An Empirical Evaluation of OS Support for
Real-time CORBA Object Request Brokers

David L. Levine, Sergio Flores-Gaitan, and Douglas C. Schmidt
{levine,sergio,schmigi@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

Submitted to the Real-Time Technology and Applicationk Introduction
Symposium (RTAS), Vancouver, British Columbia, Canada,
June 2—4, 1999. Next-generation distributed real-time applications, such as
teleconferencing, avionics mission computing, and process
control, require endsystems that can provide statistical and de-
Abstract terministic quality of service (QoS) guarantees for latency [1],

There is increasing demand to extend Object Request Btgndwidth, and reliability [2]. The following trends are shap-
ker (ORB) middleware to support distributed applications with'd the evolution of software (_jevelopmenttechnlqu.es for these
stringent real-time requirements. However, lack of proper Céstributed real-time applications and endsystems:

support can yield substantial inefficiency and unpredictabiliffcreased focus on middleware and integration frame-
for ORB middleware. This paper p_rovides two contributionSarks: There is a trend in real-time R&D projects away
to the study of OS support for real-time ORBs. from developing real-time applications from scratchine

First, we empirically compare and evaluate the suitabifagrating applications using reusable components based on
ity of real-time operating systems, VxWorks and LynxOS, a§}flect-oriented (OO) middleware [3]. The objective of mid-
general-purpose operating systems with real-time extensiof\gware is to increase quality and decrease the cycle-time and
Windows NT, Solaris, and Linux, for real-time ORB middigffort required to develop software by supporting the integra-

ware. While holding the hardware and ORB constant, wign of reusable components implemented by different suppli-
vary the operating system and measure platform-specific vayjig_

ations, such as latency, jitter, operation throughput, and CPU
processing overhead. Second, we describe key areas whegeeased focus on QoS-enabled components and open sys-
these operating systems must improve to support predictat##)s: There is increasing demand for remote method invo-
efficient, and scalable ORBs. cation and messaging technology to simplify the collaboration
Our findings illustrate that general-purpose operating sy8f open distributed application components [4] that possess
tems like Windows NT and Solaris are not yet suited to méeterministic and statistical QoS requirements. These compo-
the demands of applications with stringent QoS requiremeritéNts must be customizable to meet the functionality and QoS
However, LynxOS does enable predictable and efficient ORgUirements of applications developed in diverse contexts.

performance, thereby making it 2 compelling OS platform anrcreased focus on standardizing and leveraging real-time

real-time CORBA gppllcatlons. L'F‘”X prowde; good raw Ioe{fOTS hardware and software: To leverage development
formance, though it is not a real-time operating system. Sut:

prisingly, VxWorks does not scale robustly. In general, our reffort and reduce training, porting, and maintenance costs,

. %ere is increasing demand to exploit the rapidly advancing
sults underscore the need for a measure-driven methodolo .
S N . . ._cdpabilities of standard common-off-the-shelf (COTS) hard-
to pinpoint sources of priority inversion and non-determinisrh ! X .
: . ware and COTS operating systems. Several international stan-
in real-time ORB endsystems. L . .
dardization efforts are currently addressing QoS-related issues
Keywords: Real-time CORBA Object Request Broker, QoSgssociated with COTS hardware and software.

enabled OO Middleware, Performance Measurements One particularly noteworthy standardization effort has
*This work was supported in part by Boeing, CDI/GDIS, DARPA conyl(.alded the OMG CORBA specification [5]. CORBA is 0O

tract 9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, andmgjdl_eware $0ftware that allows clients to invoke operations
Sprint. on objects without concern for where the objects reside, what

language the objects are written in, what OS/hardware platThe remainder of this paper is organized as follows: Sec-

form they run on, or what communication protocols and néisn 2 outlines the architecture and design goals of TAO [10],

works are used to interconnect distributed objects [6]. which is a real-time implementation of CORBA developed
There has been recent progress towards standardizhdVashington University; Section 3 presents empirical re-

CORBA for real-time [7] and embedded [8] systems. Sesults from systematically benchmarking the efficiency and

eral OMG groups, most notably the Real-Time Special Inter@sedictability of TAO in several real-time operating systems,

Group (RT SIG), are actively investigating standard extensiares, VxWorks and LynxOS, and operating systems with real-

to CORBA to support distributed real-time applications. Thame extensionsi.e., Solaris, Windows NT, and Linux; Sec-

goal of standardizing real-time CORBA is to enable real-tinten 4 compares our research with related work; and Section 5

applications to interwork throughout embedded systems agrdsents concluding remarks. For completeness, Appendix A

heterogeneous distributed environments, such as the Intereaplores the general factors that impact the performance of
However, developing, standardizing, and leveraging dreal-time ORB endsystems.

tributed real-time ORB middleware remains hard, notwith-

standing the significant efforts of the OMG RT SIG. There

are few successful examples of standard, widely deployed &- Qverview of TAO

tributed real-time ORB middleware running on COTS oper-

ating systems and COTS hardware. Conventional CORBAO is a high-performance, real-time ORB endsystem tar-

ORBs are generally unsuited for performance-sensitive, digted for applications with deterministic and statistical QoS

tributed real-time applications due to their (1) lack of Qo&quirements, as well as “best-effort” requirements. The TAO

specification interfaces, (2) lack of QoS enforcement, (3) laORB endsystem contains the network interface, OS, commu-

of real-time programming features, and (4) overall lack of pefication protocol, and CORBA-compliant middleware com-

formance and predictability [9]. ponents and features shown in Figure 1. TAO supports the
Although some operating systems, networks, and protocols

now support real-time scheduling, they do not provide inte-, o in args

grated end-to-end solutions [10]. Moreover, relatively little| — pjeny (0B7) OPeration() OBJECT

systems research has focused on strategies and tactics for r XEE/ out args + return_value (SERVANT)

time ORB endsystems. For instance, QoS research at the riei-
work and OS layers is only beginning to address key require-
ments and programming models of ORB middleware [11]. Y S,glLI;l‘ON v

Historically, research on QoS for high-speed networks, such RIDL ORB RUN-TIME e
as ATM, has focused largely on policies for allocating virtual SToes SCHEDULER ADAPTER
circuit bandwidth [12]. Likewise, research on real-time o?{

erating systems has focused largely on avoiding priority i]

versions in synchronization and dispatching mechanisms f
multi-threaded applications [13]. An important open researcilliet R <o 7 0S KERNEL
SUBSYSTEM

topic, therefore, is to determine how best to map the resul
from QoS work at the network and OS layers onto the O(SIS 1y A
HIGH-SPEED HIGH-SPEED

programming model familiar to many developers and USers § «prwonk INTERFACE NETWORK NETWORK. INTERFACE
ORB middleware. I I

Our prior research on CORBA middleware has explored
several dimensions of real-time ORB endsystem design figure 1. Components in the TAO Real-time ORB Endsystem
cluding static [10] and dynamic [14] real-time scheduling,
real-time request demultiplexing [15], real-time event procestandard OMG CORBA reference model [5], with the follow-
ing [16], real-time 1/O subsystems [17], real-time ORB Coiiag enhancements designed to overcome the shortcomings of
connection and concurrency architectures [18], real-time IBbnventional ORBs [18] for high-performance and real-time
compiler stub/skeleton optimizations [19], and performanaeplications:

comparisons of various commercial ORBs [20]. This paperfo- _ ,
cuses on a previously unexamined point in the real-time Ofggal-time IDL Stubs and Skeletons: TAO's IDL stubs and

endsystem design spactie impact of OS performance andgkeletons efficiently marshal and demarshal operation param-
predictability on ORB performance and predictabiliycom- ©ters, respectively [22]. In addition, TAO's Real-time IDL

panion paper [21] covers additional aspects of ORB/OS pERIDL) stubs and skeletons extend the OMG IDL specifica-
formance and predictability. tions to ensure that application timing requirements are speci-

fied and enforced end-to-end [23].

2

Real-time Object Adapter: An Object Adapter associates3 ~Real-time ORB Endsystem Perfor-
servants with the ORB and demultiplexes incoming requests ;

to servants. TAO's real-time Object Adapter [19] uses perfect mance Experlments
hashing [24] and active demultiplexing [15] optimizations tx
dispatch servant operations in constéxt) time, regardless ' .
of the number of active connections, servants, and operati
defined in IDL interfaces.

real-time OS provides applications with mechanisms for
grity—controlled access to hardware and software resources.
echanisms commonly supported by real-time operating sys-
tems include real-time scheduling classes and real-time 1/0
subsystems. These mechanisms enable applications to spec-
ORB Run-time Scheduler: A real-time scheduler [7] mapsify their processing requirements and allow the OS to enforce
application QoS requirements, such as include bounding eti@ requested quality of service (QoS) usage policies.
to-end latency and meeting periodic scheduling deadlinesthis section presents the results of experiments conducted
to ORB endsystem/network resources, such as ORB endgh a real-time ORB/OS benchmarking framework developed
tem/network resources include CPU, memory, network cqf-washington University and distributed with the TAO re-
nections, and storage devices. TAO's run-time scheduler sigse! This benchmarking framework contains a suite of test
ports both static [10] and dynamic [14] real-time schedulingetrics that evaluate the effectiveness and behavior of real-
strategies. time operating systems using various ORBSs, including MT-
Orbix, COOL, VisiBroker, CORBAplus, and TAO.

Real-time ORB Core: An ORB Core delivers client re- Our previous experience [15, 20, 28, 29, 18] measuring the
quests to the Object Adapter and returns responses (if anyj@sformance of CORBA implementations showed that TAO
clients. TAO's real-time ORB Core [18] uses a multi-threade®kPports efficient and predictable QoS better than other ORBs.
preemptive, priority-based connection and concurrency archiierefore, the experiments reported below focus solely on
tecture [22] to provide an efficient and predictable CORBMAO.

IIOP protocol engine.

_ _ 3.1 Performance Results on Intel
Real-time 1/0O subsystem: TAQO's real-time 1/O subsystem

[25] extends support for CORBA into the OS. TAO's I/O sut8.1.1 Benchmark Configuration

system assigns priorities to real-time 1/O threads so that the

Schedu|abi|ity of app”cation Components and ORB endsysté}ﬁrdware OVerVieW: All Of the tests in th|S Section were run
resources can be enforced. TAO also runs efficiently and @-a 450 MHz Intel Pentium Il with 256 Mbytes of RAM. We

atively predictably on conventional I/O subsystems that lafcused primarily on a single CPU hardware configuration to
advanced QoS features. factor out differences in network interface driver support and

to isolate the effects of OS design and implementation on the

. . end-to-end performance of ORB middleware and applications.
High-speed network interface: At the core of TAO's I/O

subsystem is a “daisy-chained” network interface consisti%eraﬁng system and compiler overview: We ran the

of one or more ATM Port Interconnect Controller (APICHRB/OS benchmarks described in this paper on two real-time
chips [12]. APIC is designed to sustain an aggregate Bperating systems, VxWorks 5.3.1 and LynxOS 3.0.0, and

directional data rate of 2.4 Gbps. In addition, TAO rungree general-purpose operating systems with real-time exten-
on conventional real-time interconnects, such as VME bagfsns, Windows NT 4.0 Workstation with SP3, Solaris 2.6 for

planes, multi-processor shared memory environments, as Walk| and RedHat Linux 5.1 (kernel version 2.0.34). A brief
as Internet protocols like TCP/IP. overview of each OS follows:

TAO is developed atop lower-level middleware called ¢ VxWorks: VxWorks is a real-time OS that supports
ACE [26], which implements core concurrency and distribgnulti-threading and interrupt handling. By default, the Vx-
tion patterns [27] for communication software. ACE proporks thread scheduler uses a priority-based first-in first-out
vides reusable C++ wrapper facades and framework comg@£0O) preemptive scheduling algorithm, though it can be con-
nents that support the QoS requirements of high-performariggired to support round-robin scheduling. In addition, Vx-
real-time applications. ACE runs on a wide range of OS platforks provides semaphores that implement a priority inheri-
forms, including Win32, most versions of UNIX, and real-timgance protocol [30].
operating systems like Sun/Chorus ClassiX, LynxOS, and VX-17a0 and the ORB/OS benchmarks described in this paper are available
Works. atwww.cs.wustl.edu/ ~schmidt/TAO.html

e LynxOS: LynxOS is designed for complex hard realreal-time threads. However, the scheduing is round-robin in-
time applications that require fast, deterministic responseead of FIF®
LynxOS handles interrupts predictably by performing asyg
chronous processing at the priority of the thread that made
request. In addition, LynxOS supports priority inheritance,
well as FIFO and round-robin scheduling policies [31].

RB overview: Our benchmarking testbed is designed to
seiate and quantify the impact of OS-specific variations on

B endsystem performance and predictability. The ORB
used for all the tests in this paper is version 1.0 of TAO [10],

e Windows NT: Microsoft Windows NT is a general-Which is a high-performance, real-time ORB endsystem tar-
purpose, preemptive, multi-threading OS designed to pg@_tegl for applications with deterministic gnd statistical QoS
vide fast interactive response. Windows NT uses a roufiiduirements, as well as "best-effort” requirements. TAO uses
robin scheduling algorithm that attempts to share the CS@MPonents in the ACE framework [35] to provide a common
fairly among all ready threads of the same priority. Wmmplgmentqtlonframework_on each 0sS platform in our bench-
dows NT defines a high-priority thread class calkegaL- Marking suite. Thus, the differences in performance reported
TIME_PRIORITY.CLASS. Threads in this class are schedulgf the following tests are due entirely to variations in OS inter-
before most other threads, which are usually in kwr- Nals, rather than ORB internals.

MAL -PRIORITY-CLASS. o ~ Benchmarking metric overview: The remainder of this
Windows NT is not designed as a deterministic real-tim@ction describes the results of the following benchmarking
OS, however. In particular, its internal queueing is performggbtrics we developed to evaluate the performance and pre-

in FIFO order and priority inheritance is not supported for Miictability of VxWorks, LynxOS, Windows NT, Solaris, and
texes or semaphores. Moreover, there is no way to preveRtix running TAO:

hardware interrupts and OS interrupt handlers from preempt- -)
ing application threads [32]. e Latency and jitter: This test measures ORB la-

tency overhead and jitter for two-way operations. High la-
e Solaris: Solaris is a general-purpose, preemptive, multency directly affects application performance by degrading
threaded implementation of SVR4 UNIX and POSIX. It is deslient/server communication. Large amounts of jitter compli-
signed to work on uniprocessors and shared memory symneate the computation of accurate worst-case execution time,
ric multiprocessors [33]. Solaris provides a real-time schedwlhich is necessary to schedule many real-time applications.
ing class that attempts to provide worst-case guaranteesTbis test and its results are presented in Section 3.1.2.

the time required to dispatch application or kernel threads :) . .
executing in this scheduling class [34]. In addition, Solarjs * ORB/OS operation throughput. This test provides an

. S : indication of the maximum operation throughput that appli-
implements a priority inheritance protocol for mutexes and..

. L cations can expect. It measures end-to-end two-way response
gueues/dispatches threads in priority order.

when the client sends a request immediately after receiving the
e Linux: Linux is a general-purpose, preemptive, mult€SPonse to the previous request. This test and its results are
threaded implementation of SVR4 UNIX, BSD UNIX, andresented in Section 3.1.3.

POSIX. It supports POSIX real-time process and thread, oRB/OS CPU processing overhead: This test mea-
scheduling. The thread implementation utilizes processes Gligres client/server ORB CPU processing overhead, which in-
ated by a speciatlone version offork . This design sim- ¢|ydes system call processing, protocol processing, and ORB
plifies the Linux kernel, though it limits scalability becausga uest dispatch overhead. CPU processing overhead can sig-
kernel process resources are used for each application thr‘?ﬁigcantly increase end-to-end latency. Overall system utiliza-
tion can be reduced by excessive CPU processing per ORB op-
We use the GNU g++ compiler with O2 optimization on €ration. This test and its results is presented in Section 3.1.4.
all but Windows NT, where we use Microsoft Visual C++ 6.0
with full optimization enabled, and VxWorks, where we usg1 2 Measuring ORB/OS Latency and Jitter
the GreenHills C++ version 1.8.8 compiler withOL —OM
optimization. For optimal performance our executables ukerminology synopsis: ORB end-to-endatencyis defined
static libraries. as the average amount of delay seen by a client thread from
Our tests on Solaris, LynxOS, Linux, and VxWorks werd€ time it sends the request to the time it completely receives
run with real-time, preemptive, FIFO thread schedulinte response from a server thredter is the variance of the
This prOVIdeS .SmCt prlorlty-based schedyhng to app.llcatlm.' 20ur high-priority client test results discussed below are not affected by
threads. On Windows NT, tests were run in the Real-time piking round-robin, because we have only one high priority thread. The low-
ority class, which provides preemption capability over nopority results, however, do reflect round-robin scheduling on Windows NT.

latency for a series of requests. Increased latency directly imWhen the test program creates the client threads, these
pairs the ability to meet deadlines, whereas jitter makes rahkreads block on a barrier lock so that no client begins until
time scheduling more difficult. the others are created and ready to run. When all client threads
are ready to begin sending requests, the main thread unblocks
Overview of the latency and jitter metric: We computed them. These threads execute in an order determined by the

the latency and jitter incurred by various clients and servé??l'time thregd Qispgtcher.)
using the following configurations shown in Figure 2. The Each low-priority client thread invokes 4,000 CORBA two-

clients and servers in these tests were run on the same WY requests at its prescribed rate. The high-priority client

chine. thread makes CORBA requests as long as there are low-
priority clients issuing requests. Thus, high-priority client op-
Pl Pl P, (Servants) @ z erations run for the duration of the test.
< - -
‘ @ @ Object Adapter) = In an ideal ORB endsystem, the latency for the low-priority
C g . . _ . .
e e = S cl!ents §hou|d rise grgdually as tr_]e number of. low-priority
0 Looweoon 3 clients increased. This behavior is expected since the low-
:‘ Requests e priority clients compete for OS and network resources as the
Pl Priori load increases. However, the high-priority client should re-
[P Priority main constant or show a minor increase in latency. In general,
Client a significant amount of jitter complicates the computation of
S P realistic worst-case execution times, which makes it hard to
T~ - create a feasible real-time schedule.

' Results of latency metrics: The average two-way response
Pentium |1 time incurred by the high-priority clients is shown in Figure 3.
The jitter results are shown in Figure 4.

Figure 2: ORB Endsystem Latency and Jitter Test Configura-

tion 2500 -

e Server configuration: As shown in Figure 2, our
testbed server consists of one servgntwith the highest real-
time priority Py, and servants; ... S,, that have lower thread
priorities, each with a different real-time priori#, ... P,.
Each thread processes requests that are sent to its servar
client threads in the other process. Each client thread co
municates with a servant thread that has an identical priori
i.e, a clientA with thread priorityP4, communicates with a
servantA that has thread priority,.

2000 -

—=— Linux

—— LynxOS
1500 +— 7= NT

—— Solaris
—— VxWorks

1000 -

Two-way Request Latency, usec

¢ Client configuration: Figure 2 shows how the bench-
marking test uses clients fro@4 . . . C,,. The highest priority 500 -
client,i.e., Cy, runs at the default OS real-time prioriy and
invokes operations at 20 Hke,, it invokes 20 CORBA two-
way calls per second. The remaining cliertts,. .. Cy,, have -
different lower OS thread prioritieB; ... P, and invoke op- 0 1 2 5 10 15 20 25 30 35 40 45 50
erations at 10 Hz,e., they invoke 10 CORBA two-way calls Low Priority Clients
per second.

All client threads have matching priorities with their corre-
sponding servant thread. In each call, the client sends a value .)
of type CORBA::Octet to the servant. The servant cubes | N€ @verage two-way response time incurred by the low-

the number and returns it to the client, which checks that ety clients is shown in Figure 5. The jitter results for the
returned value is correct. low-priority clients are shown in Figure 6. Our analysis of the

results obtained for each OS platform are described below.

Figure 3: TAO's Latency for High-Priority Clients

Two-way Jitter, usec

mLynxOS
W Solaris
M Linux

| VxWorks
| NT

Low Priority Clients

Figure 4: TAO’s Jitter for High-Priority Clients

8000

7000

6000

5000

4000

3000

Two-way Request Latency, usec

2000

1000

Figure 5: TAO’s Latency for Low-Priority Clients

—=— Linux
—— LynxOS /

—<— NT
—— Solaris
—— VxWorks

7 :

A T
yZaaill

O 1 2 5 10 15 20 25 30 35 40 45 50

Low Priority Clients

= LynxOS
| VxWorks
M Linux

| Solaris

| NT

Two-way Jitter, usec

Low Priority Clients RE=

Figure 6: TAO’s Jitter for Low-Priority Clients

e Linux results: The results on Linux are comparable to
those on LynxOS, with a small number of low-priority clients.
As shown in Figure 3, the high-priority latency ranged from
236usec with no low-priority clients to 72g2sec with 40 low-
priority clients. Linux's performance is better than LynxOS
with a very small number of low-priority clients. However, its
rate of growth is higher, showing that its performance does not
scale well as the number of low-priority clients increase. In
addition, we could not run the test with more than 40 low-
priority clients, because the default limit on open files was
reached. Though it should be possible to increase that limit,
the fact that Linux currently implements threads by using OS
processes further indicates that it is not designed to scale up
gracefully under heavy workloads.

e LynxOS results: LynxOS exhibited very low latency.
Moreover, its 1/0O subsystem is closely integrated with its OS
threads, which enables applications running over the ORB to
behave predictably [36]. In addition, the interrupt handling
mechanism used in LynxOS [36] is very responsive. Both
high- and low-priority clients exhibited stable response times,
yielding the low jitter shown in Figure 4. In addition, we ob-
served low latency for the high-priority client, ranging from
307 usec with no low-priority clients to 46isec with 50 low-
priority clients, as shown in Figure 3.

e Windows NT results: The performance on Windows
NT is best characterized as unpredictable. When the number
of clients exceeds 10 the high-priority client latency varies dra-
matically and is higher than on other OS platforms. However,
Windows NT is better than Solaris and VxWorks with 5 and
10 clients. This indicates good code optimization, though the

scheduling behavior of Windows NT does not currently aptter with low load, but its performance did not scale with in-
pear well suited to demanding real-time systems. The resukasing low-priority load.
is confirmed by our ORB/OS overhead measurements in Sec-
ton3.14. _ , 3.1.3 Measuring ORB/OS Operation Throughput

The low-priority request latency on Windows NT is compa-
rable to that on Solaris and VxWorks, though it incurs mofierminology synopsis: Operation throughputs the maxi-
variation. In general, The jitter on Windows NT is the highestum rate at which operations can be performed. We mea-
of the OS platforms tested when the number of low-priorigure the throughput of both two-way (request/response) and
clients exceeds 10. As with Solaris, the variation in behaviame-way (request without response) operations from client to
of Windows NT is problematic for systems that require preerver. This test indicates the overhead imposed by the ORB
dictable QoS. and OS on each operation.

e Solaris results: As shown in Figure 3, TAO’s high-
priority request latency on Solaris shows a trend of grad@verview of the operation throughput metric: Our
growth from~750 usec with no low-priority clients to overthroughput test, calletDL Cubit , uses a single-threaded
900 usec with 50 low-priority clients. In general, the low<€lient that issues an IDL operation at the fastest possible rate.
priority latency requests in Figure 5 grow with number of lowFhe server performs the operation, which is to cube each pa-
priority clients, though with a very large number of requestameter in the request. For two-way operations, the client
the latency drops dramatically. thread waits for the response and checks that it is correct. In-

Solaris’ high-priority request jitter is relatively constant, agrprocess communication is performed via the network loop-
shown in Figure 4, a+250usec. In contrast, the low-priorityback interface since the client and server process run on the
request jitter grows with the number of low-priority clientssame machine.
Both the low- and high-priority request jitter are higher than The time required for cubing the argument on the server is
those of the real-time operating systeies, LynxOS and Vx- small but non-zero. The client performs the same operation
Works. and compares it with the two-way operation result. The cub-

It appears that Solaris’ relatively high jitter is due to the ladkg operation itself is not intended to be a representative work-
of integration between subsystems in the Solaris kernel. Idad. However, many applications do rely on a large volume
particular, Solaris does not integrate its I/O processing with dtsmall messages that each require a small amount of process-
CPU scheduling [17]. Therefore, it cannot ensure the availg. Therefore, théDL _Cubit benchmark is useful for eval-
ability of OS resources like 1/0 buffers and network bandrating ORB/OS overhead by measuring operation throughput.
width. We measure throughput for one-way and two-way oper-

o VxWorks results: As shown in Figure 3, the high- anctions using a variety of IDL data types, includingid ,
low-priority latencies for TAO on VxWorks are comparable t§€duUeénce , andstruct types. The one-way operation mea-
those of LynxOS and Linux for less than 5 clients. Howevetirement eliminates the server reply overhead. Uoid
both latencies grow rapidly with the number of clients. Witfiata type instructs the server to not perform any processing
15 clients, latencies are comparable or worse than thos@$er than that necessary to prepare and send the response,
Solaris. High-priority request jitter is very low on VxWorks!-€- it d0€s notcube its input parameters. Beguence and
comparable to that on LynxOS. Low-priority jitter grows verytruct — data types exercise TAO's marshaling/demarshaling
rapidly with number of clients. These results indicate th@Pgine. ThéMany struct contains amctet , along , and
VxWorks scales poorly on Intel platforms. Nevertheless, v&short , along with padding necessary to align those fields.
Works does have stable behavior for a low range of cliemts,

15 low-priority clients or less. We were not able to run witResults of the operation throughput measurements: The
more than 30 low-priority threads due to exhaustion of an @%Foughput measurements are shown in Figure 7 and described
resource. below?

Result synopsis: Ingeneral, low latency and jitter are neces- 4 | inux results: Linux (along with VxWorks) exhibits
sary for real-time operating systems to bound application gxa pest operation throughput for simple data types, at 236
ecution times. However, general-purpose operating systefac for bothvoid andlong . This demonstrates that the
like Windows NT show erratic latency behavior, particularly
under higher load. In contrast, LynxOS exhibited lower la- 3To compare these results with other results in this paper, operation

tency and better predictability, even under load. This stabil[fj2ugnPut is expressed in termsrefjuest latencyin units of zisec per op-
! : €eration. Throughput is often expressed in terms of operations per second,

makes it more SUi.tablle to provide QoS required by ORB Mighever. Our results can be converted to those terms by simply dividing into
dleware and applications. VxWorks offered low latency arncboo,000.

B Linux B LynxOS O Solaris86 0 VxWorks B NT| Result synopsis: Operation throughput provides a measure

6000 of the overhead imposed by the ORB/OS. TB& _Cubit
test directly measures throughput for a variety of operation
5000 types and data types. Our measurements show that end-to-
end performance depends dramatically on data type. In addi-
4000 tion, the performance variation across platforms emphasizes
the need for running benchmarks with different compilers, as
3000 well as other OS platform components such as network inter-
2 face drivers.
ézooo
é 3.1.4 Measuring ORB/OS CPU Processing Overhead
#1000 Terminology synopsis: ORB/OS processing overhead rep-
]] [I I resents the amount of time the CPU spends (1) processing
0 - ORB requestg.g, marshaling/demarshaling in the IOP com-

void
long

munication protocol, request demultiplexing and dispatching,
and data copying in the Object Adapter and (2) I/O request
Data Type handling in the 1/0 subsystem of the OS kermee), perform-

ing socket calls and processing network protocols.

large
sequence
<long>
large
sequence
<Many>
oneway

Figure 7: TAO's Operation Throughput for OS Platforms
Overview of CPU processing overhead metrics: CPU pro-
cessing overhead is computed using a variant of the bench-

cost of the cubing operation is negligible compared with thgark described in Section 3.1.2. The test in Section 3.1.2 mea-
remainder of the operation processing. The one-way perf@ires the response time of clients’ two-way CORBA requests.
mance on Linux, however, was significantly higher than ofhat response time includes servant processing time and over-
most of the other platforms. head in the ORB and OS communication path. To determine
) the overhead, we developed a version of the latency test that
o LynxOS results: LynxOS offers consistently good per¢qntains the client and server in the same address space in sep-
formance: 259usec and 262usec forvoid andlong , rate threads.
respectively. Similarly, it was close to Linux for large there are two parts to this test: (1) invoking calls through
sequence performance. Its one-way performance was ¢op requestsie, client/server and (2) invoking collocated
best:~72 usec. calls directly on the object. Figure 8 and Figure 9 illustrate
.) . . these two parts, respectively. The overhed of a collocated call
* Sglarls results: The throughputon Solans is roughly Mg simply one virtual function call [19]. The difference in the
Fhe m@dle of the platforms tested. For the simple data typ?a%lancy of the two part reveals the amount of overhead. We ex-
it requires about 40@sec per requestiresponse and LEBC press the overhead difference as a percentage of the collocated-
for a one-way request. call latency.

The test in Figure 9 has three threads: 1) the client thread,
the best operation throughput fesid andlong data types which issues operation requests, 2) the server thread, which

of 234 and 23%:sec, respectively. It performs moderatelyweﬁrﬁgﬁssisl(SCORgéUringeS;z’t asn(;jd ?t’)) atlhescr:]f_:\vrt]egrge:.otrrlread,
on largesequence of longs ,relative'[otheo'[herplatforms.W Ich pi up Y u y '9 prionity

It performs the best, by far, on largequence of Many. client and server threads running CORBA requests. 3tay-
This may be due to the use of the different compiler than nger threachas system scheduling scope and runs at a lower

most of the other platforms. The GreenHills compiler ma}xrethread priority than the CORBA thread. The scavenger

optimize the data marshaling code differently than GNU g+rér uidstsggglﬁjan%egsnégé?ﬁze}isﬁ)’nﬁeiﬂ\s,ﬁ t?ﬁ t(;]lfgtlsstzﬂfs
and Visual C++. VxWorks performs the worst omeway q pidly as p : y y Y

. o should be the client issuing requests, and the server handling
operations, though itis not clear why. those requests. If the “scavenger” thread does run, then the OS
« Windows NT results: Windows NT performed well for 40€S not strictly obey real-time priorities.

We used a two-step process to compute the amount of

simple data types, at310 usec forvoid and 320usec for : :
long . Its one-way performance was also good. However GRB/OS overhead when making two-way requests. This pro-

was at the slow end on largequence processing. cess was applied tq the_ following configurations of the utiliza-
tion test, as shown in Figure 8 and Figure 9:

e VXWorks results: VxWorks (along with Linux) offers

II

d31NA3HOS

Servant
‘ @ Object Adapter
407

Scavenger @ ORB Core

So

ORequesis

Pentium 11

¢ Client/Server (C/S) configuration: Figure 8 illustrates
invocations made to a servant located in the same address
space at the client, but running in a separate thread. Running
the servant in a different process, on platforms that support it,
would needlessly incur additional process context switch over-
head.

e Collocated (CO) configuration: Figure 9 illustrates
collocated (CO) calls from client to servant object. The CO
configuration incurs the overhead of only a single virtual func-
tion calf. This test provides a lower bound to compare with
the C/S results.

We ran each test for a fixed number of caills, 10,000,000.
The total time for the C/S test iB-,s. The total time spent
in the collocated test i$-o. The difference between the du-
ration of these two testd,/s — Tco, yields the time spent
performing ORB/OS processing. In an ideal ORB endsystem,
the ORB and OS would incur minimal overhead, providing
more stable response time and enabling the endsystem to meet
QoS requirements.

Figure 8: ORB Client/Server (C/S) Request Utilization Bench-

mark Configuration

e N
@-
CO

Scavenger

. Requests

Client
G

L

i

Pentium I1

Results of CPU processing overhead metrics: The utiliza-

tion results for each OS platform are shown in Figure 10 and
described below. The figure shows the mean, over 10 runs of
10,000,000 calls each, and plus/minus one standard deviation.

E2Mean plus standard deviation
2 Mean
18 B Mean less standard deviation

ORB overhead, percent
[I
o

= S & ,
— O <
& X & &
O S 60@ e
R\
os

Figure 9: Collocated (CO) Utilization Benchmark Configura-

tion

Figure 10: TAO CPU Utilization on Various OS Platforms

4We measured the time for a virtual function call~a20 nanoseconds on
our test platform, with each of the tested OS's.

e LynxOS results: TAO on LynxOS exhibits CPU over- Based on our results, and our prior experience [15, 20, 28,
head of 5.73%. As shown in Figure 10, this value is relative®@, 18] measuring the performance of CORBA ORB endsys-
low for the platforms tested. The interaction of I/O events ateins, we propose the following recommendations to decrease
other processing is optimized [36], minimizing overhead. non-determinism and limit priority inversion in operating sys-

e Linux results: TAO on Linux exhibits moderate CPUterns that support real-time ORB middleware:

utilization, 7.17%, but with relatively high standard deviation,

as shown in Figure 10. The scavenger thread was able to rdn aReal-time operating systems should provide low, de-
small number of iterations, between 2.1 and 2.4 per 100 ogerministic context switching and mode switching latency:
ations/function calls. This has a small effect on the measukdigh context switch latency and jitter can significantly de-
overhead. But more importantly, it shows that thread prioritiggade the ORB efficiency and predictability of ORB endsys-
are not strictly obeyed on Linux. Linux was the only platfortems [21]. High context switching overhead indicates that the
that displayed this anomaly. OS spends too much time in the mechanics of switching from

o Windows NT results: The ORB/OS overhead on Win-2"€ thread to another. Thus, operating systems should tune

dows NT is the lowest on the operating systems tested,ﬂ}ﬁ'r c_or_wtext switch mechamsm; to prowde a deterministic
nd minimal response context switch time.

2.61%, as shown in Figure 10. This indicates protocol pr% . . L
In addition, system calls can incur a significant amount of

cessing overhead in Windows NT is low and that the compiler head cularly wh itchi des b he k
produces efficient code. overhead, particularly when switching modes between the ker-

nel/application threads and vice versa. Since mode switching
e Solaris results: The CPU overhead on Solaris of 8.75%|so yields significant overhead, operating systems should op-
is moderately high for the platforms tested, as shown in Figmize system call overhead and minimize mode switches into
ure 10. This overhead is sufficiently large to account for soff kernel. For instance, to reduce latency, operating systems
of the latency discussed in Section 3.1.2. should execute system calls in the calling thread’s context,
e VxWorks results: TAO on VxWorks has 17.6% cpurather than in a dedicated I/O worker thread in the kernel [18].
utilization, the highest on the tested platforms as shown in Fig-
ure 10. We use a different compiler for VxWorks, though ogr Real-time operating systems should integrate the 1/O
experience has been that the GreenHills compiler usually p§ghsystem with ORB middleware: Meeting the demands
duces very efficient code. Furthermore, the standard deviati#iteal-time ORB endsystems requires a vertically integrated
of 6.75% of the mean is high, suggesting an OS rather th@@hitecture that can deliver end-to-end QoS guarantees at
compiler inefficiency. The high overhead may contribute taultiple levels of a distributed system. For instance, to avoid
the poor scalability on VxWorks shown in Section 3.1.2. packet-based priority inversigthe 1/0 subsystem level of the
OS must process network packets in priority oréeg, as op-
Result synopsis: We measured the overhead of the ORB armsed to strict FIFO order [25].
OS loopback communication path by comparing direct func-To minimize packet-based priority inversion, an ORB end-
tion calls to operations through the ORB and loopback inte&ystem must distinguish packets on the basis of their priorities
face. We observe that TAO on Windows NT displays very loand classify them into appropriate queues and threads. For in-
overhead of 2.61%, TAO on LynxOS, Linux and Solaris shastance, TAO’s I/O subsystem exploits tha&rly demultiplexing
moderate overhead of 5.73 to 8.75%, and TAO on VxWorfeature of ATM [12, 17]. Early demultiplexing detects the final
has overhead of over 17 percent. Factors besides overtigsiination of the packets based on the VCI field in the ATM
affect real-time performance, in particular, it is important teell header. The use of early demultiplexing alleviates packet-
eliminate priority inversion and non-determinism. The ovdpased priority inversion because packets need not be queued
head test revealed that Linux does not strictly obey thread priFIFO order.
ority, even with preemptive scheduling. In addition, TAO's I/0O subsystem suppontsiority-based
gueuing where packets destined for higher-priority applica-
tions are delivered ahead of lower-priority packets that remain
unprocessed in their queues. Supporifaority-based queu-
The ORB/OS benchmarks presented in this paper illustratg is also needed in the I/O subsystem. For instance, conven-
the performance, priority inversion, and non-determinism itilenal implementations of network protocols in the I/O sub-
curred by five widely used operating systems running the sasystems of Solaris and Windows NT process all packets at the
real-time ORB middleware. Since we use the same OR®me priority, regardless of the application thread destined to
TAQO, for our tests, the variation in results stems from differeceive them.
ences in OS designs and implementations. For instance, Solaris 2.6 provides real-time scheduling but

3.2 Evaluation and Recommendations

10

not real-time 1/O [34]. Therefore, Solaris is unable to guarakernel-mode. These tools are valuable to pinpoint the sources
tee the availability of resources like I/O buffers and netwodf overhead incurred by an ORB endsystem and its applica-
bandwidth. Moreover, the scheduling performed by the 1A@ns.

subsystem is not integrated with other OS resource managedowever, there is also a need for tools that can pinpoint

ment strategies. sources of overhead, priority inversion, and non-determinism.

Such tools should provide (1) mechanisms to determine con-
_text switch overhead.e., precisely determine the number and

cation and enforcement: Real-time applications often specpIuratlon of context switches incurred by a task, (2) code pro-

ify QoS requirements, such as CPU processing requiremeﬁl@rs' e.g,'to determme ngmber of system. calls, gnd duration,

in terms of computation time and period. TAO supports Qcﬁ@d (3) high-resolution timers, to allow fine-grained latency

specification and enforcement via a real-time 1/0 scheduliﬂt?asur?ments',)

class [17] and real-time scheduling service [10] that supports-€tain real-time operating systems, such as LynxOS, pro-

periodic real-time applications [16]. vide insufficient tools to pinpoint sources of OS overhead. Itis
The scheduling abstractions defined by real-time operatl‘il{%ders'[andable' to a certain degree, that OS implementors op-

systems like VxWorks and LynxOS are relatively low-levefMize thehOS_by exclud_mg support O.f pelrformance mea;urﬁ_-
In particular, they do not support application-level QoS spe'??—en.t Mmechanisms. Forinstance, OSI|mp ementors may do this
eliminate overhead caused by adding performance counters.

ifications. In addition, operating systems must enforce thdSe o . .
QoS specifications. To accomplish this, an OS should allf{ﬁvertheless, a profiling/debugging mode should be available

applications to specify their QoS requirements using high rthe OS tp enable performapce .measureme'nts. This mode
level APIs. TAO's real-time 1/0 scheduling class and real-ti OUId. be disabled at comp|lat|on_ Flme or r_un-Flme for normal
scheduler service permits applications to do this. In gene%q,eratlon and enabled when profiling applications.

the OS should allow priorities to be assigned to real-time 1/0

threads so that application QoS requests can be enforced. 5. Real-time operating systems should support priority in-

In addition, operating systems should provide admissibaritance protocols: Minimizing thread-based priority in-
control, which allows the OS to either guarantee the specifiegtsion is commonly handled withgiority inheritancepro-
computation time or refuse to accept the resource demandwobl [34]. In this protocol, when a high-priority thread wants
the thread. Because admission control is exercised at run-timmegsource, such as a mutex or semaphore, held by a low-
this is usually necessary with dynamically scheduled systemsority thread, the low-priority thread’s priority is boosted to

In addition to supporting the specification of processing réaat of the high-priority thread until the resource is released.
guirements, an OS must enforce end-to-end QoS requiremengeveral operating systems., VxWorks, LynxOS, and So-
of ORB endsystems. Real-time ORBs cannot deliver end-taris, tested by our ORB/OS benchmarks implement priority
end guarantees to applications without integrated I/O subsp$eritance protocols. In contrast, Linux and Windows NT do
tem and networking support for QoS enforcement. In partiaust support priority inheritance. Windows NT has a feature
lar, transport mechanisms in the G5y, TCP and IP, provide that temporarily boosts the priority of threads in processes in
features like adaptive retransmissions and delayed ackndive NORMAL _PRIORITY_CLASS class. Thread priority boost-
edgements, that can cause excessive overhead and latémgymakes a foreground process react faster to user input.
Such overhead can lead to missed deadlines in real-time ORBeads iNREALTIME _PRIORITY_CLASS processes that have
endsystems. a priority level in the class are never boosted by the OS.

Therefore, operating systems should provide optimizedThread boosting can be beneficial for applications that re-
real-time 1/O subsystems that can provide end-to-end baqdire high responsiveness, such as applications that obtain user
width, latency, and reliability guarantees to middleware amibuse and keyboard input. However, for applications that
distributed applications [12]. need high predictability and have stringent QoS requirements,
thread boosting can be non-deterministic, which is detrimental
to such applications. Therefore, operating systems that sup-
tools to determine sources of overhead: Solaris provides port real-time applications with stringent QoS requirements

a number of general-purpose performance analysis tools ﬂ((u'd a_lle_/iate .priority inversion by providing mechanisms
Quantify ,UNIX truss ,andtime . Quantify precisely Ike priority inheritance protocols.

indicates the function and system call overhead of an applica-

tion. truss shows number of calls and overhead of an app#- Real-time OS implementors should develop or
cation’s system calls. Thiane program shows the CPU uti-adopt standard measurement-driven methodologies to
lization of the application and the time spent in user-mode aidéntify sources of overhead, priority inversion, and

3. Real-time operating systems should support QoS specifi

4. Real-time operating systems should provide better

11

non-determinism: We believe that developing real-timéhbench benchmarks: The hbench benchmark suite [41],
ORB middleware requires a systematic, measurement-dribaised on thémbench package [39], measures the interac-
methodology to identify and alleviate sources of OR#ons between OS and hardware architectivee, Intel. It
endsystem and OS overhead, priority inversion, and noneasures the scalability of operating system primitieeg,
determinism. The results presented in this paper are basegmtess creation and cached file read, and hardware capa-
our experience developing, profiling, and optimizing aviomilities, e.g, memory bandwidth and latency. In addition,
ics [16] and telecommunications [37] systems using OO mitbench measures context switch latency, based on the orig-
dleware such as ACE [35] and TAO [10] developed at Wasihal Imbench context switch test. The key difference is that
ington University. hbench does not measure the overhead for cache conflicts or
faulting in the processes data region. Their results yield 3 per-
cent standard deviation for context switch time. Our measure-
4 Related Work ments show standard deviations ranging from less than 0.15
percent to 8.0 percent.

An increasing number of research efforts are focusing on d&i and Baker context switch time benchmarks: Lai and
veloping and optimizing real-time CORBA. The work preBaker utilize a similar approach to measure context switch
sented in this paper is based on the TAO project [10]. Fotige [42]. Again, they only measure the context switch time
comparison of TAO with related QoS projects see [38]. In thietween processes, rather than threads. With one active pro-
section, we briefly review related work on OS and middlewagess in the system, they measure context switch times of
performance measurement. a small number to to under 1Q@sec on a 100 MHz Pen-
tium. These measurements are consistent with ours, between
Imbench benchmarks: The Imbench micro-benchmark threads, of 3 to 12@sec on a 200 MHz Pentium Pro.
suite evaluates important aspects of system performance [39]n contrast to our evaluation, Lai and Baker focus on general
It includes a context switching benchmark that measures gygpose operating systems and a wide range of users, rather
latency of switching between processes, rather than thredldgn real-time operating systems running applications that re-
The processes pass a token through a UNIX pipe. The tifiiére responsiveness. They measured parameters including
measured to pass the token includes the context switch ti#ygtem call overhead, memory bandwidth, file system perfor-
and thepipe overheagi.e., time measured to read from andnance and raw network performance. In addition, Lai and
write to the pipe. The pipe overhead is measured separaféiker evaluate qualitative factors such as license agreements,
and subtracted from the total time to yield the context swit€fgse of installation, and available support.

time. It adds the time the OS takes to fault the working set §fsyinted Hartstone benchmarks: The Distributed Hart-

the new process into the CPU cache. This models more closgly,e (pHs) benchmark suite [43] is an extension of the Hart-
whata user might see with large data-intensive processes. Thife henchmark [44] to distributed systems. DHS quantita-
approach provides a more realistic test environment than fig, analyzes operating systems issues like the preemptabil-
suspend/resume and thread yield tests described in [21]. @%f the protocol stack and the effects of various queueing

reportedimbench - context switch times for Linux is @SeC o hanisms. Moreover, DHS gauges the performance of real-

(lowest reported) and 1Qisec (highest reported), and for SOg e gperating systems that must schedule harmonic and non-
laris is 36 usec (lowest reported) and 11&ec (highest re- 5 anic periodic activities. In addition, DHS measures the

ported) on an Intel Pentium Pro 167 MHz. In contrast, Wahility of the system to handle priority inversion.

measure context switc_h time using different methods, on dif“‘l’he DHS benchmarks have two implementations of a proto-
ferent OSs, and on different hardware. Our measuremep, cessing engine, a software interrupt based mechanism,
in [21] yield context switch times for Linux of 2.§05ec (IoW- 5 1 ns at a higher priority than any other user task. The sec-
est reported) and 9.%2sec (highest reportegi), and for SOIarI8nd uses several prioritized worker threads to handle messages
of 11.2usec (lowest reported) and 131.2 (highest reported), 9fi, gifferent priorities. Their results show that the worker
an Intel Pentium I1 450 MHz. thread mechanism is 10 percent slower than the software in-

. o terrupt version, but it increased preemptability.
Rhealstone benchmarks: Different context switching met- 11,4 results of our tests show how the protocol processing

rics are used by the Rhealstone real-time benchmarking RffRgine of a determined OS does not account for messages
posal [40]. It calls synchronous, non-preemptive contexhn gifferent priorities. They measure context switch times

switchingtask switchingAn example of task switching is thegor threads that are in the same address space and in different
expiration of the current thread's time quantum. In contraghyress spaces on a SUN3/140. Their results show no differ-

preemptionoccurs when a context switch suspends a lowgh e in context switch time between these two measurements.
priority task in order to resume a higher priority task.

12

In contrast, we measure only for threads that are in the sa@f®, we demonstrated empirically the extent to which oper-
address space (VxWorks only has one address space). ating systems are (and are not) capable of meeting real-time
Our results show differences in context switch times bapplication QoS requirements.

tween several OSs running on the same hardware. The DHByr benchmarks revealed that certain operating systems do
benchmark also measures response time of the communjigahehave optimally under high load conditions. For instance,
tion subsystem, using two different sets of messages. Onegaieral-purpose operating systems, such as Windows NT and
uses different message priorities, and the other uses the sg@gris, exhibit priority inversion and non-determinism. Thus,
priority for all messages. Their results show better results tﬁése operating Systems may be unsuitable for some dis-
messages that use priority information from network packeigputed, real-time applications and ORB middleware with de-
than a system which does FIFO processing of network packedgministic QoS requirements. Meeting these demands re-
quires operating systems to increase predictability and respon-

Windows NT Real-time Applications Experiments: Gon- . S)
giveness, as well as reduce priority inversion.

zalez [32],et al, ran a set of experiments on Windows NT t
evaluate the ability of the OS to run applications with com- LynXOS consistently performed better than other operating
ponents that have real-time constraints. They simulate p&}stems in our ORB/OS benchmarking testsuite. LynxOS pro-
odicity functionality in their prototype application by setting/ides low latency and stable predictability by reducing inter-
events on which different threads wait. They measure laterigpt overhead and performing most asynchronous processing
of various process/thread related Win32 API calls. at the priority of the process that made the request.

They report thed0t” percentile of measurements, instead In general, real-time operating systems need not necessarily
of average, since they are more interested in soft real-timghibit lower latency than general-purpose operating systems.
rather than hard real-time performance. In addition, they mdts important, however, that real-time operating systems pro-
sure CPU overhead for system related tasks when the O8id& deterministic behavior. For instance, VxWorks showed
idle. They reported 153 msec out of a second are usedldy variability in the latency measurements when there was lit-
system activitiesi.e,, 15.3 percent. In contrast, we measutte contention for system resources. However, it did not scale
system activities under heavy workload. Our results are simp gracefully. In particular, high-priority client jitter rose pro-
lar, yielding 12.8 percent. Furthermore, their experiments igressively with an increasing number of low-priority clients.

cluded measuring roundtrip latency for remote command fromr, gypport the development of real-time ORB applica-
aRealvideo player at different frequencies (10, 20, and 33 Hfgns with stringent QoS requirements, operating systems must
We also measured roundtrip latency and observed a siliminate sources of non-determinism and priority inversion
ilar unpredictable pattern in the behavior. We used 10 agfd fully integrate the various subsystems to provide end-to-
20 Hz frequencies. Their observations were that the vashd QoS guarantees. In particular, the I/O subsystem is an
ance was higher in lower priority processes. In the Windowgportant factor for determining a bound on responsiveness,

NT REAL_TIME priority class, they observed significantly lesghich is crucial for certain types of real-time applications [17].

variance, even though the latency was similar. Many real-time applications can benefit from flexible and

open distributed architectures, such as those defined by
. CORBA [5]. Our previous work [18] has shown that conven-
5 Concludlng Remarks tional CORBA ORBs have limitations that make them inad-

equate for real-time middleware with stringent QoS require-

There is a significant interest in developing high performangﬁents_ TAO has overcome these limitations, however, through

real-time systems using ORB middleware like CORBA 10,01 design and implementation. Therefore, our research
lower development costs and decrease time-to-market.

U%%onstrates that real-time support is possible in CORBA

flexibility, reusability, and platform-independence offered bé'SRBs when they are run over well-designed real-time oper-
CORBA makes it attractive for use in real-time systems. Ho‘é(ﬁng systems.

ever, meeting the stringent QoS requirements of real-time sys-
tems requires more than just specifying QoS via IDL inter-
faces [10]. Therefore, itis essential to develop integrated ORB
endsystems that can enforce application QoS guarantees end
A PP QoS¢ ACknowledgments

This paper illustrates the characteristics that the OS com-
ponent in an ORB endsystem should provide to support rédke gratefully acknowledge the support and direction of the
time applications. By holding the hardware and ORB impl&oeing Principal Investigator, Bryan Doerr. In addition, we
mentation constant and systematically varying the underlyiwguld like to thank Steve Kay for comments on this paper.

13

References

(1]

(2]

(3]

(6]

[7]
(8]
E)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Gopalakrishnan and G. Parulkar, “Bringing Real-time
Scheduling Theory and Practice Closer for Multimedia Com-
puting,” in SIGMETRICS Conference(Philadelphia, PA),
ACM, May 1996. [18]

S. Landis and S. Maffeis, “Building Reliable Distributed Sys-
tems with CORBA,"Theory and Practice of Object Systems
Apr. 1997.

R. Johnson, “Frameworks = Patterns + Componei@sfhmu-
nications of the ACMvol. 40, Oct. 1997. [19]

Z.Deng and J. W.-S. Liu, “Scheduling Real-Time Applications
in an Open Environment,” ilProceedings of the 18th IEEE

Real-Time Systems SymposiuBEEE Computer Society Press,

Dec. 1997.

Object Management Groufthe Common Object Request Bro[-20]
ker: Architecture and Specificatip8.2 ed., Feb. 1998.

S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environment&EE Communica-
tions Magazinevol. 14, February 1997.

Object Management GrouRealtime CORBA 1.0 Joint Submis-
sion, OMG Document orbos/98-12-05 ed., December 1998.

Object Management Grougvlinimum CORBA - Request for[22]
Proposa] OMG Document orbos/97-06-14 ed., June 1997.

D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar,
“A High-Performance Endsystem Architecture for Real-timk23]
CORBA,” IEEE Communications Magazineol. 14, February
1997.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeCaimputer [24]
Communicationsvol. 21, pp. 294-324, Apr. 1998.

A. Campbell and K. NahrstedBuilding QoS into Distributed
SystemsLondon: Chapman & Hall, 1997. Proceedings of thg>]
IFIP TC6 WG6.1 Fifth International Workshop on Quality of
Service (IWQQOS '97), 21-23 May 1997, New York.

Z. D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC
Approach to High Performance Network Interface Design: Pr&-6]
tected DMA and Other Techniques,” Rroceedings of INFO-
COM '97, (Kobe, Japan), IEEE, April 1997.

R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchro-
nization Protocols for Multiprocessors,” iProceedings of the
Real-Time Systems SymposigHuntsville, Alabama), Decem- [27]
ber 1988.

C.D.Gill, D. L. Levine, and D. C. Schmidt, “Evaluating Strate-
gies for Real-Time CORBA Dynamic Schedulingiibmitted to [28]
the International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middlewai®98.

A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” Pro-
ceedings of GLOBECOM '9Phoenix, AZ), IEEE, November [29]
1997.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sigh and Performance of a Real-time CORBA Event Servicg30]
in Proceedings of OOPSLA "97Atlanta, GA), ACM, October
1997.

[21]

14

D. C. Schmidt, F. Kuhns, R. Bector, and D. L. Levine, “The
Design and Performance of RIO — A Real-time /O Subsystem
for ORB Endsystems,” irBubmitted to th&®* Conference on
Object-Oriented Technologies and Syste(®an Diego, CA),
USENIX, May 1999.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real-
time CORBA ORB Core Architectures,” iRroceedings of the
4" |EEE Real-Time Technology and Applications Symposium
(Denver, CO), IEEE, June 1998.

A. Gokhale, I. Pyarali, C. O'Ryan, D. C. Schmidt, V. Kachroo,
A. Arulanthu, and N. Wang, “Design Considerations and Per-
formance Optimizations for Real-time ORBs,” 8ubmitted to
the 5" Conference on Object-Oriented Technologies and Sys-
tems (San Diego, CA), USENIX, May 1999.

A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM '9§Stanford, CA), pp. 306-317,
ACM, August 1996.

D. Levine, S. Flores-Gaitan, and D. C. Schmidt, “Measuring OS
Support for Real-time CORBA ORBs,” iRroceedings of the
4" Workshop on Object-oriented Real-time Dependable Sys-
tems (Santa Barbara, CA), IEEE, January 1999.

A. Gokhale and D. C. Schmidt, “Techniques for Optimizing
CORBA Middleware for Distributed Embedded Systems,” in
Proceedings of INFOCOM '99Mar. 1999.

V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,

I. Zykh, and R. Johnston, “Real-Time CORBA,”Rroceedings

of the Third IEEE Real-Time Technology and Applications Sym-
posium (Montréal, Canada), June 1997.

D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of the™? C++ Conference (San Francisco,
California), pp. 87-102, USENIX, April 1990.

D. C. Schmidt, R. Bector, D. Levine, S. Mungee, and
G. Parulkar, “An ORB Endsystem Architecture for Stati-
cally Scheduled Real-time Applications,” Rroceedings of the
Workshop on Middleware for Real-Time Systems and Services
(San Francisco, CA), IEEE, December 1997.

D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-

nication Systems,IEE/BCS Distributed Systems Engineering

Journal (Special Issue on Configurable Distributed Systems)
vol. 2, pp. 280-293, December 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissi@Esign Pat-
terns: Elements of Reusable Object-Oriented Softw&ead-
ing, MA: Addison-Wesley, 1995.

A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skele-
ton Interface over High-Speed ATM Networks,” iroceed-
ings of GLOBECOM '96(London, England), pp. 50-56, IEEE,
November 1996.

A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computingol. 47, no. 4, 1998.

Wind River Systems, “VxWorks 5.2 Web Pagéttp://-
www.wrs.com/products/html/vxwks52.html , May
1998.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Lynx Real-Time Systems, “LynxOS - Hard Real-Tim¢g46]
OS Features and Capabilitiesittp://www.lynx.com/-
products/ds _lynxos.html , Dec. 1997.

K. Ramamritham, C. Shen, O. Gales, S. Sen, and S. Shir-
gurkar, “Using Windows NT for Real-time Applications: Ex{47]
perimental Observations and RecommendationsPrivceed-

ings of the Fourth IEEE Real-Time Technology and Applications
Symposium(Denver, CO), IEEE, June 1998. [48]

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SunOS Kernel,” in
Proceedings of the Summer USENIX Confere(8an Antonio,
Texas), June 1992. [49]

S. Khanna and et. al., “Realtime Scheduling in SunOS 5.0,” in
Proceedings of the USENIX Winter Conferenpp. 375-390,
USENIX Association, 1992.

D. C. Schmidt, "ACE: an Object-Oriented Framework fofsq)
Developing Distributed Applications,” ifProceedings of the

6" USENIX C++ Technical ConferencgCambridge, Mas-
sachusetts), USENIX Association, April 1994.

: _[51]
W. Weinberg, “Lynx Patented Technology Speeds Handling of
Hardware Eventshttp://www.lynx.com/news -and _-
events/Patent _Exp.html , Sept. 1997.

D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways, The Theory and Practice of Object SystemA
(Special Issue on Patterns and Pattern Languages) 2, no. 1,
1996.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,

N. C. Hutchinson and L. L. Peterson, “Tkekernel: An Ar-
chitecture for Implementing Network Protocol$EZEE Trans-
actions on Software Engineeringol. 17, pp. 64—76, January
1991.

Object Management Grouggontrol and Management of A/V
Streams Request For ProposaBMG Document telecom/96-
08-01 ed., August 1996.

A. Gokhale and D. C. Schmidt, “Principles for Optimizing
CORBA Internet Inter-ORB Protocol Performance, Hiawai-
ian International Conference on System Sciencésnuary
1998.

J. C. Mogul and A. Borg, “The Effects of Context Switches on
Cache Performance,” iRroceedings of the!" International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPL@SAanta Clara, CA),
ACM, Apr. 1991.

D. C. Schmidt, “Evaluating Architectures for Multi-threaded
CORBA Object Request BrokersZommunications of the ACM
special issue on CORB#&ol. 41, Oct. 1998.

D. L. Tennenhouse, “Layered Multiplexing Considered Harm-
ful,” in Proceedings of th&** International Workshop on High-
Speed Network$/ay 1989.

Factors Impacting Real-time ORB
Endsystem Performance

“Software Architectures for Reducing Priority Inversion an@lleeting the QoS needs of next-generation distributed appli-
Non-determinism in Real-time Object Request Broke&b- cations requires much more than defining IDL interfaces or

mitted to the Journal of Real-time Systert398.

adding preemptive real-time scheduling into an OS. It requires

L. McVoy, “Imbench: Portable tools for performance analya vertically and horizontally integrate@RB endsysterarchi-
sis,” in Proceedings of the 1996 USENIX Technical Conferenggctyre that can deliver end-to-end QoS guarantees at multiple

USENIX, January 1996.

levels throughout a distributed system [10]. The key levels

_R. P. Kar and K. Porter, “Rhealstone: A Real-Time Benchmariy an ORB endsystem include the network adapters, OS 1/O
ing Proposal,Dr. Dobbs Journalvol. 14, pp. 14-24, Feb. 1989.g sy stems, communication protocols, ORB middleware, and
A. B. Brown and M. I. Seltzer, “Operating System Benchmarlhigher-level services shown in Figure 1.

ing in the Wake of Lmbench: Case Study of the Performance ofq, completeness, Section A.1 briefly outlines the general

NetBSD on the Intel Architecture,” iRroceedings of the 1997
Sigmetrics Conferencdune 1997.

sources of performance overhead in ORB endsystems. Sec-
tion A.2 describes the key sources of priority inversion and

K. Lai and M. Baker, “A Performance Comparison of UNIXy 4y geterminism that affect the predictability and utilization

Operating Systems on the Pentium,’Rroceedings of the 1996
USENIX Technical Conferencd SENIX, January 1996.

of real-time ORB endsystems. Section 3 illustrates quantita-
tively how OS characteristics like context switching, synchro-

Clifford W. Mercer and Yutaka Ishikawa and Hideyuki TOKUdehization, and system call overhead impact ORB performance

“Distributed Hartstone Real-Time Benchmark Suite,”Rro-
ceedings of the 10th International Conference on Distribut
Computing SystemgParis, France), May 1990.

@J\d predictability.

N. Weiderman, “Hartstone: Synthetic Benchmark Requirgy 1 General Sources of ORB Endsystem Per-

ments for Hard Real-Time Applications,” tech. rep., Software
Engineering Institute, Carnegie Mellon University, June 1989.

formance Overhead

Z. D. Dittia, J. Jerome R. Cox, and G. M. Parulkar, “Design @ur experience [15, 201 28, 29] measuring the throughput

the APIC: A High Performance ATM Host-Network Interfac
Chip,” in IEEE INFOCOM '95 (Boston, USA), pp. 179-187,
IEEE Computer Society Press, April 1995.

&nd latency of CORBA implementations indicates that perfor-
mance overheads in real-time ORB endsystems arise from in-

efficiencies in the following components:

15

in args
operation()

out args + return value

1. Network connections and network adapters: These
endsystem components handle heterogeneous network (
nections and bandwidths, which can significantly increase la

tency and cause variability in performance. Inefficient design DL
of network adapters can cause queueing delays and lost pack- oL }

ets [45], which are unacceptable for certain types of real-time

STUBS

systems.

2. Communication protocol implementations and integra- ‘ }}
tion with the I/O subsystem and network adapters: In- (BTSN OS KERNEL
efficient protocol implementations and improper integratigfos vo sussvstew] paaGEvET —
with 1/0 subsystems can adversely affect endsystem perf{erors aparrexs
mance. Specific factors that cause inefficiencies include the
protocol overhead caused by flow control, congestion contieigure 11: Optimizing Real-time ORB Endsystem Perfor-
retransmission strategies, and connection management. Likance

wise, lack of proper I/O subsystem integration yields excessive

data copying, fragmentation, reassembly, context switchiw,2 Sources of Priority Inversion and Non-
synchronization, checksumming, demultiplexing, marshaling; det .. in ORB End t
and demarshaling overhead [46]. eterminism in nasystems

NETWORK

Minimizing priority inversion and non-determinism is impor-
3. ORB transport protocol implementations: Inefficient tant for real-time operating systems and ORB middleware in
implementations of ORB transport protocols such as tBgder to bound application execution times. In ORB endsys-
CORBA Internet inter-ORB protocol (IIOP) [5] and Simpleems, priority inversion and non-determinism generally stem
Flow Protocol (SFP) [47] can cause significant performangem resources that are shared between multiple threads or
overhead and priority inversion. Specific factors responsiljgrcesses. Common examples of shared ORB endsystem re-
for these inversions include improper connection managemegirces include (1) TCP connections used by a CORBA [IOP
strategies, inefficient sharing of endsystem resources, and@¥tocol engine, (2) threads used to transfer requests through
cessive synchronization overhead in ORB protocol implemeflient and server transport endpoints, (3) process-wide dy-
tations. namic memory managers, and (4) internal ORB data struc-
tures like connection tables for transport endpoints and de-
4. ORB core implementations and integration with OS multiplexing maps for client requests. Below, we describe key
services: An improperly designed ORB Core can yieldources of priority inversion and non-determinism in conven-
excessive memory accesses, cache misses, heap allge@al ORB endsystems.
tions/deallocations, and context switches [48]. In turn, these
factqrs can increasg IaFency a}nd jitter, V\.Ih?Ch is unagceptap!g_l The OS I/O Subsystem
for distributed applications with deterministic real-time re-
quirements. Specific ORB Core factors that cause inefficiék? /O subsystem is the component in an OS responsible
cies include data copying, fragmentation/reassembly, conti@tmediating ORB and application access to low-level net-
switching, synchronization, checksumming, socket demwork and OS resources, such as device drivers, protocol
tiplexing, timer handling, request demultiplexing, marshagtacks, and the CPU(s). Key challenges in building a high-
ing/demarshaling, framing, error checking, connection apérformance, real-time 1/O subsystem are (1) to minimize con-
concurrency architectures. Many of these inefficiencies &t switching and synchronization overhead and (2) to enforce
similar to those listed in bullet 2 above. Since they occur @S guarantees while minimizing priority inversion and non-
the user-level rather than at the kernel-level, however, ORBterminism [17].
implementers can often address them more readily. A context switch is triggered when an executing thread re-
linquishes the CPU it is running on voluntarily or involuntar-
Figure 11 pinpoints where the various factors outlingly. Depending on the underlying OS and hardware platform,
above impact ORB performance and where optimizations @nontext switch may require hundreds of instructions to flush
be applied to reduce key sources of ORB endsystem overheagister windows, memory caches, instruction pipelines, and
priority inversion, and non-determinism. Below, we descrilbenslation look-aside buffers [49]. Synchronization overhead
the components in an ORB endsystem that are chiefly respanises from locking mechanisms that serialize access to shared
sible for priority inversion and non-determinism. resources like 1/0 buffers, message queues, protocol connec-

16

tion records, and demultiplexing maps used during protoewlother key challenge for developers of real-time ORBs is to
processing in the OS and ORB. select a concurrency architecture that can effectively share the
The I/O subsystems of general-purpose operating systeaggregate processing capacity of an ORB endsystem and its
such as Solaris and Windows NT, do not perform preemptiggplication operations in one or more threads.
prioritized protocol processing [25]. Therefore, the protocol ORB Core concurrency architectures often thgead pools
processing of lower priority packetsnietdeferred due to the [50] to select a thread to process an incoming request. How-
arrival of higher priority packets. Instead, incoming packetser, conventional ORBs do not provide programming inter-
are processed by their arrival order, rather than by their pritaees that allow real-time applications to assign the priority
ity. of threads in this pool. Therefore, the priority of a thread in
For instance, in Solaris if a low-priority request arrives inthe pool is often inappropriate for the priority of the servant
mediately before a high priority request, the 1/0O subsystdhat ultimately executes the request. An improperly designed
will process the lower priority packet and pass it to an applic@RB Core increases the potential for, and duration of, priority
tion servant before the higher priority packet. The time spenversion and non-determinism [18].
in the low-priority servant represents the degree of priority in-
version incurred by the ORB endsystem and application. 5 523 The Object Adapter
[25] examines key issues that cause priority inversion in I/O
subsystems and describes how TAO’s real-time 1/O subsfer Object Adapter is the component in CORBA that is re-
tem avoids many forms of priority inversion by co-schedulirgponsible for demultiplexing incoming requests to servant op-
pools of user-level and kernel-level real-time threads. The ggations that handle the request. A standard GIOP-compliant
sults in Section 3 illustrate the extent to which the prioriglient request contains the identity of its object and operation.
inversion and non-determinism in an OS affect ORB perfd object is identified by an object key which is antet
mance and predictability. sequence . An operation is represented astaing . As
shown in Figure 12, the ORB endsystem must perform the fol-

A.2.2 The ORB Core

An ORB Core is the component in CORBA that implements
the General Inter-ORB Protocol (GIOP) [5], which defines a
standard format for interoperating between (potentially heter2

(6: DISPATCH
geneous) ORBs. The ORB Core establishes connections ¢ Lo o0
implements concurrency architectures that process GIOP re-
guests. The following discussion outlines common sourcess: pemux To
priority inversion and non-determinism in conventional ORE SKELETON

OPERATION1
OPERATION2
[]
[]
[]
OPERATIONK
z
=

Core implementations. (SERVANT]) (SERVANTz) eee [SERVANTy

Connection architecture: The ORB Core’sonnection ar- 4:DEMUX TO :

chitecture i.e,, how requests are mapped onto network cor. SERVANT

nections, has a major impact on real-time ORB behavior. (POAIJ (POAZJ '"(POA]

Therefore, a key challenge for developers of real-time ORBS3: pemux 10

to select a connection architecture that can utilize the transp oBsecr (ROOT POA) ORB

mechanisms of an ORB endsystem efficiently and predictab ADpAPTER () LAYER
Conventional ORB Cores typically share a single mult| - DEMUX TO

plexed TCP connection for all object referencesto servantsii 1,5 ganpLe — oS

server process that are accessed by threads in a client process. 0S 1/0 SUBSYSTEM KERNEL

The goal of connection multiplexing is to minimize the NUM{. pevux THRU LAYER

ber of connections open to each sereeg, to improve Server proTOCOL STACK
scalability over TCP. However, connection multiplexing can

yield substantial packet-level priority inversions and synchro- Figure 12: CORBA 2.2 Logical Server Architecture
nization overhead [18]. Therefore, it should be avoided for

most real-time systems.

Concurrency architecture: The ORB Core’sconcurrency lowing demultiplexing tasks:

architecture i.e., how requests are mapped onto threads, aSteps 1 and 2: The OS protocol stack demultiplexes the in-
has a substantial impact on its real-time behavior. Therefareming client request multiple times,g, from the network

17

interface card, through the data link, network, and transport
layers up to the user/kernel boundageyq, the socket) and
then dispatches the data to the ORB Core.

Steps 3, and 4: The ORB Core uses the addressing informa-
tion in the client’s object key to locate the appropriate POA
and servant. POAs can be organized hierarchically. Therefore,
locating the POA that contains the servant can involve multiple
demultiplexing steps through the hierarchy.

Step 5 and 6: The POA uses the operation name to find the
appropriate IDL skeleton, which demarshals the request buffer
into operation parameters and performs the upcall to code sup-
plied by servant developers.

The conventional layered ORB endsystem demultiplexing
implementation shown in Figure 12 is generally inappropriate
for high-performance and real-time applications for the fol-
lowing reasons [51]:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers is expensive, particu-
larly when a large number of operations appear in an IDL in-
terface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-

ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the 1/0 subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for an indeterminate period of time while
lower priority packets are demultiplexed and dispatched [25].

Conventional implementations of CORBA incur significant
demultiplexing overhead. Forinstance, [20, 29] show that con-
ventional ORBs spend 17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

Our prior work has focused on the impact the ORB
Core [18] and Object Adapter [15] has on ORB priority in-
version and non-determinism. Section 3 focuses on the impact
of the OS and its I/O subsystem on the predictability and per-
formance of ORB endsystems.

18

