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ABSTRACT 
Service-oriented architecture (SOA) middleware has 

emerged as a powerful and popular distributed computing 
paradigm due to its high-level abstractions for composing 
systems and hiding platform-level details. Control of some 
details hidden by SOA middleware is necessary, however, to 
provide managed quality of service (QoS) for SOA systems 
that need predictable performance and behavior. This paper 
presents a policy-driven approach for managing QoS in SOA 
systems. We discuss the design of several key QoS services 
and empirically evaluate their ability to provide QoS under 
CPU overload and bandwidth-constrained situations. 

Keywords: service oriented architecture, quality of service 

 

I.  INTRODUCTION 
Service-oriented architecture (SOA) middleware has 

emerged as a powerful software engineering environment for 
developing distributed applications and systems. SOA offers 
benefits in system construction including dynamic discovery 
of system components (i.e., services), high-level abstractions 
for encapsulation and system composition, and lifecycle 
management and virtual execution environments that hide 
details about the platforms in which the system is run. 

These characteristics have increased adoption of SOA in 
enterprise environments, but, have limited its adoption in 
other domains, such as mission-critical distributed, real-time, 
and embedded (DRE) systems, that have stringent perfor-
mance, resource contention, and predictability requirements. 
Conventional SOA middleware, such as J2EE and .NET, 
lacks key QoS capabilities that are needed by systems in 
DRE domains, including the visibility and control of shared 
and constrained resources, and the mediation of competing 
demands for resources. Ironically, the limitations of SOA are 
at least partially due to a fundamental tension between the 
higher-level abstractions it attempts to provide and the de-
tailed visibility and control needed to provide QoS effec-
tively in dynamic and heterogeneous DRE environments. 

This paper describes key capabilities needed in SOA 
middleware to make it suitable to support applications and 
systems that require predictable QoS, including (1) task man-
agement, (2) bandwidth management, (3) aggregation of 
competing resource demands, and (4) QoS policy-driven 
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prioritization and scheduling strategies. As part of a SOA-
based QoS management system named QoS-Enabled Disse-
mination (QED) [11], we prototyped these capabilities for 
the JBoss and Java Message Service (JMS) SOA middleware 
and evaluated their performance in the context of CPU over-
load, constrained bandwidth, and dynamic policy changes.  

The remainder of the paper is organized as follows: Sec-
tion II briefly introduces SOA and the challenges it presents 
for managed QoS; Section III describes the QoS manage-
ment capabilities we designed and their prototype instantia-
tions; Section IV analyzes the results of experiments we con-
ducted to evaluate the improved QoS predictability, control, 
and performance over a baseline JBoss and JMS system in 
the face of CPU overload and constrained bandwidth, and 
experiments to evaluate the speed of dynamic QoS policy 
updates in QED; Section V compares QED with related 
work; and Section VI presents some concluding remarks. 

II. SERVICE ORIENTED ARCHITECTURE 

A. Overview of SOA 
SOA is a progression in the evolution of middleware and 

distributed software engineering technologies, building upon 
the basis of distributed objects and components. It encapsu-
lates business functionality as services, such as Enterprise 
JavaBeans (EJB) or Managed Beans (MBeans), much in the 
way that component models, such as the CORBA Compo-
nent Model (CCM), encapsulated functionality as compo-
nents. SOA service interfaces are specified in standard inter-
face description languages (IDL), such as the Web Services 
Description Language (WSDL), an evolution of the IDLs 
used for components and distributed objects preceding them.  

SOA typically also includes an execution container mod-
el and support for inter-service communication, e.g., pro-
vided by an Enterprise Service Bus (ESB). SOA middleware, 
like the component middleware that preceded it, provides an 
abstract development, deployment, and execution layer that 
encapsulates the details of distribution, inter-service and 
client-to-service communication, threading, and runtime 
execution. SOA middleware also extends the assembly and 
deployment languages (often based on XML) of distributed 
components to include dynamic service discovery (e.g., the 
Universal Description Discovery and Integration, UDDI) and 
orchestration of services, which combines assembly of ser-
vices, workflow description, and runtime control of work-
flow and service execution. 



JBoss is an open-source implementation of Java 2 Enter-
prise Edition (J2EE) SOA middleware that supports the SOA 
lifecycle goals of service orchestration, deployment, and 
execution (e.g., JBPM for orchestration). For the purpose of 
this paper we concentrate on two parts of JBoss: (1) JBoss 
application server, which provides a container model in Java 
for executing services, and (2) JMS for topic-based client-to-
service communication and data transfer. 

B. Challenges for providing QoS in SOA environments 
Although the SOA abstractions in JBoss and JMS simpl-

ify developing, composing, and executing SOA applications, 
they incur challenges for managing the QoS of these applica-
tions. For example, the JBoss container hides runtime- and 
platform-level details, e.g., the number of threads, invocation 
of services, assignment of service invocations to threads, and 
CPU thread scheduling. JBoss can thus create more threads 
than can be run efficiently by the hardware (leading to CPU 
overload) or fewer threads than needed by application and 
system services (leading to CPU under-utilization). Like-
wise, without QoS management, important services in JBoss 
can block waiting for threads, while less important services 
run (leading to priority inversion). Moreover, since service 
execution times vary, service invocations can tie up threads 
for potentially unbounded amounts of time. 

In a similar manner, the JMS communication middleware 
hides details, such as the transport protocol, the amount of 
bandwidth available and used, contention for bandwidth, and 
communication tradeoffs (e.g., loss and delay characteris-
tics). JMS provides point-to-point and publish-subscribe 
communication, reliable asynchronous communication, 
guaranteed message delivery, receipt notification, and trans-
action control. JMS does not expose any queue or flow con-
trol, however, so that large rates of messages, constrained 
bandwidth, or varying message sizes can end up with more 
important messages being delayed (even indefinitely) while 
less important messages are sent. In extreme cases, queues 
can fill up or grow unbounded, leading to resource exhaus-
tion, information loss, or unbounded delay. 

JBoss and JMS do each provide certain QoS parameters 
and configuration choices in their specifications. For exam-
ple, JMS specifies three QoS parameters: delivery mode 
(persistent or non-persistent), priority, and time-to-live, that 
provide hints to JMS implementations to support QoS. There 
is little support, however, for visibility into bandwidth avail-
ability and use, matching flow of information to the band-
width available, and managing contention for bandwidth 
across multiple JMS connections. 

JBoss includes a message bridge for sending messages 
reliably across clusters, WANs, or unreliable connections 
that specifies the following three levels of QoS: 
• QOS_AT_MOST_ONCE specifies unreliable delivery 

where messages may be lost, but will not reach their 
destinations more than once. 

• QOS_DUPLICATES_OKAY specifies reliable deli-
very. Messages might be delivered more than once if a 
message arrives but its acknowledgement is lost. 

• QOS_ONCE_AND_ONCE_ONLY specifies reliable 
delivery of both a message and its acknowledgement. 

Although these QoS levels specify message delivery reliabil-
ity, they do not specify the performance, resource usage, or 
prioritization of messages or information flows. Moreover, 
these QoS features of JMS and JBoss lack support for aggre-
gation and mediation of competing QoS requirements for 
users and connections that are sharing bandwidth, for coor-
dinating CPU and bandwidth usage, and for dynamic bottle-
neck management. In contrast, the QED QoS capabilities 
described in Section III provide this support. 

III. QOS MANAGEMENT CAPABILITIES FOR SOA 
Our work on QoS management for DRE systems in SOA 

environments has yielded QED, which is SOA-based mid-
dleware whose QoS capabilities address the challenges de-
scribed in Section II.B. This section describes the following 
QoS services and mechanisms we have developed for QED 
shown in Figure 1: (1) An aggregate QoS management ser-
vice; (2) A QoS policy service; (3) A task management local 
QoS manager; and (4) A bandwidth manager. 

A. Aggregate QoS management service 
The QED aggregate QoS management service creates a 

set of policies guiding the behaviors of the local QoS manag-
ers that enforce CPU scheduling and bandwidth utilization. 
The purpose of the aggregate QoS manager is to maintain 
predictable behavior throughout the orchestrated system of 
clients and services. Since the load of client and user de-
mands will vary, it is likely that there may not be enough 
bandwidth or CPU resources to provide the QoS requested 
by everyone. If these resources are not managed properly, no 
user will get a reasonable level of QoS (i.e., leading to the 
tragedy of the commons [7]). Aggregate QoS management 
mediates conflicting demands for QoS management, provid-
ing available resources to the most critical services or clients. 

Each local QoS manager (task, submission, and dissemi-
nation) has only a local view. The aggregate QoS manager 
thus provides policies that are consistent to related control 
points. For example, if a policy indicates that a service invo-
cation should have a high priority for CPU thread sche-
duling, then information produced by the service invocation 
should also have high priority for dissemination to clients or 
other services. 

When a client is authenticated to gain access to services 
(using an authentication service), the authentication creden-
tials and other information about the user, client, and orches-
tration are forwarded to the aggregate QoS manager. The 
aggregate QoS manager accesses the policy store to get the 
list of policies that can apply to the user, client, and opera-
tions that the client can invoke. The aggregate QoS manager 
resolves the list to remove overlapping and contradictory 
policies, using a configurable policy precedence scheme de-
scribed below. The equivalent of a session is created for the 
client’s operations on services in its orchestration and the 
relevant policies are distributed to the local QoS managers 
using properties on the session. 

In this way, the aggregate QoS manager translates high 
level, goal- and user-specified QoS policies into actionable 
QoS policies that apply to observable properties of a client, 
operations it can invoke, information (e.g., parameters or 
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Figure 1.  QED Capabilities Providing Aggregate QoS Management for SOA-based DRE Systems 
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Figure 2. QED Local Task Manager Design 

messages), and resources. The actionable policies distributed 
to the local QoS managers can be checked quickly at the 
local enforcement points via attribute lookups and relational 
comparisons so they can be applied in the path of the control 
and data flow. In contrast, policy lookup, parsing, and distri-
bution of policies by the aggregate QoS manager is out-of-
band with the control and data flow and is relatively infre-
quent compared to local policy enforcement. They occur 
only on discrete events that affect the makeup of the overall 
distributed system, such as the entry of new clients, resource 
failure, and changes in overall QoS goals or policies. 

B. QoS policies 
Each QoS policy includes a condition over observable 

properties of the system, which is defined as follows: 

QoS Policy: f(E, M, O, R) ⇒ QoS settings 

The current QED prototype supports conditions over ob-
servable properties of Entities (E) such as clients or user cre-
dentials, Information (M) such as message types or informa-
tion metadata, Operations (O) such as service invocations, 
and Resources (R) such as queue lengths, threads, or band-
width. QoS settings provide guidance to the local QoS man-
agement components and are defined as the combination of 
an importance (i), a set of QoS preferences (P), and a prece-
dence level (v), as follows: 

QoS settings: (i, P, v) 

The importance is a high-level measure of the relative value 
of an operation, type, or client to a system’s overall goals. 
This value is used, along with other factors such as cost, to 
prioritize processing and dissemination of information. QoS 
preferences define limits and tradeoffs among aspects of 
QoS, such as deadlines and acceptable ranges of quality.  

The precedence level aids in selecting between conflict-
ing policies; higher precedence policies are enforced in favor 
of lower precedence ones. In general, more specific policies 

should override less specific ones. Policies are maintained in 
the Policy Store service. 

C. Task management 
Achieving predictable performance requires managing 

the execution of all CPU intensive operations, such as ser-
vice invocations, for each CPU (or equivalent virtual ma-
chine, VM) onto which clients and services are distributed, 
including the following capabilities: 
• Prioritized scheduling of operations based on impor-

tance and cost (e.g., time to execute). 
• Limiting the size of the thread pool to a number of 

threads that can be executed on the CPU (or a portion al-
located to the VM) without overloading it. 

• Scheduling according to an appropriate policy, such as 
strict or weighted fair. 

To manage these tasks, QED provides Local Task Man-
agers, whose design is shown in Figure 2. Each Local Task 
Manager manages the CPU intensive operations for a given 
CPU or VM using priority scheduling. The goal is to avoid 
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Figure 4. QED Dissemination LQM Design 

CPU overload in the form of too many threads or service 
invocations and to avoid priority inversion, in the form of 
lower priority service invocations getting CPU when higher 
priority service invocations are awaiting execution. 

When CPU-intensive operations (e.g., service invocation) 
are performed, tasks are created and submitted to the Task 
Manager, where they are inserted into a binned priority 
queue using a configurable number of bins (queues), each 
representing a priority. 1

The Task Manager assigns threads from the thread pool 
to tasks according to a queue management strategy under 
control of the aggregate QoS manager. QED currently has 
two queue management policies implemented: strict and 
weighted fair. In both the strict and weighted fair policies, 
there is FIFO behavior within individual bins. In Strict, the 
Task Manager always pops off the highest-priority bin that is 
not empty. The weighted-fair queue management policy pro-
vides an opportunity to service all bins with a built in 
weighting to service higher priority bins more often. 

 Task creators calculate an impor-
tance (derived from a policy applied to the operation, infor-
mation type, and/or client) and cost for the task. The Task 
Manager takes importance and cost as inputs and generates a 
priority (bin assignment). Binned queues also allow QED to 
support a weighted-fair policy, which is hard to implement in 
a heap-based implementation. The tradeoff is that we have a 
fixed granularity with which to distinguish tasks.  

Estimating the cost of operations for use in the schedul-
ing decision requires an accurate model of service execution 
time. Constructing such models is hard in the dynamic DRE 
systems we target since service execution time can vary sig-
nificantly depending on the power of the platform on which 
it is deployed and characteristics of inputs to the service. We 
combine two approaches to solve this problem. First, we use 
heuristics—based in part on experimental and testing runs—
to identify the conditions under which a service is more or 
less costly to execute. Second, a QoS monitoring service 
[11][12] that is part of our overall solution monitors service 
execution and reports the measured time (stored as a time 
series) to the local task manager so that its model of service 
execution time improves as the system executes. 

D. Bandwidth management 
The Bandwidth Manager is a host-level entity that as-

signs bandwidth slices for inbound and outbound communi-
cations based on policy provided by the aggregate QoS man-
ager. For SOA architectures, bandwidth is managed at the 
level of information objects, not packets, as is done by net-
work-level QoS, since the loss or delay of an individual 
packet could invalidate an entire (and potentially much larg-
er) object of information. Here the inbound and outbound 
managers are referred to as the Submission Local QoS Man-
ager (LQM) and Dissemination LQM, respectively. The cur-
rent version of the Bandwidth Manager provides a static 
bandwidth allocation per interface and to each of the LQMs. 

The Submission LQM, shown in Figure 3, manages the 
consumption of inbound bandwidth by throttling external 
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clients and providing bandwidth slices to cooperative SOA 
clients, which in turn enforce the restriction on the client’s 
outbound connection. When coupled with information priori-
tization (enforced by priority-driven differential queuing on 
the client’s outbound side), this form of incoming message 
rate control serves two purposes: (1) the rate throttling re-
duces the potential for resource overload on the service hosts 
and (2) the utility of information that ultimately reaches the 
invoked service is enhanced through outbound prioritization. 

The Submission LQM provides a per-process service 
registration interface for inbound bandwidth management. 
This results in an equal sharing of inbound bandwidth re-
sources per-process. The Submission LQM invokes an out-
of-band RMI call to external SOA-clients to reallocate their 
bandwidth as needed. As with the aggregate policy distribu-
tion, we expect these reallocation calls will be infrequent 
compared to the service invocation and messages to services. 
Factors such as the duration of the connection lifecycle, fre-
quency of connection failures and client request model for a 
particular SOA-deployment should be considered when de-
termining an appropriate reallocation scheme. 

The Dissemination LQM shown in Figure 4 provides ma-
naged dissemination by scheduling over differential queues. 
Queue counts coincide with the same number of bins used by 
the Task Manager. This modular design for managed diffe-
rential dissemination can be used to schedule and send pri-
oritized messages across outbound connections while meet-
ing strict bandwidth requirements. QED uses differential 
queuing for outbound messages from services to clients, but 
the dissemination approach may also be applied to service-
to-service communications in deployments where service-to-
service messages span host boundaries.  

As shown in Figure 4, the resulting “write-to-client” call 
from a service invocation is treated as a managed task. When 
outgoing messages are to be sent to a client, the Dissemina-
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tion LQM calculates the importance of the information for 
each receiving client, by checking the parsed policy held in 
attributes on state information for each connection. 

After calculating the information importance the Disse-
minator component of the LQM will distribute the infor-
mation to the appropriate ClientQueue. The ClientQueue 
calculates the priority from a combination of the provided 
importance and a cost measure based on the size of the in-
formation being disseminated (representing the amount of 
bandwidth sending the information will consume). At this 
point, the priority is used to determine which client bin 
should be used to enqueue the data.  

The head of each ClientQueue bin is managed by a 
threaded class called the ClientBinManager, (shown here as 
a thread-line on the top of each ClientQueue bin). The 
ClientBinManager manages two operations for the head item 
of the queue. The first operation is an aggregate level en-
queue and block. This ensures that each ClientQueue has 
only one piece of information allotted per bin that can be in 
contention for a chunk of the aggregate bandwidth. The 
second operation is unblock-and-send on signal which is 
triggered by the bandwidth scheduler upon selecting a par-
ticular client’s priority bin. Through this mechanism the dif-
ferential queuing allows for the fair scheduling across mul-
tiple client connections and priority bins.  

The Bandwidth Scheduler, with operations shown with 
red lines, has a scheduling thread that alternates in a 
sleep/wake cycle based on the availability and use of band-
width. When awakened, the scheduling thread selects the 
next dissemination task that should be processed. The sche-
duling algorithm provides identical support for the strict and 
weighted fair algorithms as described in Section III.C. The 
Bandwidth Scheduler calculates the amount of time to send 
the information by dividing the information size by the 
amount of available bandwidth. It then calls the callback of 
the selected task’s ClientBinManager to notify its availability 
to send the information message. The send is immediately 
followed by a sleep for the amount of time calculated to send 
the information. At this point, the notified ClientBinManager 
removes the actual task from the appropriate bin and sends a 
message with the information to the receiving client. 

E. Deployment and distribution of QoS managers 
There should be a local task manager for each shared 

CPU resource, virtual or actual. This means that a host could 
have one local task manager that schedules operations run-
ning on that CPU, or it could have several local task man-
agers, one each for the VMs running on the host with each 
VM having a specific “partition” of the CPU (e.g., controlled 
by the size of their available thread pool). 

There should be a bandwidth manager for each occur-
rence of shared bandwidth, which could be associated with 
the NIC card on a host, a virtual private network, or dedi-
cated network. True bandwidth management is only possible 
in those situations where the network is controlled by the 
QoS management services. Deployment of services across an 
unmanaged network (such as the Internet) will result in ap-
proximate and reactive QoS management only, since the 
amount of available bandwidth at any given time, the ability 

to control competition for the bandwidth, and honoring of 
network priorities (e.g., DiffServ Code Points) is beyond the 
QoS management service purview. Increased performance 
can be achieved in even these environments, however, 
through active monitoring of the bandwidth achieved be-
tween two points (e.g., by monitoring the latency and 
throughput of messages or using a tool such as TTCP [1]) 
and shaping and prioritizing traffic as if that is all the band-
width available (leaving a reserve of unallocated bandwidth 
increases the delivered QoS predictability). 

Likewise, there should be a submission and dissemina-
tion LQM for each occurrence of shared bandwidth used for 
incoming and outgoing messages, respectively. The aggre-
gate QoS manager can be either centralized or distributed. If 
it is distributed extra care should be taken to synchronize the 
policy stores and policy distribution. 

IV. EXPERIMENTAL RESULTS 
This section evaluates the QED capabilities in the context 

of a set of publication-subscription information management 
(IM) services shown in Figure 5. These services include (1) a 
Submission Service that receives incoming information, (2) a 
Broker Service that matches incoming information to regis-
tered subscriptions, (3) an Archive Service that inserts in-
formation into a persistent database, (4) a Query Service that 
handles queries for archived information, and (5) a Dissemi-
nation Service that delivers brokered information to sub-
scribers and query results to querying clients. The baseline 
pub-sub IM services run on top of JBoss application server 
and JMS SOA middleware.  

Below we present the results of three experiments con-
ducted to evaluate the efficacy and performance of the pub-
sub IM services with the QED QoS management services. 

We first measure the effect of CPU overload conditions on 
the servicing of information to demonstrate QED’s differen-
tiated services and then measure the effects of a shared band-
width resource with high service contention and show how 
QED provides predictable service despite the contention 
(both experiments are contrasted with a baseline of the pub-
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sub IM services without QED QoS management). Finally, 
we measure the performance of applying new policies to 
QED’s QoS management infrastructure to evaluate QED’s 
dynamism and scalability characteristics. The experiments 
indicate that QED can change policies dynamically and effi-
ciently to handle many users and policy rules. 

All experiments ran on ISISLab (www.isislab.vanderbilt 
.edu) using the Red Hat FC6 operating system over dual core 
2.8 Ghz Xeon processors with 1 GB RAM and gigabit Ether-
net (the Bandwidth Bound experiments required custom 
bandwidth limitation via the Linux kernel). Each experiment 
was conducted on three nodes: one for subscribers, one for 
publishers, and one for JMS and QED services.  

A. CPU Overload 
The first experiment evaluates QED’s ability to provide 

differentiated service to important clients and information 
during CPU overload. The information brokering and query 
services are the most CPU intensive IM services. Each sub-
scription or query has a predicate (specified in XPath or 
XQuery) that is evaluated and matched against the metadata 
of newly published (for information brokering) or archived 
(for query) information objects.  

This experiment uses three subscribing and three publish-
ing clients (one each with high, medium, and low impor-
tance), with each subscriber matching the information ob-
jects from exactly one publisher. To introduce CPU overload 
in this experiment, we created an additional 150 subscribing 
clients with unique predicates that do not match any pub-
lished objects. These subscriptions create CPU load (in the 
form of processing many unique predicates) without addi-
tional bandwidth usage (since the predicates do not match 
any information objects, no additional messages are dissemi-
nated to subscribing clients). We then executed two scena-
rios: one in which all of the CPU load is caused by low prior-
ity information and the other in which CPU load is caused by 
all information (high, medium, and low importance).   

In the first scenario, the high and medium importance 
publishers are publishing one information object each second 
(1 Hz), while the low importance publisher is publishing 300 
information objects per second. The evaluation of the 153 
registered predicates against the metadata of the two high 
and medium importance information objects is well within 
the capacity of the CPU, while the evaluation of the 153 reg-
istered predicates against the 300 low importance informa-
tion objects (a total of 45,900 XPath/XQuery searches per 
second) is more than the CPU can handle. 

Figure 6 shows a comparison of the number of high and 
medium importance information objects in the baseline IM 
services running over JBoss and the IM services running 
over JBoss with QED QoS management. The JBoss baseline 
does not differentiate the operations competing for the over-
loaded CPU and, as a result, only slightly more than half of 
the high and medium importance information gets through 
(.58 Hz for both high and medium publishers). The QED 
services, in contrast, used JBoss threads for brokering the 
more important information and, as a result, achieved a rate 
of .99 Hz for both the high and medium information publish-
ers, nearly the full 1 Hz publication rate. The baseline JBoss 

system processes the low importance information at 16.28 
Hz, while the JBoss system with QED services processes 
them at a rate of 13.59 Hz, which indicates there is signifi-
cant priority inversion in the IM services running over the 
baseline JBoss, i.e., lower priority information is processed 
when there is higher priority information to process. 

In the second scenario, all three publishers publish at a 
rate of 20 information objects per second (i.e., 20 Hz). This 
experiment overloads the CPU with predicate matching of 
information from high, medium, and low importance pub-
lishers, each of which is sufficient by itself to overload the 
CPU of our experiment host. Figure 7 shows how the IM 
services running on the baseline JBoss system exhibit no 
differentiation, processing almost equal rates of high, me-
dium, and low importance information (5.9 information ob-
jects per second). In contrast, the QED services cause the IM 
services and JBoss to provide full differentiated service, with 
the high importance information being processed at the much 
higher average rate of 15.52 information objects per second. 
Meanwhile, medium and low importance information are not 
starved, and medium importance information is processed 
twice as often (0.2 Hz) as low importance (0.1 Hz). 

B. Bandwidth constrained 
Outgoing messages from the Dissemination Service to re-

questing clients and incoming messages to the Submission 
Service from publishing clients are the most bandwidth in-
tensive of the IM services. This experiment forced a band-
width bottleneck by constraining the shared bandwidth avail-
able from the Dissemination Service to all requesting clients 
to 320 Kbps. We then evaluated the ability of the IM services 
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to use this constrained bandwidth for important outgoing 
traffic when utilizing the baseline JMS communication mid-
dleware and JMS with QED QoS management. 

After constraining the outgoing bandwidth, we ran three 
publishers, publishing two information objects with a 1KB 
payload each second, and twelve subscribers, each with iden-
tical predicates that match all published information (i.e., all 
subscribers are interested in the data being published by all 
three publishers). This configuration ensured that the predi-
cate processing (i.e., the CPU) is no longer a bottleneck. 
Each information object was delivered to 12 subscribing 
clients, resulting in over 576 Kbps of information trying to 
get through the 320 Kbps of available bandwidth. 

Four of the 12 subscribers were set to high importance, 
four to medium importance, and four to low importance. 
Figure 8 shows that the IM services running on the baseline 
JBoss do not differentiate between the important subscribers 
and the less important subscribers, i.e., all subscribers suffer 
equally in JMS. The IM services running on JBoss with QED 
provides similar overall throughput but with better QoS to 
the subscribers that were specified as the most important. 

C. Policy change 
This set of experiments evaluated QED’s dynamism and 

scalability, measuring (1) how quickly policy changes can be 
made and distributed to the LQM services in QED and (2) 
how the time to change policies scales with the number of 
users and existing policies. The first experiment measures 
the time to add and distribute a policy when the number of 
existing policies is 2, 10, 100, and 300. Figure 9 shows the 
time required to check the new policy against existing poli-
cies and apply the policy change scales well with the number 
of policies existing in the store. In fact, the slope of the line 
decreases as the number of existing policies increases. 

The next experiment measures the time needed to add 
and distribute a policy as the number of client connections 
increases. We made a policy change with 2, 10, 100, and 500 
client connections and measured how long it takes for the 
policy to take effect. The results in Figure 10 show that the 
time needed to effect a policy change scales well, with only 
subsecond time to effect a policy change even with several 
hundred connections.  

Further testing showed that this linear trend continues 
when both large numbers of clients and existing policies ex-
ist at the same time, with the existing policies in the store 

being the primary bottleneck. QED’s ability to quickly apply 
policy changes during run time adds dynamic control and 
responsiveness to the policy infrastructure. 

V. RELATED WORK 
QoS management in middleware and SOA. Prior work 

focused on adding various QoS capabilities to middleware. 
For example, [8] describes J2EE container resource manage-
ment mechanisms that provide CPU availability assurances 
to applications.  Likewise, 2K [19] provides QoS to applica-
tions from varied domains using a component-based runtime 
middleware. In addition, [2] extends EJB containers to inte-
grate QoS features by providing negotiation interfaces which 
the application developers need to implement to receive de-
sired QoS support.  Synergy [14] describes a distributed 
stream processing middleware that provides QoS to data 
streams in real time by efficient reuse of data streams and 
processing components. [13] presents an algorithm for com-
posing services to achieve global QoS requirements. In [10], 
Lodi et al use clustering (load balancing services across ap-
plication servers on distributed nodes) to meet QoS require-
ments for availability, timeliness, and throughput. 

Network QoS management in middleware. Prior work fo-
cused on integrating network QoS mechanisms with middle-
ware. Schantz et al. [15] show how priority- and reservation-
based OS and network QoS management can be coupled 
with standards-based middleware to better support distri-
buted systems with stringent end-to-end requirements. Gen-
dy et al. [4][5] intercept application remote communications 
by adding middleware modules at the OS kernel space and 
dynamically reserve network resources to provide network 
QoS for the application remote invocations. 



Schantz et al. [16] intercept remote communications us-
ing middleware proxies and provide network QoS for remote 
communications by using both DiffServ and IntServ network 
QoS mechanisms. Yemini et al. [18] provide middleware 
APIs to shield applications from directly interacting with 
complex network QoS mechanism APIs. Middleware frame-
works transparently converted the specified application QoS 
requirements into lower-level network QoS mechanism APIs 
and provided network QoS assurances. 

Deployment-time resource allocation. Prior work has fo-
cused on deploying applications at appropriate nodes so that 
their QoS requirements can be met. For example, [9][17] 
analyzed application communication and access patterns to 
determine collocated placements of heavily communicating 
components. Likewise, [3][6] have focused on intelligent 
component placement algorithms that maps components to 
nodes while satisfying their CPU requirements. 

Our work on QED builds upon and enhances this prior 
work on QoS-enabled middleware by providing QoS for 
SOA systems that (1) works with existing standards-based 
SOA middleware; (2) provides aggregate, policy-driven QoS 
management; and (3) provides applications and operators 
with fine-grained control of tasks and bandwidth. 

VI. CONCLUDING REMARKS 
This paper described the QED approach to dynamic task 

and bandwidth management, aggregation of competing re-
source demands, and QoS policy-driven prioritization and 
scheduling strategies. Our prototype and experiments with an 
information management system show significant improve-
ment in performance, predictability, and control over the 
baseline JBoss and JMS SOA middleware. Future versions 
of QED will feed monitored statistics, including interface 
usage, service execution, and QED internals such as priority 
queue lengths, into the LQMs to supplement the existing 
QoS management algorithms with feedback control and 
learning. We are also incorporating disruption tolerance to 
handle temporary client to service and service-to-service 
communication disruptions. 

We learned the following lessons from our experience 
developing and evaluating QED over the past several years: 
• SOA’s abstractions and portability are at odds with pro-

viding traditional QoS since key platform-level details 
are hidden from applications and operators.  The QED 
management layers are a step toward developing effec-
tive, and largely portable, abstractions for QoS concepts. 

• Overall system QoS can be improved when individual 
control points in SOA middleware are coordinated.  
QED's QoS management works with the QoS features 
and configuration parameters emerging for SOA infra-
structure, supplemented with dynamic resource alloca-
tion, scheduling, and adaptive control mechanisms. 

• As SOA middleware infrastructure evolves, so must the 
QoS management capabilities to ease QoS policy confi-
guration, QoS service composition, runtime behavior 
evaluation, and service deployment, which is all distri-

buted in ever increasingly pervasive and ubiquitous 
computing environments. QED's policy-driven approach 
to QoS management strikes an effective tradeoff be-
tween fine-grained control and ease of use. 
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