
Frameworks: Why They Are Important and How to Apply Them Effectively

Douglas C. Schmidt, Aniruddha Gokhale, and Balachandran Natarajan
fschmidt,gokhale,balag@dre.vanderbilt.edu

Department of Electrical Engineering and Computer Science
Vanderbilt University
Nashville, TN 37203

1 Introduction

In today’s competitive, fast-paced computing industry, suc-
cessful software must increasingly be (1)extensible to sup-
port successions of quick updates and additions to address
new requirements and take advantage of emerging markets, (2)
flexible to support a growing range of multimedia data types,
traffic flows, and end-to-end quality of service (QoS) require-
ments, (3)portable to reduce the effort required to support
applications on heterogeneous OS platforms and compilers,
(4) reliable to ensure that applications are robust and tolerant
to faults, (5)scalableto enable applications to handle larger
numbers of clients simultaneously, and (6)affordable to en-
sure that the total ownership costs of software acquisition and
evolution are not prohibitively high. It is hard to achieve these
qualities, however, when:

� Core concepts and software artifacts are continu-
ally rediscovered and reinvented, i.e., when the same
functionality is rewritten and revalidated. Application
software has historically been developed largely from
scratch. This development process has been applied
many times in many companies, by many projects and
programmers in parallel. Even worse, it has been applied
by the same teams in a series of projects. Regrettably, this
continuous rediscovery and reinvention of core concepts
and code has kept costs high and quality low through-
out the software development life cycle. These prob-
lems only get worse as hardware, networks, operating
systems, middleware, and compilers continue to evolve.
This “infrastructure churn” keeps shifting the foundations
of application software development, resulting in a major
source ofaccidental complexity, which arises from lim-
itations with tools and techniques used to develop soft-
ware [1].

� Software is developed monolithically, i.e., as tightly
coupled clumps of functionality that are not organized
modularly. The functions in monolithic software are of-
ten tightly coupled via shared, global variables and di-
agrams of their control flow often look like spaghetti.
Monolithic software is therefore unnecessarily hard to
understand, maintain, and extend [2]. While monolithic
software may sometimes be appropriate in short-lived,
“throw away” prototypes [3] written by a single program-

mer, it is poorly suited for applications that must be main-
tained and enhanced by multiple developers over longer
amounts of time.

To avoid the traps and pitfalls of writing and maintaining
monolithic software, a more effective way to achieve qual-
ity software is to useframeworks[4, 5]. A framework is an
integrated set of software artifacts (such as classes, objects,
and components) that collaborate to provide a reusable archi-
tecture for a family of related applications [6]. In particular,
frameworks decouple the application-dependent portions of
software from the application- and platform-independent por-
tions of the software, thereby enhancing software extensibility,
flexibility, and portability via

� Design reuse, e.g., by guiding application developers
through the steps necessary to ensure successful creation
and deployment of complex software

� Implementation reuse, e.g., by amortizing software life-
cycle costs and leveraging previous development and op-
timization effort and

� Validation reuse, e.g., by amortizing the effort of validat-
ing the application- and platform-independent portions of
software, thereby enhancing software reliability and scal-
ability.

Likewise, as frameworks mature and become commoditized
in the form of commercial-off-the-shelf (COTS) products they
often become more affordable.

While frameworks can be a very powerful means to reduce
software cost and improve its quality, they can be hard to un-
derstand, select, learn, use, debug, and optimize. To help make
it easier to apply frameworks in practice, this article examines
key characteristics that underlie various types of frameworks
and then explores key challenges that arise when developing
and reusing frameworks, and describes specific steps to ad-
dress these challenges.

2 Key Characteristics of Frameworks

Although frameworks are used in a wide range of different do-
mains, such as telecommunications, avionics, manufacturing,
and financial services, they share certain defining characteris-
tics [6]. Figure 1 illustrates three of the most important char-

1



NETWORKING

DATABASE

GUI

EVENT

LOOP

EVENT

LOOP

EVENT

LOOP

APPLICATION-
SPECIFIC

FUNCTIONALITY

CALL

BACKS

CALLBACKS

CALLBACKS

DOMAIN-
SPECIFIC

FRAMEWORK

CAPABILITIES

Figure 1: Relationships Between Framework Artifacts

acteristics of frameworks that help them achieve the qualities
outlined at the beginning of this article. We describe each of
these characteristics below:

� A framework exhibits “inversion of control” at run time
via callbacks. These callbacks invoke thehook methodsof
application-defined components after the occurrence of an
event, such as a mouse click or data arriving on a network
connection. When an event occurs, the framework calls back
to a virtual hook method in a pre-registered application com-
ponent, which then performs application-defined processing
in response to the event. The hook methods in the com-
ponents decouple the application software from the reusable
framework software, which allows each to change indepen-
dently as long as the interface signature and interaction pro-
tocols are not modified. Since frameworks exhibit inversion
of control, they can simplify application design because the
framework—rather than the application—runs the event loop
to detect events, demultiplex events to event handlers, and dis-
patch hook methods on the handlers that process the events.

� A framework provides an integrated set of domain-
specific structures and functionality based on patterns.
Patterns codify reusable design expertise that provides time-
proven solutions to commonly occurring software problems
that arise in particular contexts and domains [7]. Frameworks
can be thought of as concrete realizations of groups of related
patterns (known aspattern languages) that enable reuse of
code by (1) capturing the common abstractions of an appli-
cation domain – both their structure and behaviors – while (2)
yielding control of application-specific structure and behavior
to application developers. Frameworks reify the key roles, re-
lationships, and patterns of interactions among software com-
ponents in application domains as reusable code. They there-
fore can increase the amount of software reused, which in turn
helps to reduce dramatically the amount of new software that
is (re)written, debugged, and maintained.

� A framework is a “semi-complete” application. De-
velopers form complete applications by extending and cus-
tomizing reusable components in the framework. In par-
ticular, frameworks help abstract common flows of con-
trol within applications in a domain into product-line ar-
chitectures and families of related components. At run
time these components can collaborate to integrate customiz-
able application-independent reusable code with customized
application-defined code. Since a framework is a semi-
complete application, it enables larger-scale reuse of software
than can be achieved by reusing individual components or
standalone functions.

Developers in certain domains have applied frameworks
successfully for several decades. For example, early frame-
works, such as MacApp, X-windows, and Interviews, orig-
inated in the domain of graphical user interfaces (GUIs).
Java Foundation Classes (JFC), Microsoft Foundation Classes
(MFC), and Qt are contemporary GUI frameworks that are
widely used to create graphical applications on OS platforms.
The broad adoption of reusable GUI frameworks has yielded
many productivity and quality benefits for business and desk-
top applications.

Application developers in more complex domains, such
as telecom, financial services, process manufacturing, and
aerospace, traditionally lacked reusable COTS frameworks.
Developers in these domains therefore historically built, val-
idated, and maintained their software from scratch. Fortu-
nately, the current generation of reusable application server
frameworks (such as JBoss, BEA’s WebLogic Server, Mi-
crosoft’s .NET, and ACE), network service provisioning
frameworks (such as Cisco’s IOS and Element Management
frameworks), real-time and embedded systems development
and testing frameworks (such as TimeSys’s TimeStorm IDE
and MathWorks’s Matlab Real-time Workshop), integrated de-
velopment environment (IDE) frameworks (such as Eclipse,
Microsoft’s Visual Studio and Sun’s NetBeans), and CAD-
enabled product data and line management frameworks (such
as EDS’s Teamcenter and EMG’s E-Matrix) are designed to
address a broader and deeper range of domains than GUIs.

3 Key Challenges in Developing and
Reusing Frameworks

Although frameworks are a promising technology for instanti-
ating proven software designs and implementations to reduce
cost and improve quality of software, developing and using
frameworkseffectivelycan involve considerable time and en-
ergy, depending on (1) the complexity of the domain, (2) the
maturity of existing frameworks, (3) the availability of good
documentation, (4) the willingness of other users who can help

2



(e.g., mailing lists and other news groups on the Internet), and
(5) the ability of developers to master key concepts, patterns,
features and tools associated with frameworks. When con-
fronted with these challenges, software developers often need
perform the following activities:

� Determine if a particular framework applies to their prob-
lem domain and whether it has sufficient quality to be an
effective solution.

� Evaluate whether the time spent learning a framework
outweighs the time saved by reuse.

� Learn how to debug applications written using a frame-
work.

� Identify the performance implications of integrating ap-
plication logic into a framework.

� Evaluate the effort required to develop a new framework.

This section explores each of these activities and describes
specific steps to follow to succeed with frameworks in prac-
tice.

3.1 Determining Framework Applicability and
Quality

Frameworks are most applicable in problem domains where
there is considerable commonality in functionality and QoS
requirements of solution space, yet each solution may vary in
certain respects, thereby necessitating a framework to manage
points of commonality and variability. For example, Xerces
provides a powerful framework for parsing and validating the
conformance of XML data to a specific document type defini-
tion (DTD) or schema. Xerces also enables the construction of
data from XML files to build applications, such as XML-savvy
web servers, vertical applications that use XML as their data
format, and on-the-fly validation for XML editors. The key
commonality handled by the Xerces framework in all these
applications is the XML parsing required to build applications
that can then process the XML content in different ways us-
ing different programming languages, such as C++, Java, and
Perl.

Some specific steps to take when deciding whether a frame-
work can be used for a particular application or domain in-
clude:

� Having domain experts and product architects identify
common functionality with other domains and conduct a
study of available COTS frameworks to address domain-
specific and domain-independent functionality during the
design phase of a project.

� Conduct pilot studies that apply various COTS frame-
works to develop representative prototype applications.
Such pilot studies can be conducted as part of an iterative
development approach,e.g., the Spiral model or eXtreme
Programming (XP).

The goal of these steps is to identify the capabilities of exist-
ing frameworks and determine the level of effort required to
integrate domain- and product-specific logic with the selected
framework(s).

It’s important to recognize, however, the suitability of a
framework for a particular application may not be apparent un-
til the learning curve has flattened, which often occurs on the
second and successive projects that use the framework. Since
application developers can take 6-9 months to become highly
productive with frameworks on their own, hands-on mentoring
and training courses can help developers master a new frame-
work more quickly and effectively. Application developers
can also mitigate the effects of the learning curve by prototyp-
ing and incrementally focusing on subsets of the framework
that are immediately applicable to their most immediate task
at hand.

Applicability is only part of the criteria for evaluating a
framework, however. The other part isquality, i.e., how to
identify a good framework from a bad framework. Some spe-
cific issues to consider when evaluating the quality of a frame-
work include the following:
� Will the framework allow applications to cleanly decou-

ple the callback logic from the rest of the software,i.e.,
will the framework become too tightly coupled with the
development, debugging, future enhancement, and main-
tenance of other parts of the software?

� Can applications interact with the framework via a nar-
row and well defined set of interfaces and facades [7]?

� Does the framework document all the API’s that are used
by applications to interact with the framework,e.g., does
it define pre-conditions and post-conditions of callback
methods via contracts?

� Does the framework explicitly specify the startup, shut-
down, synchronization and memory management con-
tracts available for the clients?

3.2 Evaluating the Economics of Frameworks

Although frameworks as defined in Section 2 are designed as
reusable software, in practice their (re)usability often depends
on how well they model the commonalities and variabilities
across application domains, such as business data process-
ing, telecom call processing, graphical user interfaces, or real-
time middleware. By leveraging the domain knowledge and
prior efforts of experienced developers, frameworks provide
solutions to common problems, and provide ways to extend
and customize existing infrastructure to create domain specific
solutions for domain-specific problems and software design
challenges. Unless the effort required to learn the framework
can be amortized over many projects, however, this investment
may not be cost effective and it may be better to build new ca-
pabilities in-house rather than reuse existing frameworks.

3



Some specific steps to take when deciding whether to reuse
an existing framework or build the code include [8]:

� Determining effective framework cost metrics, which
measure the savings of reusing framework components
vs. building applications from scratch.

� Conducting cost/effort estimations, which is the activ-
ity of accurately forecasting the cost of buying, building,
or adapting a particular framework.

� Performing investment analysis and justification,
which determines the benefits of applying frameworks in
terms of return on investment.

COCOMO 2.0 is an example of a widely used software cost
model estimator that can help to predict the effort for new soft-
ware activities. The estimates from these types of models can
be used as a basis of determining the savings that could be
incurred by using frameworks. A challenge confronting soft-
ware development organizations, however, is that many ex-
isting software cost/effort estimation methodologies are not
well calibrated to handle reusable frameworks or standards-
based frameworks that provide subtle advantages, such as code
portability or refactoring. Additional research is therefore nec-
essary to characterize the appropriate techno/economic criteria
for selecting frameworks.

3.3 Effective Framework Debugging Tech-
niques

Frameworks often hide interactions in a way that makes de-
bugging applications developed using frameworks hard. As
shown in Figure 1, frameworks exhibit inversion of control at
run time via callbacks to component hook methods after the
occurrence of an event, such as a mouse click or data arriv-
ing on a network connection. When an event occurs, among
other things the framework calls back to a virtual hook method
in a pre-registered application component, which then per-
forms application-defined processing in response to the event.
The implementation of the hook methods within the compo-
nents decouple the application or the business logic from the
reusable framework software, which allows each to change in-
dependently as long as the interface signature and interaction
protocols are not modified.

There are, however, various issues that complicate the de-
bugging of applications developed using frameworks. For ex-
ample, application developers may not be intimately familiar
with a framework’s design and implementation, which may
lead to subtle bugs caused by misinterpretations of an inter-
face’s semantics and protocols. Moreover, complex and error-
prone memory management rules may be required for lan-
guages like C++ that don’t support automatic garbage collec-
tion. Some frameworks also require application developers
to follow subtle initialization and termination protocols that

designate the order in which objects are created or destroyed.
Failure to follow these protocols correctly can yield problems
that are hard to trace and debug.

Traditional techniques used for debugging applications,
e.g., using a debugger to step through the application and ver-
ifying the state information, is often ineffective for applica-
tions built using frameworks since bugs commonly stem from
faulty assumptions and misconceptions about the interactions
hidden by a framework. A more effective way to debugging
framework-based applications is to use the following tools
that:

1. Track lifetimes of objects by monitoring their reference
counts.

2. Monitor the internal request queue lengths and buffer
sizes maintained by the framework.

3. Monitor the status of the network connections in dis-
tributed systems.

4. Track the activities of designated threads in a thread pool.
5. Trace the SQL statements issued by servers to backend

databases.
6. Identify priority inversions in real-time systems.
7. Track authentication and authorization activities.

Though there are many general-purpose software debugging
tools, there are few widely-used commercial tools that sup-
port effective framework debugging. It is often necessary for
projects to develop flexible framework debugging tools that
integrate the individual tool features listed above and can be
configured to suit the framework being debugged. For exam-
ple, debugging tools enterprise application frameworks pro-
vide some common capabilities, such as tracking object life-
times, network connections, threading policies, database ac-
tivity, and security. Moreover, since frameworks are often spe-
cialized for particular domains, good debuggers require a deep
understanding of the framework’s design rules to be effective.
An example of such a tool is OCI’s OVATION, which is an
open-source tool that helps developers debug distributed ap-
plications by capturing and visually presenting (1) interdepen-
dencies between processes, threads, components, and objects,
(2) timing information for messages in absolute time and rela-
tive to user-defined milestones, and (3) important epochs, such
as client/server pre- and post-invoke.

Some specific steps that can be taken to reduce complex-
ities in testing and debugging applications using frameworks
include:

1. Performing design reviewsearly in the application de-
velopment process to convey the type of interactions be-
tween the framework and the application logic. For ex-
ample, application developers should understand the call-
back points in a framework and use these as starting
points to help debug their applications.

4



2. Conducting code inspectionsthat focus on common
mistakes, such as incorrectly applying memory owner-
ship rules for pre-registered components with the frame-
works.

3. Selecting good automated debugging tools, such
as memory bounds checkers and code coverage
instrumentation/analysis tools that help application de-
velopers identify and pinpoint common problems such
as Rational Purify, Valgrind, and Compuware Bound-
schecker.

4. Developing automated regression teststhat exercise
various framework capabilities in the context of appli-
cation scenarios to get a better understanding of the
strengths and weaknesses of the framework. Distributed
continuous quality assurance tools, such as those shown
at www.dre.vanderbilt.edu/scoreboard , can
help to identify problems throughout the development cy-
cle.

3.4 Identifying Framework Memory and Per-
formance Overhead

Though well-written frameworks can enhance application de-
veloper productivity, they can also incur significant memory
and performance overhead due to their additional generality
and capabilities. Understanding these time and space over-
head implications of frameworks is essential for performance-
sensitive applications that use frameworks along their critical
path. For example, frameworks that are used to invoke remote
operations (such as CORBA and Java RMI) typically man-
age OS resources (such as socket connections, threads, locks,
and shared memory), which can add considerable overhead to
if they aren’t designed, implemented, or optimized properly.
Common sources of time/space overhead in frameworks stem
from the following factors:

� Event dispatching latency, which is the time taken by a
framework to callback application handlers when events
arrive.

� Synchronization latency, which is the duration of time
spent trying to grab and release locks along the critical
path in single-threaded and multi-threaded mode of oper-
ation within a framework.

� Resource management latency, which is the duration of
time spent trying to allocate and release resources, such
as memory, and socket handles in single-threaded and
multi-threaded mode of operation.

� Framework functionality latency , which is the time
spent by the thread of control within the framework for
each operation it handles.

� Dynamic memory overhead, which often involves the
resources used to address the sources of latency outlined

above. For example, a framework could cache mem-
ory allocated dynamically to reduce event dispatching la-
tency, which in turn could increase the runtime memory
of the applications that use the framework.

� Static memory overhead, which is the amount of addi-
tional disk space that an application uses when using a
framework,e.g., due to additional framework code that
is linked into an application, even though the application
may not necessarily use it.

Some specific steps to take when evaluating the perfor-
mance of applications developed a framework include:

� Conducting a systematic engineering analysis to deter-
mine the features and properties (such as scalability, tol-
erance to commonly occuring faults, and predictability)
required from a framework. Frameworks often perform
well when a limited set of their features are used, but will
perform poorly when many features (or a certain combi-
nation of features) are used.

� Developing test cases to empirically evaluate the over-
head associated with every feature and combination of
features. Applications in different domains may require
different types of data. For example, real-time applica-
tions may require predictable low latency, whereas scien-
tific visualization applications may require high through-
put. The test cases should evaluate the required charac-
teristics.

� Locating third-party performance benchmarks and anal-
ysis to compare with the data collected. Techniques for
developing benchmarks including regression benchmark-
ing are available [9] as good reference material to develop
framework benchmarking testbeds.

3.5 Evaluating the Effort to Develop a New
Framework

Despite the depth and breadth of existing COTS frameworks,
developers can still encounter situations where no existing
frameworks are applicable for their domain or product needs.
For instance, the event loop mechanisms used to provide inver-
sion of control in existing frameworks don’t always integrate
seamlessly with legacy application components. Likewise, ex-
isting frameworks may not be able to meet performance re-
quirements or may provide insufficient information via call-
backs for applications operating in certain domains (particu-
larly applications with stringent QoS requirements). Existing
frameworks may also be unusable due to lack of support for
a particular programming language or operating system. In
these situations, software teams may need to develop their own
frameworks to accommodate the requirements in their domain.

Given how hard it is to develop software in general, it should
be no surprise that developing high quality, extensible, and

5



reusable frameworks is even harder [6]. A key challenge of
designing frameworks is to decompose the framework’s capa-
bilities into a set of reusable classes, while simultaneously an-
ticipating future uses and changes. Some specific issues that
should be addressed when developing a new framework in-
clude determining:

� Which classes should be fixed, thus defining the stable
shape and usage characteristics of the framework. If key
interfaces in a framework aren’t stable, it may be hard for
users to understand and apply the framework effectively
and efficiently because there will be too many degrees of
freedom.

� Which classes should be extensible,e.g., by subclassing
or template instantiation, to support adaptation necessary
to use the framework for new applications. If a frame-
work can’t be extended, then users can’t customize it for
their needs, which makes it hard to accommodate a di-
verse set of applications and use cases that were not fore-
seen during the framework’s initial design.

� Determining the right protocols for startup and shutdown
sequences of operations. If the application developers
cannot pick and choose the initialization and termination
sequences of framework operations, the lifetimes of the
application and framework can get coupled in complex
ways, which can reduce flexibility significantly.

� Developing right memory management and re-entrancy
rules for the framework. If the framework can be used by
multiple threads, framework developers should provide
mechanisms to serialize access to shared data and yet de-
termine ways to provide increased concurrency for better
performance by minimizing excessive locking.

� The right set of narrow interfaces that can be used by the
clients. Too narrow an interface can lead to restrictions
and place undue burden on the application, whereas too
broad an interface can lead to confusing API usage.

The diversity of the domains in which frameworks can be
applied make it hard to define a single universal strategy for
developing frameworks,i.e., hard-won experience and insights
are crucial ingredients to success. In general, however, well-
designed frameworks are often developed via a systematic pro-
cess of identifying the commonality and variability [10] of
policies and mechanisms in a particular application domain.
The commonality should be factored into stable reusable class
interfaces. The variability should be factored into reusable
classes whose implementations conform to a common inter-
face so they can be substituted easily to meet the needs of par-
ticular applications in particular contexts.

Fortunately, there are now many documented patterns [7]
and pattern languages [1] that can help guide and acceler-
ate the design and implementation of frameworks by enabling
developers to reuse higher-level software application designs,

such as publisher/subscriber architectures, micro-kernels, and
brokers [11]. These design artifacts represent some of the key
strategic aspects of complex software systems. If they are un-
derstood and applied properly via frameworks, the impact of
many vexing complexities can be greatly alleviated. Even so,
however, it may take a number of iterations to get the design
and implementation of a framework right. To get a good return
on the investment needed to develop a good framework, there-
fore, this effort must be amortized over multiple applications
and projects, otherwise the investment may simply not be cost
effective.

4 Concluding Remarks

The past decade has yielded significant progress in the de-
velopment and reuse of frameworks. As a result, we now
have frameworks based on open standards, such as Java and
CORBA, that provide a portable and interoperable set of soft-
ware artifacts, such as interoperable security, distributed re-
source management, and fault tolerance services. In the fu-
ture, many applications will be assembled by integrating and
scripting domain-specific and common “pluggable” frame-
work components, rather than being programmed from scratch
like they are today. Key topics and domains that will benefit
from the foundational work on frameworks conducted thus far
include:

� Distributed real-time and embedded systems. An in-
creasing number of patterns associated with frameworks
for concurrent and networked systems have been doc-
umented recently [12, 1]. A key next step is to de-
velop frameworks for distributed real-time and embed-
ded (DRE) systems, which extends earlier efforts to focus
on effective strategies and tactics for managing key QoS
properties in DRE systems, including network bandwidth
and latency, CPU speed, memory access time, and power
levels. Since developing high-quality DRE systems is
hard and remains of a “black art,” relatively few reusable
patterns [13] and frameworks [14], exist for this domain
today. We expect an increased focus on DRE systems
in the future, however, as reusable framework technology
matures, together with the development tools, techniques,
and processes that enable frameworks to be applied suc-
cessfully in the DRE domain.

� Mobile systems. Wireless networks are becoming perva-
sive and embedded devices are become smaller, lighter,
and more capable. Thus, mobile systems will soon
support many consumer communication and computing
needs. Application areas for mobile systems include
ubiquitous computing, mobile agents, personal assistants,
position-dependent information provision, remote medi-
cal diagnostics and teleradiology, and home and office

6



automation. In addition, Internet services, ranging from
Web browsing to on-line banking, will be accessed from
mobile systems. Mobile systems present many chal-
lenges, such as managing low and variable bandwidth
and power, adapting to frequent disruptions in connec-
tivity and service quality, diverging protocols, and main-
taining cache consistency across disconnected network
nodes. We expect that experienced developers of mo-
bile systems will capture their expertise in the form of
reusable frameworks to help meet the growing demand
for quality software in this area.

� Adaptive QoS for COTS systems. Distributed applica-
tions, such as streaming video, Internet telephony, and
large-scale interactive simulation systems, have increas-
ingly stringent QoS. To reduce development cycle-time
and cost, these applications are increasingly being devel-
oped using multiple layers of COTS hardware, operating
systems, and middleware components. Historically, how-
ever, it has been hard to configure COTS-based systems
that can simultaneously satisfy multiple QoS properties,
such as security, timeliness, and fault tolerance [15]. As
developers and integrators continue to master the com-
plexities of providing end-to-end QoS guarantees, it is es-
sential that they create adaptive and reflective frameworks
to help others configure, monitor, and control COTS-
based distributed systems that possess a range of inter-
dependent QoS properties.

Despite the many benefits of frameworks, however, they are
not silver bullets. In particular, they don’t absolve develop-
ers from responsibility for solving all complex concurrent and
networked software analysis, design, implementation, valida-
tion, and optimization problems. Ultimately there is no sub-
stitute for human creativity, experience, discipline, diligence,
and judgement. When applied using the techniques described
in this article, however, frameworks can help to alleviate many
accidental and inherent complexities, thereby yielding better
quality software with less overall time and effort.

References

[1] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. New York:
Wiley & Sons, 2000.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring - Improving the Design of Existing Code. Reading,
Massachusetts: Addison-Wesley, 1999.

[3] B. Foote and J. Yoder, “Big Ball of Mud,” inPattern
Languages of Program Design 4(B. Foote, N. Harrison, and
H. Rohnert, eds.), Boston: Addison-Wesley, 2000.

[4] M. Fayad, R. Johnson, and D. C. Schmidt, eds.,Implementing
Application Frameworks: Object-Oriented Frameworks at
Work. New York: Wiley & Sons, 1999.

[5] M. Fayad, R. Johnson, and D. C. Schmidt, eds.,Building
Application Frameworks: Object-Oriented Foundations of
Framework Design. New York: Wiley & Sons, 1999.

[6] R. Johnson, “Frameworks = Patterns + Components,”
Communications of the ACM, vol. 40, Oct. 1997.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[8] M. E. Fayad and D. S. Hamu, “Enterprise Frameworks:
Guidelines for Selection,”ACM, COmputing Surveys, Mar.
2000.

[9] L. M. A. T. Labs, “ATL QoS Home Page.”
www.atl.external.lmco.com/projects/QoS/ ,
2002.

[10] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and
Variability in Software Engineering,”IEEE Software, vol. 15,
November/December 1998.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal,Pattern-Oriented Software Architecture—A System of
Patterns. New York: Wiley & Sons, 1996.

[12] D. Lea,Concurrent Programming in Java: Design Principles
and Patterns, Second Edition. Boston: Addison-Wesley, 2000.

[13] J. Noble and C. Weir,Small Memory Software: Patterns for
Systems with Limited Memory. Boston: Addison-Wesley, 2001.

[14] D. C. Schmidt and S. D. Huston,C++ Network Programming,
Volume 2: Systematic Reuse with ACE and Frameworks.
Reading, Massachusetts: Addison-Wesley, 2002.

[15] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural
Support for Quality of Service for CORBA Objects,”Theory
and Practice of Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

7


