion queue according to its associated priority. This design
allows RIO to associate low-latency connections with a relgs 1 Benchmarking Configuration
tively high-priority thread to assure that its packets are pro-
cessed before all other packets in the system. Our experiments were performed using the endsystem config-
uration shown in Figure 13. To measure round-trip latency
we use a client application that opens a TCP connection to
an “echo server” located on the SPARCS5. The client sends a
64 byte data block to the echo server, waits on the socket for
data to return from the echo server, and records the round-trip
This section presents empirical results from two groups of gxtency.
periments. First, we show that the RIO subsystem decreaseghe client application performs 10,000 latency measure-
the upper bound on round-trip delay for latency-sensitive afents, then calculates the mean latency, standard deviation,
plications and provides periodic processing guarantees 4@H standard error. Both the client and server run at the same
bandwidth-sensitive applications. Second, we combine Ridead priority in the Solaris real-time (RT) scheduling class.
and TAO to quantify the ability of the resulting ORB endsys- pandwidth tests were conducted using a modified version
tem to support applications with real-time QoS requirementss ttcp  [45] that sent 8 KB data blocks over a TCP con-
nection from the UltraSPARC2 to the SPARCS5. Threads that
] ] receive bandwidth reservations are run in the RT scheduling
4.1 Hardware Configuration class, whereas best-effort threads run in the TS scheduling

the appropriate Stream. A map in the driver’s interrupt h
dler determines (1) the type of connection and (2) whether }

Sparc 5

FORE ASX-1000

Figure 13: ORB Endsystem Benchmarking Testbed

4 Empirical Benchmarking Results

Our experiments were conducted using a FORE Syste(;'1|1asSS

ASX-1000 ATM switch connected to two SPARCSs: a uni- . . .

processor 300 MHz UltraSPARC2 with 256 MB RAM and 4-2-2 Measuring the Relative Cost of Using RIO kthreads
170 MHz SPARCS with 64 MB RAM. Both SPARCS ran Sogenchmark design:  This set of experiments is designed to
laris 2.5.1 and were connected via a FORE Systems SBA-2006,q re the relative cost of using RIO kthreads versus inter-
ATM interface over an OC3 155 Mbps port on the ASX-100Q ¢ threadsi(e., the default Solaris behavior) to process net-

This benchmarking testbed is shown in Figure 13. work protocols. The results show that it is relative efficient
to perform protocol processing using RIO kthreads in the RT
) . scheduling class.
4.2 Measuring the End-to-end Real-time Per-  The following three test scenarios used to measure the rela-
formance of the RIO Subsystem tive cost of RIO kthreads are based on the latency test in Sec-

_ _ ' tion 4.2.1:
This section presents results that quantify (1) the cost of us-

ing kernel threads for protocol processing and (2) the benefits, The default Solaris network 1/0 subsystem.
gained in terms of bounded latency response times and peri- ) . .
RIO enabled with the RIO kthreads in the real-time

odic processing guarantees. RIO uses a periodic processiag heduli I ith a alobal prioritv of 100
model to provide bandwidth guarantees and to bound maxi- scheduling class with a global priority 0 '

mum throughput on each connection. 3. RIO enabled with the RIO kthreads in the system

13



scheduling class with a global priority of 60 (system prelass. For example, theTREAMS background threads, call-
ority 0). out queue thread, and deferred bufcall processing all run with
a global priority of 60 in the system scheduling class.

In all three cases, 10,000 samples were collected with th?_:igure 15 plots the distribution of the latency values for the

client and server user threads running in the real-time SChe?éJtenc experiments. This fiaure shows the number of samples
ing class with a global priority of 100. Y exp ' 9 P
Benchmark results and analysis: In each test, we deter-
mined the mean, maximum, minimum, and jitter (standard de- 40 T Default Béhavior ——
viation) for each set of samples. The benchmark configuration 4q9 i Real-Time Priority -
. . . . . i System Priority (60) =
is shown in Figure 14 and the results are summarized in the

350 i :
9 .
Ultra2 SPARCS 8 300 ir
250
latency echo svr Y’a
s s 5 200
Qo ¢
‘/ N /F E 10
/ < Pl 2
— ‘ 100 [ o
TCP TCP P @ ?
1 1 Nk
0 "’i* “&‘*MAD Kgin DDDHHD CEB0 N o
P P 600 650 700 750 800 850 900 950 1000 1050
micro seconds
/r /F Figure 15: Latency Measurements versus Priority of kthreads
INT/RIO INT/RIO

obtained at a given latency valde/—5 us. The distribution
ATM Driver ATM Driver of the default behavior and RIO with RT kthreads are virtually
/ \ / identical, except for a shift o£12 us.

Section 3.1.3 describes the default Solaris I/O subsystem
behavior. These measurements reveal the effect of performing
network protocol processing at interrupt context versus per-
forming it in a RIO kthread. With the interrupt processing
model, the input packet is processed immediately up through

Figure 14: RIO kthread Test Configuration

table below: the network protocol stack. Conversely, with the RIO kthreads
Mean | Max Min Jitter model, the packet is placed in a RIO queue and the interrupt
Default behavior | 653us | 807us | 613us | 19.6 thread exits. This causes a RIO kthread to wake up, dequeue
RIO RT kthreads | 665us | 824us | 620us | 18.8 the packet, and perform protocol processing within its thread
RIO SYS kthreads| 799us | 1014us | 729us | 38.0 context.

As shown in this table, when the RIO kthreads were run in theA key feature of using RIO kthreads for protocol process-

RT scheduling class the average latency increased by 1.80}§gris their ability to assign appropriate kthread priorities and
defer protocol processing for lower priority connections.

12us. The maximum latency value, which is a measure oft[i? ) : . X . .
H y ﬁus, if a packet is received on a high-priority connection, the

upper latency bound, increased by 2.1% opd7 The jitter, . . o

which represents the degree of variability, actually decrea&?&oc'ated kthread \.N'” preemptlower priority kthreads to pro-

by 4.1%. The key result is that jitter was not negatively afess the newly received data.

fected by using RIO kthreads. The results shown in Figure 15 illustrate that using RIO
As expected, the mean latency and jitter increased more &ipreads in the RT scheduling class results in a slight increase

nificantly when the RIO kthreads ran in the system scheduliog13-15us in the round-trip processing times. This latency

class. This increase is due to priority inversion between tinerease stems from RIO kthread dispatch latencies and queu-

user and kernel threads, as well as competition for CPU tiing delays. However, the significant result is that latency jitter

with other kernel threads running in the system schedulidgcreases for real-time RIO kthreads.
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4.2.3 Measuring Low-latency Connections with Compet-
ing Traffic

Bgn'chmark design: This experimgnt measures thg Q¢ter- Ultraz SPARCS
minism of the RIO subsystem while performing prioritized

protocol processing on a heavily loaded server. The results il- — | oot
lustrate how RIO behaves when network I/O demands exceed % TTEP
the ability of the ORB endsystem to process all requests. The

atency
SPARCS is used as the server in this test since it can process N
TCP

only ~75% of the full link speed on an OC3 ATM interface

usingttcp  with 8 KB packets. TCP TCP TCP
Two different classes of data traffic are created for this test: ¢ ¢ /r ¢ w ¢

(1) a low-delay, high-priority message stream and (2) a best-

effort (low-priority) bulk data transfer stream. The message IP IP P IP

stream is simulated using the latency application described

in Section 4.2.1. The best-effort, bandwidth intensive traffic T ﬂ\

is simulated using a modified version of ttiep  program, RT 0 SYSO RT O

which sends 8 KB packets from the client to the server.

The latency experiment was first run with competing traffic _
using the default Solaris I/0 subsystem. Next, the RIO subsys- || [ATM Driver ATM D”Ver/
tem was enabled, RIO kthreads and priorities were assigned to / \ /
each connection, and the experiment was repeated. The RIO
kthreads used for processing the low-delay, high-priority mes- High Priority VCI = 130
sages were assigned a real-time global priority of 100. The Low Priority VCI = 100
latency client and echo server were also assigned a real-time_, , .
global priority of 100. Figure 16: RIO Low-latency Benchmark Configuration

The best-effort bulk data transfer application was run in the
time-sharing class. The corresponding RIO kthreads ran in
the system scheduling class with a global priority of 60. In
general, all best effort connections use a RIO kthread in the
SYS scheduling class with a global priority of 60.

Figure 16 shows the configuration for the RIO latency

\f\f\_{_>

benchmark. 80
Benchmark results and analysis: The results from collect- Default Behavior -
ing 1,000 samples in each configuration are summarizedinthe 70 : sing e
table below: i 6ol
Mean | Max Min Jitter 2 50 !
Default | 1072us | 3158us | 594us | 497 us g
RIO 946pus | 2038us | 616us | 282us ig

This table compares the behavior of the default Solaris Ié)
subsystem with RIO. It illustrates how RIO lowers the uppgr
bound on latency for low-delay, high-priority messages in the
presence of competing network traffic. In particular, RIO low-
ered the maximum round-trip latency by 35% (1,1&), the
average latency by 12% (1265), and jitter by 43% (21ms). . s
The distribution of samples are shown in Figure 17. This fig- 0.5 ! L5 mill Sgconds 25 3 35
ure highlights how RIO lowers the upper bound of the round-
trip latency values.

These performance results are particularly relevant for real-
time systems where ORB endsystem predictability is cru-
cial. The ability to specify and enforce end-to-end priorities

Figure 17: Latency with Competing Traffic
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over transport connections helps ensure that ORB endsysterperiment was conducted using three threads that receive spe-
achieve end-to-end determinism. cific periodic protocol processinge., bandwidth, guarantees
Another advantage of RIO’s ability to preserve end-to-efiém RIO. A fourth thread sends data using only best-effort
priorities is that the overall system utilization can be increasgaiarantees.
For instance, the experiment above illustrates how the uppeAll four threads run thetcp  program, which sends 8 KB
bound on latency was reduced by using RIO to preserve eddta blocks from the UltraSPARC?2 to the SPARCS5. For each
to-end priorities. For example, system utilization may be ubandwidth-guaranteed connection, a RIO kthread was allo-
able to exceed 50% while still achieving a 2 ms upper bouaated in the real-time scheduling class and assigned appro-
for high-priority message traffic. However, higher system ufiriate periods and packet counitg,., computation time. The
lization can be achieved when an ORB endsystem supptest-effort connection was assigned the default RIO kthread,
real-time I/O. This situation is demonstrated by the resultdich runs with a global priority of 60 in the system schedul-
in this section, where RIO achieved latencies no greater thiag class. Thus, there were four RIO kthreads, three in the
2.038 ms, even when the ORB endsystem was heavily loadegl-time scheduling class and one in the system class. The
with best-effort data transfers. following table summarizes the RIO kthread parameters for
Figure 18 shows the average bandwidth used by the mtite bandwidth experiment.
ified ttcp  applications during the experiment. The dip in

RIO Config | Period | Priority | Packets | Bandwidth
13 Default Behavior —— kthread1 | 10ms | 110 8 6.4 MBps
ik s o . 82 RIOEnabled - kthread 2 10ms | 105 4 3.2 MBps
12 ey A el D O e L kthread3 | 10ms | 101 2 1.6 MBps
i 4 { kthread 4 | Async | 60 Available | Available
é 1 1“1 ; (best-effort)
: 10 — 15 . g .
= The three user threads that received specific bandwidth
2 9l ‘ guarantees were run with the same real-time global priorities
g j as their associated RIO kthreads. These threads were assigned
o 8 A % priorities related to their guaranteed bandwidth requirements
S — the higher the bandwidth the higher the priority. Ttop
7 application thread and associated RIO kthread with a guaran-
teed 6.4 MBps were assigned a real-time priority of 110. The
6 0 10 20 20 40 50 60 application and RIO kernel th_reads with a banglw_idth of 3.2
Sample Number MBps and 1.6 MBps were assigned real-time priorities of 105

and 101, respectively.
As described in Section 3.3.1, the RIO kthreads are awak-

throughput between sample numbers 10 and 20 occured W?lré%d at the beginning of each period. They first check their

the high-priority latency test was run, which illustrates hoﬁssrzggeguﬁ:& rq(L)IfeuZcflgétsatlﬁléetzie?ﬁsvraﬁirr?cef?;I?r?etZteell:taosf-
RIO effectively reallocates resources when high-priority me%g P y P 9

sage traffic is present. Thus, the best-effort traffic obtai S next period.
slightly lower bandwidth when RIO is used.

Figure 18: Bandwidth of Competing Traffic

The best-effort user thread runs in the time sharing class. Its
associated RIO kthread, called the “best-effort” RIO kthread,
is run in the system scheduling class with a global priority
4.2.4 Measuring Bandwidth Guarantees for Periodic of 60. The best-effort RIO kthread is not scheduled period-

Processing ically. Instead, it waits for the arrival of an eligible network

. ) I/O packet and processes it “on-demand.” End-to-end prior-
Benchmark design: RIO can enforce bandwidth guarante€g, ig maintained, however, since the best-effort RIO kthread

since it implements the schedule-driven protocol processyle 5 giohal priority lower than either the user threads or RIO

model described in Section 3.3.2. In contrast, the default R@5reads that handle connections with bandwidth guarantees.
laris I/O subsystem processes all input packets on-demand at

interrupt contexti.e., with a priority higher than all other userBenchmark results and analysis: In the experiment, the

threads and non-interrupt kernel threads. best-effort connection starts first, followed by the 6.4 MBps,
The following experiment demonstrates the advantages &2 MBps and 1.6 MBps guaranteed connections, respectively.

accuracy of RIO’s periodic protocol processing model. THée results are presented in Figure 19 where the effect of the
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guaranteed connection on the best-effort connection can be ot - ~

Services

served.
14
Requested BW = 6.4 MBps -
12 F Requested BW = 3.2 MBps._ -+ )
Requested: BW = 1.6 MBps = -
Cco C1 Cn Object Adapter
10 :
Client Server
- J o)
® 8
o
m | E
= 6!
T ==5
4 i NI S S R SRS (PR et oty e g Sparc 5
2f uitra @
i ATM Switch
0
0 2 4 6 8 10 12 14
sec

FORE ASX-1000

Figure 19: Bandwidth Guarantees in RIO
o ) Figure 20: End-to-End ORB Endsystem Benchmark
This figure clearly shows that the guaranteed connections
received their requested bandwidths. In contrast, the best-
effort connection loses bandwidth proportional to the bangkiority of 130. Thelow-priority servant runs in a lower prior-
width granted to guaranteed connections. The measuringityithread with an RT thread priority of 100. Each thread pro-
terval was small enough for TCPs “slow start” algorithm [4@fesses requests sent to it by the appropriate client threads on
to be observed. the UltraSPARC2. The SPARCS is connected to a 155 Mpbs
Periodic protocol processing is useful to guarantee ba@=3 ATM interface so the UltraSPARC2 can saturate it with
width and bound the work performed for any particular conetwork traffic.
nection. For example, we can specify that the best-effort con Client benchmarking configuration:  As shown in Fig-

nection'in the experiment aboye receive no more than 400/%?(5 20, the clientis the 300 MHz, uni-processor UltraSPARC?2,
the available bandwidth on a given network interface. which runs the TAO real-time ORB with one high-priority
client Cy andn low-priority clients, Cy... C,. The high-

4.3 Measuring the End-to-end Real-time Per- priority client is assigned an RT priority of 130, which is the

formance of the TAO/RIO ORB Endsystem same as the high-priority servant. It invokes two-way CORBA

. operations at a rate of 20 Hz.

Section 4.2 measures the performance of the RIO subsystemy| jow-priority clients have the same RT thread priority of
in |s'olat|o.n. This section pomblnes RIO and TAO to createjgg which is the same as the low-priority servant. They in-
vertically mtegrated real-time ORB endsystem and then MEBke two-way CORBA operations at 10 Hz. In each call the
sures the impact on end-to-end performance when run Wifunt thread sends a value of ty@ORBA::Octet to the
prototypical real-time ORB application workloads [11].  geryant. The servant cubes the number and returns the result.
Benchmark design: The benchmark outlined below was The benchmark program creates all the client threads at
performed twice: (1) without RIO,e., using the unmodified startup time. The threads block on a barrier lock until all client
default Solaris 1/0 subsystem and (2) using our RIO subs$isreads complete their initialization. When all threads inform
tem enhancements. Both benchmarks recorded averagéhl@a-main thread that they are ready, the main thread unblocks
tency and the standard deviation of the latency valiles, the clients. The client threads then invoke 4,000 CORBA two-
jitter. The server and client benchmarking configurations awey operations at the prescribed rates.

described below. e RIO subsystem configuration: When the RIO subsys-

e Server benchmarking configuration: As shown in tem is used, the benchmark has the configuration shown in
Figure 20, the server host is the 170 MHz SPARCS5. Thisgure 21. With the RIO subsystem, high- and low-priority
host runs the real-time ORB with two servants in the Objaetiquests are treated separately throughout the ORB and 1/O
Adapter. Thehigh-priority servant runs in a thread with an RTsubsystem.

17



_ Ultra2 SPARC5 Figure 22 illustrates the average latency results for the high-
Client Application and low-priority clients both with and without RIO. This figure

Server ORB Core

12000 T

Default High Priority Clients -<---
ORpdure Reactor Reactor Default Low Priority Clients -+
’El‘ 10Hz 20Hz 10000 10 High Priority Client &%
— . y vy » 8000
2
TCP TCP TCP TCP 3
9 6000
RN RN .
o %
E 4 . - : % 3
IP IP IP IP 000
T | R N
RT RT I = S B B g
Periodic INT Periodic INT 0
0 5 10 15 20 25 30 35 40 45 50
) _ Number of Low Priority Clients
A{”K"Z/ ATM\DKVW Figure 22: Measured Latency for All Clients with and without
RIO

shows how TAO eliminates many sources of priority inversion
within the ORB. Thus, high-priority client latency values are
relatively constant, compared with low-priority latency values.
Figure 21: ORB Endsystem Benchmarking ConfigurationMoreover, the high-priority latency values decrease when the
the RIO subsystem is enabled. In addition, the low-priority
clients’ average latency values track the default /0O subsys-
Low-priority client threads transmit requests at 10 Hgams behavior, illustrating that RIO does not unduly penalize
There are several ways to configure the RIO kthreads. Forpast-effort traffic. At 44 and 49 low-priority clients the RIO-
stance, we could assign one RIO kthread to each low-priofdyapled endsystem outperforms the default Solaris I/O subsys-
client. However, the number of low-priority clients varies frorfem.
0to 50. Plus all clients have the same period and send the sanggure 23 presents a finer-grained illustration of the round-
number of requests per period, so they have the same prigfis |atency and jitter values for high-priority client vs. the

ties. Thus, only one RIO kthread is used. Moreover, sincé{imber of competing low-priority clients. This figure illus-
is desirable to treat low-priority messages as best-effort traffic,

the RIO kthread is placed in the system scheduling class and 2100
assigned a global priority of 60. 2000
To minimize latency, high-priority requests are processed

High Priority VCI = 130
Low Priority VCI = 100

Default High Priority Clients ——

by threads in the Interrupt (INTR) scheduling class. Therefore, 1900

we create two classes of packet traffic: (1) low-latency, high 1800

priority and (2) best-effort latency, low-priority. The high—§ 1700

priority packet traffic preempts the processing of any Iow§ 1600

priority messages in the 1/0 subsystem, ORB Core, Obje&

Adapter, and/or servants. £ 1500

Benchmark results and analysis: This experiment shows 1400

how RIO increases overall determinism for high-priority, real- 1300

time applications without sacrificing the performance of best- 1549 {

effort, low-priority, and latency-sensitive applications. RIO’s

impact on overall determinism of the TAO ORB endsystem 1100 0 5 10 15 20 25 30 35 40 45 50
is shown by the latency and jitter results for the high-priority Number of Clients

client C, and the average latency and jitter for O to 49 low-  Figure 23: High-priority Client Latency and Jitter
priority clients,C; ... C,.
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trates how not only did RIO decrease average latency, butdt€Enforced bandwidth guarantees: The RIO periodic pro-
jitter results were substantially better, as shown by the eromssing model provides network bandwidth guarantees. RIO’s
bars in the figure. The high-priority clients averaged a 1386hedule-driven protocol processing enables an application to
reduction in latency with RIO. Likewise, jitter was reduced bgpecify periodic 1/0O processing requirements which are used
an average of 51%, ranging from a 12% increase with no cam-guarantee network bandwidth.

peting low-priority clients to a 69% reduction with 44 compeg; Fine-grained resource control: RIO enables fine-

ing low-priority clients. . .
9 b y .. rained control of resource usageg, applications can set
In general, RIO reduced average latency and jitter becaanse

. o € maximum throughput allowed on a per-connection basis.

it used RIO kthreads to Process low-priority packets. Cofi'kewise, applications can specify their priority and process-

versely, in the default S.OlarISTREAMS /O subsystem, Sein requirements on a per-connection basis. TAO also uses

vant threads are more .I|kely to be preempted because thr%ﬁgge specifications to create off-line schedules for statically

from the INTR scheduling class are used for all protocol Pro; nfigured real-time applications

cessing. Our results illustrate how this preemption can sing— '

icantly increase latency and jitter values. 4. End-to-end priority preservation: RIO preserves end-
Figure 24 shows the average latency of low-priority cliet@-end operation priorities by co-scheduling TAO's ORB Re-

threads. This figure illustrates that the low-priority clients ictor threads with RIO kthreads that perform I/O processing.

5. Supports best-effort traffic: RIO supports the four

16000 N QoS features described above without unduly penalizing best-
14000 Deffgl'gfngpg?{;%y%ﬁg;i o= effort, i.e., traditional network traffic. RIO does not mo-
12000 nopolize the system resources used by real-time applications.
Moreover, since RIO does not use a fixed allocation scheme,
2 10000 resources are available for use by best-effort applications when
§ 8000 they are not in use by real-time applications.
[
S 6000
E 4000 % 5 Related Work on 1/0O Subsystems
2000 s Our real-time /O (RIO) subsystem incorporates advanced
0 techniques [47, 17, 42, 43, 48] for high-performance and real-
time protocol implementations. This section compares RIO
2000 0 5 10 15 20 25 30 35 40 a5 5o Withrelated work on l/O subsystems.

Number of Clients

Figure 24: Low-priority Client Latency I/O subsystem support for QoS: The Scout OS [49, 50]

employs the notion of pathto expose the state and resource
. . requirements of all processing components ifloa. Simi-
clL.Jrrheo'I no apprgc!gblefchange n a"‘;fag‘? Iatenfcyl.' Therg W Sr%), our RIO subsystem reflects the path principle and in-
tshlg F;gi;?:;ré{;tseraghsggae (;oarr:] dm?ggr?]s ?‘ofw kantt;e rl:.e 8r|porates it with TAO and Solaris to create a vertically inte-
P Y P pu y '99%ted real-time ORB endsystem. For instance, RIO subsys-

resources like CPU, memory, and network interface and

ilar to Scout’s binding of resources to a path.
Scout represents a fruitful research direction, which is com-
4.4 Summary of Empirical Results plementary with our emphasis on demonstrating similar ca-
pabilities in existing operating systems, such as Solaris and
Our empirical results presented in Section 4 illustrate how RN2tBSD [25]. At present, paths have been used in Scout
provides the following benefits to real-time ORB endsystemargely for MPEG video decoding and display and not for pro-
. ) tocol processing or other I/O operations. In contrast, we have
1. Reduced latency and jitter: RIO reduces round-trip 1a- 5 ccessfully used RIO for a number of real-time avionics ap-
tency and jitter for real-time network I/O, even during higRjications [9] with deterministic QoS requirements.
network utilization. RIO prioritizes network protocol process- gpy [51, 52] provides an extensible infrastructure and a

ing t|9 e?sure resources are available when needed by real-{ig set of extensible services that allow applications to safely
applications.
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change the OS interface and implementation. Applicatidf2) schedule-driven protocol processing is proposed as a solu-
specific protocols are written in a typesafe langudgjexus tion.

and configured dynamically into the SPIN OS kernel. BecausaNhile RIO shares many elements of the approaches de-
these protocols execute within the kernel, they can access setibed above, we have combined these concepts to create the
work interfaces and other OS system services efficiently. fligt vertically integrated real-time ORB endsystem. The re-
the best of our knowledge, however, SPIN does not suppsuiting ORB endsystem provides scalable performance, peri-
end-to-end QoS guarantees. odic processing guarantees and bounded latency, as well as an

end-to-end solution for real-time distributed object computing
Enhanced I/O subsystems: Other related research has fomigdleware and applications.

cused on enhancing performance and fairness of I/O subsys-
tems, though not specifically for the purpose of providing real-
time QoS guarantees. These techniques are directly applicgple Concluding Remarks
to designing and implementing real-time 1/O and providing
QoS guarantees, however, so we compare them with our RiGhventional operating systems and ORBs do not provide ad-
subsystem below. equate support for the QoS requirements of distributed, real-
[43] applies several high-performance techniques totime applications. Meeting these needs requires an integrated
STREAMSbased TCP/IP implementation and compares t¥B endsystem architecture that delivers end-to-end QoS
results to a BSD-based TCP/IP implementation. This wagkiarantees at multiple levels. The ORB endsystem described
is similar to RIO since they parallelize theiTREAMS im- in this paper addresses this need by combining a real-time 1/0
plementation and implement early demultiplexing and dedR10) subsystem with the TAO ORB Core [11] and Object
catedsSTREAMS, known as Communication Channels (CCAdapter [53], which are explicitly designed to preserve QoS
The use of CC exploits the built-in flow control mechanisnmsoperties end-to-end in distributed real-time systems.
of STREAMS to control how applications access the 1/O sub- This paper focuses on the design and performance of RIO.
system. This work differs from RIO, however, since it focus€dO is a real-time I/O subsystem that enhances the Solaris
entirely on performance issues and not sources of priority 5.1 kernel to enforce the QoS features of the TAO ORB end-
versions. For example, minimizing protocol processing in igystem. RIO provides QoS guarantees for vertically integrated
terrupt context is not addressed. ORB endsystems that increase (1) throughput and latency per-
[28, 42] examines the effect of protocol processing with ifermance and (2) end-to-end determinism. RIO supports peri-
terrupt priorities and the resulting priority inversions and livedic protocol processing, guarantees I/O resources to applica-
lock [28]. Both approaches focus on providing fairness atidns, and minimizes the effect of flow control in a Stream.
scalability under network load. In [42], a network I/O sub- A novel feature of the RIO subsystem is its integration of
system architecture callddzy receiver processinf.RP) is real-time scheduling and protocol processing, which allows
used to provide stable overload behavior. LRP uses edRlfD to support guaranteed bandwidth and low-delay applica-
demultiplexing to classify packets, which are then plac#idns. To accomplish this, we extended the concurrency archi-
into per-connection queues or on network interface channé&sture and thread priority mechanisms of TAO into the RIO
These channels are shared between the network interfacesatdystem. This design minimizes sources of priority inver-
OS. Application threads read/write from/to network interfacgon that cause nondeterministic behavior.
channels so input and output protocol processing is performedfter integrating RIO with TAO, we measured a significant
in the context of application threads. In addition, a schemeduction in average latency and jitter. Moreover, the latency
is proposed to associate kernel threads with network interfaeel jitter of low-priority traffic was not affected adversely. As
channels and application threads in a manner similar to REDresult of our RIO enhancements to the Solaris kernel, TAO
However, LRP does not provide QoS guarantees to applicathe first ORB to support end-to-end QoS guarantees over
tions. ATM/IP networks [27].

[28] proposed a somewhat different architecture to min-In addition, implementing RIO allowed us to experiment
imize interrupt processing for network 1/0. They proposewith alternative concurrency strategies and techniques for pro-
polling strategy to prevent interrupt processing from consugessing network 1/0 requests. Our results illustrate how con-
ing excessive resources. This approach focuses on scalaHilityring periodic protocol processing [54] strategies in the So-
under heavy load. It did not address QoS issues, however, dadis kernel can provide significant improvements in system
as providing per-connection guarantees for fairness or bahdhavior, compared with the conventional Solaris 1/0 subsys-
width, nor does it charge applications for the resources them.
use. It is similar to our approach, however, in that (1) inter-The TAO and RIO integration focused initially on stat-
rupts are recognized as a key source of nondeterminism aadly scheduled applications with deterministic QoS re-
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quirements.

We have extended the TAO ORB endsy$4]

tem to support dynamically scheduling [8] and applications

with statistical QoS requirements.

The C++ source code

for ACE, TAO, and our benchmarks is freely available at

www.cs.wustl.edu/

~schmidt/TAO.html . The RIO [15]

subsystem is available to Solaris source licensees.
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