Chapter 1

Applying Optimization Principle
Patterns to Component
Deployment and Configuration

Tools

1.1 Introduction

Distributed, real-time and embedded (DRE) systems are an important class
of applications that share properties of both enterprise distributed systems
and resource-constrained real-time and embedded systems. In particular,
applications in DRE systems are similar to enterprise applications, e.g., they
are distributed across a large domain. Moreover, like real-time and embedded
systems, applications in DRE systems are often mission-critical and carry
stringent safety, reliability, and quality of service (QoS) requirements.

In addition to the complexities described above, deployment of appli-
cation and infrastructure components in DRE systems incurs its own set of
unique challenges. First, applications in DRE system domains may have par-
ticular dependencies on the target environment, such as particular hardware /-
software (e.g., GPS, sensors, actuators, particular real-time operating sys-
tems, etc.). Second, the deployment infrastructure of a DRE system must
contend with strict resource requirements in environments with finite re-
sources (e.g., CPU, memory, network bandwidth, etc.).

Component-Based Software Engineering (CBSE) [15] is increasingly used

1

2CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONE]

as a paradigm for developing applications in both enterprise [2] and DRE
systems [34]. CBSE facilitates systematic software reuse by encouraging
developers to create black box components that interact with each other
and their environment through well-defined interfaces. CBSE also simpli-
fies the deployment of highly complex distributed systems [37| by providing
standardized mechanisms to control the configuration and lifecycle of appli-
cations. These mechanisms enable the composition of large-scale, complex
applications from smaller, more manageable units of functionality, e.g., com-
mercial off-the-shelf components and preexisting application building-blocks.
These applications can be packaged along with descriptive and configuration
metadata, and made available for deployment into a production environment.

Building on expertise gleaned from the development of The ACE ORB
(TAO) [31]—an open-source implementation of the Common Object Request
Broker Architecture (CORBA) standard—we have been applying CBSE prin-
ciples to DRE systems over the past decade. As a result of these efforts,
we have developed a high-quality open-source implementation of the OMG
CORBA Component Model (CCM), which we call the Component Integrated
ACE ORB (CIAO) [17]. CIAO implements the so-called Lightweight CCM [22]
specification, which is a subset of the full CCM standard that is tuned for
resource-constrained DRE systems.

In the context of our work on applying CBSE principles to DRE systems,
we have also been researching the equally challenging problem of facilitating
deployment and configuration of component-based systems in these domains.
Managing deployment and configuration of component-based applications is
a challenging problem for the following reasons:

e Component dependency and version management. There may
be complex requirements and relationships amongst individual compo-
nents. Components may depend on one another for proper operation,
or specifically require or exclude particular versions. If these relation-
ships are not described and enforced, component applications may fail
to deploy properly; even worse, malfunction in subtle and pernicious
ways.

e Component configuration management. A component might ex-
pose configuration hooks that change its behavior, and the deploy-
ment infrastructure must manage and apply any required configura-
tion information. Moreover, several components in a deployment may

1.1. INTRODUCTION 3

have related configuration properties, and the deployment infrastruc-
ture should ensure that these properties remain consistent across an
entire application.

e Distributed connection and lifecycle management. In the case
of enterprise systems, components must be installed and have their
connection and activation managed on remote hosts.

To address the challenges outlined above, we began developing a deploy-
ment engine for CIAO in 2005. This tool, which we call the Deployment
and Configuration Engine (DAnCE) [7], is an implementation of the OMG
Deployment and Configuration (D&C) specification [25]. For most of its
history, DAnCE served primarily as a research vehicle for graduate students
developing novel approaches to deployment and configuration, which had two
important impacts on its implementation:

e Asaresearch vehicle, DAnCE’s development timeline was largely driven
by paper deadlines and feature demonstrations for sponsors. As a re-
sult, its tested use cases were relatively simple and narrowly focused.

e Custodianship of DAnCE changed hands several times as research projects
were completed and new ones started. As a result, there was often not
a unified architectural vision for the entire infrastructure.

These two factors had several impacts on DAnCE. For example, narrow
and focused use-cases often made evaluating end-to-end performance on real-
world application deployments a low priority. Moreover, the lack of a unified
architectural vision combined with tight deadlines often meant that poor ar-
chitectural choices were made in the name of expediency, and were not later
remedied. These problems were brought into focus as we began to work with
our commercial sponsors to apply DAnCE to larger-scale deployments, num-
bering in the hundreds to thousands of components on tens to hundreds of
hardware nodes. While the smaller, focused uses cases would have accept-
able deployment times, these larger deployments would take unacceptably
long amounts of time, on the order of an hour or more to fully complete.

In response to these problems, we undertook an effort to comprehen-
sively evaluate the architecture, design, and implementation of DAnCE and
create a new implementation that we call Locality-Enabled DAnCE (LE-
DAnCE) [27, 26]. This chapter focuses on documenting and applying op-
timization principle patterns that form the core of LE-DAnCE to make it

4CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONEI

suitable for DRE systems. Table 1.1 summarizes common optimization pat-
terns [35], many of which we apply in LE-DAnCE. An additional goal of this
paper was to supplement this catalog with new patterns we identified in our
work on LE-DAnCE.

Table 1.1: Catalog of Optimization Principles and Known Usecases in Net-
working [35]

Title Principle Examples from Networking
Avoiding Waste Avoid obvious waste zero-copy [28]
Shifting in Time Shift computation in time copy-on-write [1, 21],
(precompute, lazy evaluation, integrated layer
sharing expenses, batching) processing [5]
Relazing Specifications Relax specifications (trading off fair queuing [33], IPv6
certainty for time, trading off fragmentation

accuracy for time, and shifting

computation in time)

Leveraging other Leverage other system Lulea IP lookups [6], TCP
Components components (exploiting locality, checksum

trading memory for speed,

exploiting hardware)

Adding Hardware Add hardware to improve Pipelined IP lookup [14],
performance counters
Efficient Routines Create efficient routines UDP lookups
Awvoiding Generality Avoid unnecessary generality Fbufs [8]
Specification vs Don’t confuse specification and Upcalls [16]
Implementation implementation
Passing Hints Pass information like hints in Packet filters [19, 20, 10|
interfaces
Passing Information Pass information in protocol Tag switching [29]
headers
Ezpected Use Case Optimize the expected case Header prediction [4]
Ezploiting State Add or exploit state to gain speed | Active VC list
Degrees of Freedom Optimize degrees of freedom IP trie lookups [30]
Ezploit Finite Universes Use special techniques for finite Timing wheels [36]
universes
Efficient Data Structures Use efficient data structures Level-4 switching

The remainder of this chapter is organized as follows: Section 1.2 provides
an overview of the OMG D&C specification; Section 1.3 identifies the most
significant sources of DAnCE performance problems (parsing deployment in-
formation from XML, analysis of deployment information at run-time, and
serialized execution of deployment steps) and uses them as case studies to
identify optimization principles that (1) are generally applicable to DRE sys-
tems and (2) we applied to LE-DAnCE; and Section 1.4 presents concluding
remarks.

1.2. OVERVIEW OF DANCE it

1.2 Overview of DAnCE

The OMG D&C specification provides standard interchange formats for meta-
data used throughout the component-based application development lifecy-
cle, as well as runtime interfaces used for packaging and planning. These
runtime interfaces deliver deployment instructions to the middleware de-
ployment infrastructure via a component deployment plan, which contains
the complete set of deployment and configuration information for compo-
nent instances and their associated connection information. During DRE
system initialization this information must be parsed, components deployed
to physical hardware resources, and the system activated in a timely manner.

This section presents a brief summary of the core architectural elements
and processes that must be provided by a standards-compliant D&C im-
plementation. We use this summary as a basis to discuss substantial per-
formance and scalability problems in DAnCE, which is our open-source im-
plementation of the OMG Deployment and Configuration (D&C) specifica-
tion [25], as outlined in Section 1.1. This summary is split into three sections:
(1) the DAnCE runtime architecture, which describes the daemons and ac-
tors that are present in the system, the (2) data model, which describes the
structure of the “deployment plans” that describe component applications,
and (3) the deployment process, which provides a high level overview of the
process by which a deployed distributed application is realized.

1.2.1 Runtime D&C Architecture

The runtime interfaces defined by the OMG D&C specification for deploy-
ment and configuration of components consists of the two-tier architecture
shown in Figure 1.1. This architecture consists of (1) a set of global (system-
wide) entities used to coordinate deployment and (2) a set of local (node-
level) entities used to instantiate component instances and configure their
connections and QoS properties. Each entity in these global and local tiers
correspond to one of the following three major roles:

e Manager. This role (known as the ErecutionManager at the global-
level and as the NodeManager at the node-level) is a singleton daemon
that coordinates all deployment entities in a single context. The Man-
ager serves as the entry point for all deployment activity and as a
factory for implementations of the ApplicationManager role.

6CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONEI

Execution Manager

Domain Application Manager

Domain Application

|]
A J]

Node Manager

Node Application Manager

Node Application

Figure 1.1: OMG D&C Architectural Overview and Separation of Concerns

e ApplicationManager. This role (known as the DomainApplication-
Manager at the global-level and as the NodeApplicationManager at
the node-level entity) coordinates the lifecycle for running instances of
a component-based application. Each ApplicationManager represents
exactly one component-based application and is used to initiate de-
ployment and teardown of that application. This role also serves as a
factory for implementations of the Application role.

e Application. This role (known as the DomainApplication at the
global-level and the NodeApplication at the node-level entity) repre-
sents a deployed instance of a component-based application. It is used
to finalize the configuration of the associated component instances that
comprise an application and begin execution of the deployed component-
based application.

1.2. OVERVIEW OF DANCE 7

1.2.2 D&C Deployment Data Model

In addition to the runtime entities described above, the D&C specification
also contains an extensive data model that is used to describe component
applications throughout their deployment lifecycle. The metadata defined
by the specification is intended for use as

e An interchange format between various tools (e.g., development tools,
application modeling and packaging applications, and deployment plan-
ning tools) applied to create the applications and

e Directives that describe the configuration and deployment used by the
runtime infrastructure.

Most entities in the D&C metadata contain a section where configuration
information may be included in the form of a sequence of name/value pairs,
where the value may be an arbitrary data type. This configuration informa-
tion can be used to describe everything from basic configuration information
(such as shared library entry points and component/container associations)
to more complex configuration information (such as QoS properties or ini-
tialization of component attributes with user-defined data types).

This metadata can broadly be grouped into three categories: packaging,
domain, and deployment. Packaging descriptors are used from the beginning
of application development to specify component interfaces, capabilities, and
requirements. After implementations have been created, this metadata is
further used to group individual components into assemblies, describe pair-
ings with implementation artifacts, such as shared libraries (also known as
dynamically linked libraries), and create packages containing both metadata
and implementations that may be installed into the target environment. Do-
main descriptors are used by hardware administrators to describe capabilities
(e.g., CPU, memory, disk space, and special hardware such as GPS receivers)
present in the domain.

1.2.3 OMG D&C Deployment Process

Component application deployments are performed in a four phase process
codified by the OMG D&C standard. The Manager and ApplicationManager
are responsible for the first two phases and the Application is responsible for
the final two phases, as described below:

S8CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONEI

1. Plan preparation. In this phase, a deployment plan is provided to
the EzecutionManager, which (1) analyzes the plan to determine which
nodes are involved in the deployment and (2) splits the plans into
“locality-constrained” plans, one for each node containing information
only for the corresponding node. These locality-constrained plans have
only instance and connection information for a single node. Each Node-
Manager is then contacted and provided with its locality-constrained
plan, which causes the creation of NodeApplicationManagers whose ref-
erence is returned. Finally, the EzrecutionManager creates a Domain-
ApplicationManager with these references.

2. Start launch. When the DomainApplicationManager receives the
start launch instruction, it delegates work to the NodeApplication-
Managers on each node. Each NodeApplicationManager creates a Node-
Application that loads all component instances into memory, performs
preliminary configuration, and collects references for all endpoints de-
scribed in the deployment plan. These references are then cached
by a DomainApplication instance created by the DomainApplication-
Manager.

3. Finish launch. This phase is started by an operation on the Domain-
Application instance, which apportions its collected object references
from the previous phase to each NodeApplication and causes them to
initiate this phase. All component instances receive final configurations
and all connections are then created.

4. Start. This phase is again initiated on the DomainApplication, which
delegates to the NodeApplication instances and causes them to instruct
all installed component instances to begin execution.

1.3 Applying Optimization Principle Patterns
to DAnCE

This section examines three of the most problematic performance problems
we identified when applying DAnCE to component-based applications in a
large-scale production DRE system. We first describe a case study that
highlights many of these performance challenges. We then identify the causes
of performance degradation and use this discussion to present optimization

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE9

principles, which are guidelines that may be applied in other situations and
applications to remedy or prevent performance problems.

1.3.1 Overview of the SEAMONSTER Platform

An example DRE system that revealed significant performance issues with
DAnCE was a collaboration with the University of Alaska on the South
East Alaska MOnitoring Network for Science, Telecommunications, Educa-
tion, and Research (SEAMONSTER) platform. SEAMONSTER is a glacier
and watershed sensor web hosted at the University of Alaska Southeast
(UAS) [11]. This sensor web monitors and collects data regarding glacier
dynamics and mass balance, watershed hydrology, coastal marine ecology,
and human impact/hazards in and around the Lemon Creek watershed and
Lemon Glacier. The collected data is used to study the correlations between
glacier velocity, glacial lake formation and drainage, watershed hydrology,
and temperature variation.

The SEAMONSTER sensor web includes sensors and weatherized com-
puter platforms that are deployed on the glacier and throughout the water-
shed to collect data of scientific interest. The data collected by the sensors
is relayed via wireless networks to a cluster of servers that filter, correlate,
and analyze the data. Effective deployment of data collection and filter-
ing applications on SEAMONSTER field hardware and dynamic adaptation
to changing environmental conditions and resource availability present sig-
nificant software challenges for efficient operation of SEAMONSTER. While
SEAMONSTER servers provide significant computational resources, the field
hardware is computationally constrained.

Field nodes in a sensor web often have a large number of observable
phenomena in their area of interest. The type, duration, and frequency of
observation of these phenomena may change over time, based on changes
in the environment, occurrence of transient events in the environment, and
changing goals and objectives in the science mission of the sensor web. More-
over, limited power, processing capability, storage, and network bandwidth
constrain the ability of these nodes to continually perform observations at
the desired frequency and fidelity. Dynamic changes in environmental condi-
tions coupled with limited resource availability requires individual nodes of
the sensor web to rapidly revise current operations and future plans to make
the best use of their resources.

To address these challenges, we proposed to transition the data collection

10CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

and processing tasks to a middleware platform built on top of the CIAO
and DAnCE middleware described in Section 1.1 and 1.2, respectively. We
developed a run-time planner [18] that analyzed the physical observations of
the sensor nodes. Based on that information—as well as the operational goals
of the network—the planner generates deployment plans describing desired
software configuration.

Using DAnCE to apply the deployment changes requested by the run-
time planner, however, revealed a number of shortcomings in its performance.
These shortcomings were exacerbated by the limited performance of the field
hardware, relative slowness of the network linking the nodes, and the strin-
gent real-time requirements of the system. Each of these shortcomings is
described below.

1.3.2 Optimizing Deployment Plan Parsing
1.3.2.1 Context

Component application deployments for OMG D&C are described by a data
structure that contains all the relevant configuration metadata for the com-
ponent instances, their mappings to individual nodes, and any connection
information required. This deployment plan is serialized on disk in a XML
file whose structure is described by an XML Schema defined by the D&C
specification. This XML document format presents significant advantages
by providing a simple interchange format for exchanging deployment plan
files between modeling tools [13].

For example, in the SEAMONSTER case study this format provided a
convenient interchange format between the planning front end and the de-
ployment infrastructure. This format is also easy to generate and manipulate
using widely available XML modules for popular programming languages.
Moreover, it enables simple modification and data mining by text processing
tools such as perl, grep, sed, and awk.

1.3.2.2 Problem

Processing these deployment plan files during deployment and even runtime,
however, can lead to substantial performance penalties. These performance
penalties stem from the following sources:

e XML deployment plan file sizes grow substantially as the number of

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE11

component instances and connections in the deployment increases, which
causes significant 1/O overhead to load the plan into memory and to val-
idate the structure against the schema to ensure that it is well-formed.

e The XML document format cannot be directly used by the deploy-
ment infrastructure because the infrastructure is a CORBA application
that implements OMG Interface Definition Language (IDL) interfaces.
Hence, the XML document must first be converted into the IDL format
used by the runtime interfaces of the deployment framework.

In DRE systems, component deployments that number in the thousands
are not uncommon. Moreover, component instances in these domains will
exhibit a high degree of connectivity. Both these factors contribute to large
plans. Plans need not be large, however, to significantly impact the operation
of a system. Though the plans were significantly smaller in the SEAMON-
STER case study described above the extremely limited computational re-
sources meant that the processing overhead for even smaller plans was often
too time consuming.

1.3.2.3 Optimization Principle Patterns in Parsing Configuration
Metadata

There are two general approaches to resolving the challenge of XML parsing
outlined in Section 1.3.2.2.

1. Optimize the XML-to-IDL processing capability. DAnCE uses
a vocabulary-specific XML data binding [38] tool called the XML Schema
Compiler (XSC). XSC reads D&C XML schemas and generates a C+-+-based
interface to XML documents built atop the Document Object Model (DOM)
XML programming API. DOM is a time/space-intensive approach since the
entire document must first be processed to construct a tree-based repre-
sentation of the document prior to initiating the XML-to-IDL translation
process. Since deployment plan data structures contain extensive internal
cross-referencing, an alternative to DOM including event-based mechanisms
to process deployment plans, such as the Simple API for XML (SAX), would
not yield substantial gains either.

The C+-+ data binding generated by XSC creates a number of classes
(based on the content of the XML schema) that provide strongly-typed
object-oriented access to the data in the XML document. Moreover, this

12CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

interface leverages features of the C++ STL to help programmers write com-
pact and efficient code to interact with their data. The general process for
populating these wrappers is to 1) parse the XML document using a DOM
XML parser; 2) parse the DOM tree to populate the generated class hierar-
chy. In order to enhance compatibility with STL algorithms and functors,
XSC stores its data internally inside STL container classes.

Initial versions of the XSC data binding were highly inefficient. Even
relatively modest deployments numbering as few as several hundred to a
thousand components would take nearly half an hour to process. After an-
alyzing the execution of this process using tools such as Rational Quantify
revealed a very straightforward problem: the generated XSC code was in-
dividually inserting elements into its internal data structures (in this case,
std::vector) in a naive manner. As a result, exorbitant amounts of time
was spent re-allocating and copying data inside these containers for each
additional element inserted.

Below we present specific guidelines that developers must be aware of:

e Be aware of the cost of your abstractions. High level abstractions,
such as the container classes that are available in the C++ STL can
greatly simplify programs by reducing the need to reproduce complex
and error-prone lower level (largely boilerplate) code. It is important to
characterize and document (when writing abstractions) and understand
(when using them) what hidden costs may be incurred by using the
higher level operations provided by your abstraction.

o Use appropriate abstractions for your use case. Often, there is a choice
to be made between abstractions that provide similar functionality. An
example may be the choice between std: :vector and std: :1ist; each
presents its own advantages. In XSC, std: :vector was initially used
because we desired random access to elements in the data binding; the
cost was extremely poor performance when parsing the XML docu-
ment due to poor insertion performance. Our use case, however, only
required sequential access, so the much better insertion performance of
std::1list was in the end much more desirable.

By understanding the specific requirements of the particular use case of
our generated XML data binding — in particular that most nodes are visited
a single time and can be visited in order — we are able to apply the pattern

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE13

FExpected Use Case through the application of two other optimization pat-
terns. The Awvoiding Generality pattern is applicable in this case because we
consciously avoid generality by generating the data binding without random
access containers. We then chose to use the most efficient data structure
(Efficient Data Structures pattern) to satisfy that lack of generality.

2. Preprocess the XML files for latency-critical deployments.
While optimizing the XML to IDL conversion process yielded conversion
times that were tractable, this step in the deployment process still consumed
a large fraction of the total time required for deployment. This yet-unresolved
overhead could be avoided by applying another optimization principle pat-
tern:

e When possible, perform costly computations outside of the critical path.
In many cases, the result of costly procedures and computations can
be pre-computed and stored for later retrieval. This is especially true
in cases such as the XML deployment plan, which is unlikely to change
between when it is generated, and when the application deployment is
requested.

This optimization approach is applying optimization pattern Shifting in
Time by shifting the costly conversion of the deployment plan to a more effi-
cient binary format outside of the critical path of application deployment. In
applying this pattern, we first convert the deployment plan into its runtime
IDL representation. We then serialize the result to disk using the Common
Data Representation (CDR) [23] binary format defined by the CORBA spec-
ification. The SEAMONSTER on-line planner could take advantage of this
optimization by producing these binary plans in lieu of XML-based deploy-
ment plans, significantly reducing latency.

The platform-independent CDR binary format used to store the deploy-
ment plan on disk is the same format used to transmit the plan over the
network at runtime. The advantage of this approach is that it leverages
the heavily optimized de-serialization handlers provided by the underlying
CORBA implementation. These handlers create an in-memory representa-
tion of the deployment plan data structure from the on-disk binary stream.

14CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

1.3.3 Optimizing Plan Analysis
1.3.3.1 Context

After a component deployment plan has been loaded into an in-memory rep-
resentation, it must be analyzed by the middleware deployment infrastructure
before any subsequent deployment activity is performed. This analysis oc-
curs during the plan preparation phase described in Section 1.2.3. The goal
of this analysis is to determine (1) the number of deployment sub-problems
that are part of the deployment plan and (2) which component instances
belong to each sub-problem.

As mentioned in Section 1.2.3, the output of this analysis process is a set
of “locality-constrained” sub-plans. A locality-constrained sub-plan contains
all the necessary metadata to execute a deployment successfully. It therefore
contains copies of the information contained in the original plan (described
in Section 1.2.2).

The runtime plan analysis is actually conducted twice during the plan
preparation phase of deployment: once at the global level and again on each
node. Global deployment plans are split according to the node that the
individual instances are assigned to. This two-part analysis results in a new
sub-plan for each node that only contains the instances, connections, and
other component metadata necessary for that node.

The algorithm for splitting plans used by our DAnCE implementation of
the D&C specification is straightforward. For each instance to be deployed
in the plan, the algorithm determines which sub-plan should contain it and
retrieve the appropriate (or create a new) sub-plan data structure. As this
relationship is determined, all metadata necessary for that component in-
stance is copied to the sub-plan, including connections, metadata describing
executables, shared library dependencies, etc.

1.3.3.2 Problem

While this approach is conceptually simple, it is fraught with accidental
complexities that yield the following inefficiencies in practice:

1. Reference representation in IDL. Deployment plans are typically
transmitted over networks, so they must obey the rules of the CORBA
IDL language mapping. Since IDL does not have any concept of refer-
ences or pointers, some alternative mechanism must be used to describe

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE15

the relationships between plan elements. The deployment plan stores
all the major elements in sequences, so references to other entities can
be represented with simple indices into these sequences. While this
implementation can follow references in constant time, it also means
these references become invalidated when plan entities are copied to
sub-plans, as their position in deployment plan sequences will most
likely be different. It is also impossible to determine if the target of
a reference has already been copied without searching the sub-plan,
which is time-consuming.

2. Memory allocation in deployment plan sequences. The CORBA
IDL mapping requires that sequences be stored in consecutive memory
addresses. If a sequence is resized, therefore, its contents will most
likely be copied to another location in memory to accommodate the
increased sequence size. With the approach summarized above, sub-
stantial copying overhead will occur as plan sizes grow. This overhead
is especially problematic in resource-constrained systems (such as our
SEAMONSTER case study), whose limited run-time memory must be
conserved for application components. If the deployment infrastruc-
ture is inefficient in its use of this resource, either it will exhaust the
available memory, or cause significant thrashing of any virtual mem-
ory available (both impacting deployment latency and the usable life
of flash-based storage).

3. Inefficient parallelization of plan analysis. The algorithm de-
scribed above would appear to benefit greatly from parallelization, as
the process of analyzing a single component and determining which
elements must be copied to a sub-plan is independent of all other com-
ponents. Multi-threading this algorithm, however, would likely not
be effective because access to sub-plans to copy instance metadata
must be serialized to avoid data corruption. In practice, component
instances in the deployment plan are usually grouped according to the
node and/or process since deployment plans are often generated from
modeling tools. As a result, multiple threads would likely compete
for a lock on the same sub-plan, which would cause the “parallelized”
algorithm to run largely sequentially. While parallelization has his-
torically been viewed as non-applicable to resource-constrained DRE
systems (such as SEAMONSTER), the advent of multi-core proces-

16CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

sors in single-board computers is motivating more parallelism in these
environments.

1.3.3.3 Optimization Principle Patterns in Analysis of Deploy-
ment Plans

This performance challenge could potentially be resolved by applying the
Specification vs Implementation pattern, and leveraging some of the same
optimization principles described earlier for the XSC tool, especially being
aware of the cost of abstractions, and using appropriate containers for the
use case. For example, pointers/references could be used instead of sequence
indices to refer to related data structures, potentially removing the need
to carefully rewrite references when plan entities are copied between plans.
Likewise, an associative container (such as an STL map) instead of a sequence
could store plan objects, thereby increasing the efficiency of inserting plan
entities into sub-plans.

While these and other similar options are tempting, there are some in-
herent complexities in the requirements of the D&C standard that make
these optimizations less attractive. Since this data must be transmitted to
other entities as part of the deployment process, using a more efficient rep-
resentation for analysis would introduce yet another conversion step into the
deployment process. This conversion would potentially overwhelm any gains
attained by this new representation.

A more attractive result is to apply a different set of optimization prin-
ciples to this problem, outlined below:

e Cache previously calculated results for later use. This is an
example of the patterns Shifting in Time and FExploiting State. 1t is
possible to perform a simple pre-analysis step to pre-calculate values
that will be more time consuming to perform later. In this case, iterat-
ing over the plan first to determine the final sizes necessary to contain
the calculated sub-plans and cache that state for later use.

e Where possible, pre-allocate any data structures. As a result
of the additional state gleaned through the pre-analysis step described
above, we can apply the Avoiding Waste and avoid gratuitous waste by
pre-allocating the sequences which were previously being re-allocated
each time a new plan element was discovered.

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE17

e Design your algorithms to take advantage of parallelization.
While this can be seen as an application of the Adding Hardware, this
pattern speaks more to taking advantage of intrinsic properties of hard-
ware such as word size caching effects. Moreover, this pattern speaks
to adding special purpose hardware to perform specialized calculations.

Taking advantage of multiple general-purpose processors is an 1 impor-
tant emerging principle. Since multi-core computers are pervasive in
desktop and server domains, and are becoming increasingly common
even in embedded domains, it is increasingly important to design for
this important hardware feature. We therefore propose an additional
pattern which we will call Design for Parallelization, wherein one opti-
mizes design of algorithms and interfaces for parallelization, shown in
Table 1.2.

e Structure shared data access to avoid necessary use of syn-
chronization. Synchronization, e.g. using mutexes to protect access
to shared data, is tedious and error prone to use. Moreover, overzealous
use of synchronization can often entirely negate any parallelization of
your algorithms. A much more preferable approach is to structure your
algorithms to eliminate the need for synchronization entirely; requiring
only shared read access to data, instead of shared write access.

This optimization principle is not only an important companion to De-
sign for Parallelization proposed above, but is also a wise programming
practice in general: deadlocks and race conditions caused by incorrect
synchronization are pernicious and difficult to diagnose bugs. Indeed,
our recent work in software frameworks intended for fractionated space-
craft has proposed a component model that eliminates synchronization
from application code entirely [9]. To that end, we propose another op-
timization pattern which we call Avoid Synchronization, wherein one
should avoid overzealous synchronization and locking, shown in Table
1.2 below.

These principles can be applied to the algorithm described above to create
a version that is far more amenable to optimization; the new algorithm (along
with how the above principles influenced the design, is described below.

1. Phase 1: Determine the number of sub-plans to produce. In
this phase, a single thread iterates over all component instances con-
tained in the deployment plan to determine the number of necessary

18CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

sub-plans. When this operation is performed at the global level, it sim-
ply requires a constant time operation per instance. When performed
at the local level, it requires that locality constraints (described in Sec-
tion 1.2.2) be evaluated. Since this phase is potentially time consuming
the results are cached for later use. This is an example of Shifting in
Time and Ezploiting State.

2. Phase 2: Preallocate data structures for sub-plans. Using infor-
mation gleaned in phase 1 above, preallocate data structures necessary
to assemble sub-plans. As part of this preallocation it is possible to
reserve memory for each sequence in the sub-plan data structure to
avoid repeated resizing and copying. Statistics are collected in phase
1 to estimate these lengths efficiently. This is an example of Awvoiding
Waste

3. Phase 3: Assemble node-specific sub-plans. This phase of the
new analysis process is similar to the algorithm described at the begin-
ning of this section. The main difference is that the cached results of the
pre-analysis phase are used to guide the creation of sub-plans. Instead
of considering each instance in order (as the original DAnCE imple-
mentation did), LE-DAnCE fully constructs one sub-plan at a time,
by processing instances on a per-node basis. This approach simplifies
parallelizing this phase by dedicating a single thread per sub-plan and
eliminates any shared state between threads, except for read-only ac-
cess to the original plan. It is therefore unnecessary to use any locking
mechanism to protect access to the sub-plans. This is an example of
Design for Parallelization and Avoid Synchronization.

The revised algorithm above is a much more efficient implementation of
plan analysis, and can show improvement even on the single-core embedded
processors that were typical of the SEAMONSTER use-case: the above is
far more memory efficient, both in terms of space used and the amount of
re-allocation that is necessary. The use of multi-core embedded processors
would substantially improve run-time performance over the old algorithm.

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE19

1.3.4 Optimization Through Reduction in Serialized Ex-
ecution of Deployment Tasks

1.3.4.1 Context

The complexities presented below involve the serial (non-parallel) execution
of deployment tasks. The related sources of latency in DAnCE exist at
both the global and node level. At the global level, this lack of parallelism
results from the underlying CORBA transport used by DAnCE. The lack of
parallelism at the local level, however, results from the lack of specificity in
terms of the interface of the D&C implementation with the target component
model that is contained in the D&C specification.

The D&C deployment process presented in Section 1.2.3 enables global
entities to divide the deployment process into a number of node-specific sub-
tasks. Each subtask is dispatched to individual nodes using a single remote
invocation, with any data produced by the nodes passed back to the global
entities via “out” parameters that are part of the operation signature de-
scribed in IDL. Due to the synchronous (request/response) nature of the
CORBA messaging protocol used to implement DAnCE, the conventional
approach is to dispatch these subtasks serially to each node. This approach
is simple to implement in contrast to the complexity of using the CORBA
asynchronous method invocation (AMI) mechanism [3].

1.3.4.2 Problem

To minimize initial implementation complexity, we used synchronous invo-
cation in an (admittedly shortsighted) design choice in the initial DAnCE
implementation. This global synchronicity worked fine for relatively small
deployments with less than ~100 components. As the number of nodes and
instances assigned to those nodes scaled up, however, this global/local seri-
alization imposed a substantial cost in deployment latency.

This serialized execution yielded the most problematic performance degra-
dation in our SEAMONSTER case study, i.e., the limited computational re-
sources available on the field hardware would often take several minutes to
complete. Such latency at the node level can quickly becomes disastrous.
In particular, even relatively modest deployments involving tens of nodes
quickly escalates the deployment latency of the system to a half hour or
more.

20CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

This serialization problem, however, is not limited only to the global /local
task dispatching; it exists in the node-specific portion of the infrastructure,
as well. The D&C specification provides no guidance in terms of how the
NodeApplication should interface with the target component model, such as
the CORBA Component Model (CCM), instead leaving such an interface as
an implementation detail.

In DAnCE, the D&C architecture was implemented using three processes,
as shown in Figure 1.2. The ExecutionManager and NodeManager processes

Execution
Manager

A4 Y

Node Node
Manager Manager

1

Component | | Component Component | | Component
Server Server Server Server
Process Process Process Process
T

Figure 1.2: Simplified Serialized DAnCE Architecture

instantiate their associated ApplicationManager and Application instances in
their address spaces. When the NodeApplication installs concrete component
instances it spawns one (or more) separate application processes as needed.
These application processes use an interface derived from an older version of
the CCM specification that allows the NodeApplication to instantiate con-
tainers and component instances individually. This approach is similar to
that taken by CARDAMOM [24] (which is another open-source CCM im-
plementation) that is tailored for enterprise DRE systems, such as air-traffic
management systems.

The DAnCE architecture shown in Figure 1.2 was problematic with re-

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE21

spect to parallelization since its NodeApplication implementation integrated
all logic necessary for installing, configuring, and connecting instances di-
rectly (as shown in Figure 1.3), rather than performing only some processing

(N
[Locality processing logic)

(Component Server Launching Logic)

(CCM Home Installation Logic)

(CCM Component Installation Logic)

(CCM Component Connection Logic)

(CIAO Local Facet Connection Logic)

(CIAO Teardown Logic)

NodeApplication Implementation

—

Figure 1.3: Previous DAnCE NodeApplication Implementation

and delegating the remainder of the concrete deployment logic to the applica-
tion process. This tight integration made it hard to parallelize the node-level
installation procedures for the following reasons:

e The amount of data shared by the generic deployment logic (the portion
of the NodeApplication implementation that interprets the plan) and
the specific deployment logic (the portion which has specific knowledge
of how to manipulate components) made it hard to parallelize their
installation in the context of a single component server since that data
must be modified during installation.

e Groups of components installed to separate application processes were
considered as separate deployment sub-tasks, so these groupings were
handled sequentially one after the other.

22CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

1.3.4.3 Optimization Principle Patterns in Reducing Serialized
Phasing

In a similar vein to the analysis problem described earlier, this is a problem
wherein excessive serialization is impacting performance. In this case, how-
ever, instead of re-evaluating the algorithmic approach to the deployment
process, we will re-consider the architectural design of the system instead.
In order to address the performance challenge in this case, we applied the
following optimization principles to DAnCE:

1. Don’t let specifications overly constrain your design. When
implementing a system or software framework according to the specifi-
cation, it is often natural to model your design along the strictures and
implicit assumptions of the specification. It is often possible to archi-
tect your implementation in order to introduce architectural elements
or behavior that remain within the strictures of the specification. This
is an example of both the Specification vs. Implementation pattern and
the Degrees of Freedom pattern.

2. Maintain strict separation of concerns. Ensure that your system
operates in layers or modules that interact through well-defined inter-
faces. This helps to ensure that the state for each layer or module is
well-contained, simplifying interactions between logically distinct por-
tions of your applications and making it easier to apply the Design for
Parallelization pattern. Moreover, ensuring that the state for each layer
is self contained helps to apply the Avoid Synchronization pattern.

Moreover, modularizing your software design can often reveal ways that
other optimization principle patterns can be applied. As such, we pro-
pose another principle pattern, Separate Concerns, leveraging separa-
tion of concern to modularize architecture (summarized in Table 1.2.
Although traditionally a level of indirection may be frowned upon be-
cause it could lead to performance penalties, sometimes it can reveal
new opportunities or help apply other optimizations.

3. Ensure that these layers or modules can interact asynchronously.
If the modules or layers in your architecture have interfaces that as-
sume synchronous operation, it becomes difficult to leverage parallel
operation to improve performance. Even if the interface is itself syn-
chronous, it is often possible to use other techniques, such as leveraging

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE23

abstractions that allow you to interact with a synchronous interface in
an asynchronous manner. Avoiding synchronous interactions between
is another important application of the Design for Parallelization pat-
tern.

Applying these principles at the global level (e.g., the ExecutionManager
described in Section 1.2.1; the separation of concerns is maintained by virtue
of the fact that it and the node-level resources are in separate processes, and
likely the different physical nodes. Asynchrony in this context is also easy
to achieve, as we were able to leverage the CORBA Asynchronous Method
Invocation (AMI) to allow the client (in this case, the global infrastructure)
to interact asynchronously with the synchronous server interface (in this case,
the node level infrastructure), and dispatch multiple requests to individual
nodes in parallel. This is an example of Degrees of Freedom in that the
specification does not reject the notion of asynchronous interaction between
these entities.

Applying these principles in the node level infrastructure, however, was
more challenging. As described above, our initial implementation had poor
separation of concerns, making it extremely difficult to apply multiple threads
of execution in order to parallelize deployment activity at the node level. To
support this, we created a new abstraction at the node level that we called the
Locality Manager, which was the result of applying the above optimization
principles.

Overview of the LE-DAnCE Locality Manager. The LE-DAnCE
node-level architecture (e.g., NodeManager, NodeApplicationManager, and
NodeApplication) now functions as a node-constrained version of the global
portion of the OMG D&C architecture. Rather than having the Node-
Application directly triggering installation of concrete component instances,
this responsibility is now delegated to LocalityManager instances. The node-
level infrastructure performs a second “split” of the plan it receives from
the global level by grouping component instances into one or more appli-
cation processes. The NodeApplication then spawns a number of Locality-
Manager processes and delegates these “process-constrained” (i.e., containing
only components and connections apropos to a single process) plans to each
application process in parallel.

The Locality Manager is an example of the Specification vs. Implemen-
tation pattern. The specification would suggest that the NodeApplication is
the final entity that interacts with the component middleware; by recognizing

24CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

that our implementation could introduce another layer of abstraction, we’ve
been able to apply a number of other optimization patterns.

Unlike the previous DAnCE NodeApplication implementation, the LE-
DAnCE LocalityManager functions as a generic application process that
strictly separates concerns between the general deployment logic needed to
analyze the plan and the specific deployment logic needed to install and
manage the lifecycle of concrete component middleware instances. This
separation is achieved using entities called Instance Installation Handlers,
which provide a well-defined interface for managing the lifecycle of a com-
ponent instance, including installation, removal, connection, disconnection,
and activation. Installation Handlers are also used in the context of the
NodeApplication to manage the life-cycle of LocalityManager processes.

The genesis of these installation handlers is an example of the Degrees
of Freedom pattern; by under specifying the explicit interaction with the
component middleware, it has left us free to design our own interaction. In
doing do, we have applied the Separate Concerns pattern.

Using the Locality Manager to reduce serialized execution of
deployment steps. LE-DAnCE’s new LocalityManager and Installation
Handlers make it substantially easier to parallelize than DAnCE. Parallelism
in both the LocalityManager and NodeApplication is achieved using an en-
tity called the Deployment Scheduler, which is shown in Figure 1.4. The
Deployment Scheduler combines the Command pattern [12] and the Active
Object pattern [32]. Individual deployment actions (e.g., instance installa-
tion, instance connection, etc.) are encased inside an Action object, along
with any required metadata. Each individual deployment action is an invo-
cation of a method on an Installation Handler, so these actions need not be
rewritten for each potential deployment target. Error handling and logging
logic is also fully contained within individual actions, further simplifying the
LocalityManager.

Individual actions (e.g., install a component or create a connection) are
scheduled for execution by a configurable thread pool. This pool can provide
user-selected, single-threaded, or multi-threaded behavior, depending on ap-
plication requirements. This thread pool can also be used to implement more
sophisticated scheduling behavior, e.g., a priority-based scheduling algorithm
that dynamically reorders the installation of component instances based on
metadata present in the plan.

The LocalityManager determines which actions to perform during each
particular phase of deployment and creates one Action object for each in-

1.3. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO DANCE25

Deployment
Scheduler

[Configurable Thread Pool]

——

Action Queue

N

Action
[Error Handling]

Dispatch Logic [

[Logging]

[Deployment Logic]

Figure 1.4: DAnCE Deployment Scheduler

struction. These actions are then passed to the deployment scheduler for
execution while the main thread of control waits on a completion signal from
the Deployment Scheduler. Upon completion, the LocalityManager reaps ei-
ther return values or error codes from the completed actions and completes
the deployment phase.

To provide parallelism between LocalityManager instances on the same
node, the LE-DAnCE Deployment Scheduler is also used in the implementa-
tion of the NodeApplication, along with an Installation Handler for Locality-
Manager processes. Using the Deployment Scheduler at this level helps over-
come a significant source of latency whilst conducting node-level deploy-
ments. Spawning LocalityManager instances can take a significant amount
of time compared to the deployment time required for component instances,
so parallelizing this process can achieve significant latency savings when ap-
plication deployments have many LocalityManager processes per node.

Taken together, the dynamic re-ordering of deployment events and par-
allel installation of LocalityManager instances is a promising approach to
improve deployment latency in the SEAMONSTER domain. By attaching
high priority to critical deployment events, such as the activation or change

26CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

in configuration of a sensor observing a present natural phenomena, DAnCE
can help ensure that critical mission needs are met in a timely fashion. More-
over, the parallelism enabled by this design can reduce latency by allowing
other LocalityManager instances to execute while one is blocked on I/0 as
it loads new component implementations, or by taking advantage of newer
multicore embedded processors.

1.4 Concluding Remarks

This chapter provided an overview of the Deployment And Configuration En-
gine (DAnCE), an implementation of the OMG Deployment and Configura-
tion specification. As a research tool, DAnCE was used to demonstrate novel
techniques for the deployment and configuration (D&C) of component-based
applications in DRE systems. While its performance was satisfactory for the
narrow and focused demonstrations required for publications and demon-
stration, its performance was not satisfactory when applied to larger-scale
production DRE systems. A number of factors, including changing archi-
tectural ownership and the demo-focused nature of DAnCE’s development,
caused a number of poor design choices early on to become entrenched in its
architecture and design, seriously impeding performance.

A typical use case of DAnCE, in this case the South Fast Alaska MOn-
itoring Network for Science, Telecommunications, Fducation, and Research
(SEAMONSTER) platform, was described to highlight many of the opti-
mization opportunities present in DAnCE. Motivated by this use case, this
paper described how we applied a catalog of optimization principles from the
domain of networking to re-evaluate and re-engineer the design and imple-
mentation of DAnCE to remedy the deficiencies outlined above. In addition,
we described three additional optimization principles: dealing with paral-
lelization, synchronization, and separation of concerns. These additional
patterns—in conjunction with those described in the initial catalog—were
used to develop LE-DAnCE, which substantially improved the performance
and reliability of DAnCE. A summary of the original pattern catalog, along
with our additions, is shown in Table 1.2. Likewise, a thorough quantitative
discussion of the performance enhancement results is described in [26].

Based on our experiences applying the optimizations described in this
chapter to LE-DAnCE and observing the results, we have learned the follow-
ing lessons:

1.4. CONCLUDING REMARKS 27

e Taking advantage of parallelization is a critical optimization
opportunity. As multicore processors become a standard feature of
even embedded devices, it is critically important that algorithms and
processes be designed to take advantage of this capability. When op-
timizing algorithms and processes for parallelization, be judicious in
applying synchronization since improper use of locks can cause parallel
systems to operate in a serial fashion, or worse, malfunction in subtle
ways.

e When possible, shift time consuming operations out of the
critical path. While our optimizations to the plan analysis portion of
the D&C process (described in Section 1.3.3) were effective in reducing
the total deployment latency for large scale deployments, additional im-
provement is possible by further applying the Shifting in Time pattern
Like the XML parsing problem described in Section 1.3.2, the result
of this operation is likely fixed at the point that the XML plan is gen-
erated. This process could be similarly pre-computed and provided to
the D&C infrastructure for additional latency savings. Passing these
pre-computed plans (both for the global split and the local split) would
be an example application of the Passing Hints optimization pattern.

e Serialized execution of processes is a major source of per-
formance problems in DRE systems. Executing tasks in a serial
fashion when designing distributed systems offers significant conceptual
and implementation simplicity. This simplicity, however, often comes
with a significant performance penalty. Often, the additional complex-
ity of asynchronous interaction is well worth the additional complexity.

e Lack of clear architectural and technical leadership is detri-
mental to open-source projects. Developers often contribute to an
open-source project to solve a narrow problem and leave soon after.
Without clear leadership, poor architectural and technical decisions
made by individual contributors eventually snowball into a nearly un-
usable project.

TAO, CIAO, and LE-DAnCE are available in open-source form from
download.dre.vanderbilt.edu.

28CHAPTER 1. APPLYING OPTIMIZATION PRINCIPLE PATTERNS TO COMPONF

Table 1.2: Catalog of Optimization Principles and Known Usecases in LE-
DAnCE
Title

Avoiding Waste

Principle
Avoid obvious waste

Examples from LE-DAnCE
Pre-allocate memory when
parsing deployment plans.

Shifting in Time

Shift computation in time
(pre-compute, lazy evaluation,
sharing expenses, batching)

Pre-convert deployment
plan to binary format,
potentially pre-compute
plan splits.

Relazing Specifications

Relax specifications (trading off
certainty for time, trading off
accuracy for time, and shifting
computation in time)

Potentially pre-compute
plan splits.

Leveraging other Leverage other system (n/a)?
Components components (exploiting locality,
trading memory for speed,
exploiting hardware)
Adding Hardware Add hardware to improve (n/a)

performance

Efficient Routines

Create efficient routines

XML-IDL Data Binding

Avoiding Generality

Avoid unnecessary generality

Optimize plan parsing

Specification vs
Implementation

Don’t confuse specification and
implementation

LocalityManager

Passing Hints

Pass information like hints in
interfaces

Potentially used to
pre-compute plan splits

Passing Information

Pass information in protocol
headers

(n/a)

FEzpected Use Case

Optimize the expected case

XML-IDL Data Binding

Ezploiting State

Add or exploit state to gain speed

Pre-allocate child plans
during plan analysis.

Degrees of Freedom

Optimize degrees of freedom

LocalityManager
Installation Handlers

Exploit Finite Universes

Use special techniques for finite
universes

(n/a)

Efficient Data Structures

Use efficient data structures

Optimize XML-IDL data
binding

Design for Parallelization

Optimize design for
parallelization

Process child plans in
parallel

Avoid Synchronization

Avoid synchronization and
locking

Unsynchronized access to
parent plan during plan
analysis.

Separate Concerns

Use strict separation of concerns
to modularize architecture

Locality Manager

Bibliography

(1]

2]

13l

4]

[5]

6]

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tavanian, and Michael Young. Mach: A New Kernel
Foundation for UNIX Development. In Proceedings of the Summer 1986
USENIX Technical Conference and Erhibition, pages 93-112, Atlanta,
GA, June 1986.

Anatoly Akkerman, Alexander Totok, and Vijay Karamcheti. Infras-
tructure for Automatic Dynamic Deployment of J2EE Applications in
Distributed Environments. In 3rd International Working Conference
on Component Deployment (CD 2005), pages 17-32, Grenoble, France,
November 2005.

Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael
Kircher, and Jeff Parsons. The Design and Performance of a Scalable
ORB Architecture for CORBA Asynchronous Messaging. In Proceedings
of the Middleware 2000 Conference. ACM /IFIP, April 2000.

David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An
Analysis of TCP Processing Overhead. IEEE Communications Maga-
zine, 27(6):23-29, June 1989.

David D. Clark and David L. Tennenhouse. Architectural Considerations
for a New Generation of Protocols. In Proceedings of the Symposium on
Communications Architectures and Protocols (SIGCOMM), pages 200
208, Philadelphia, PA, September 1990. ACM.

Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink.
Small Forwarding Tables for Fast Routing Lookups. In Proceedings of the
ACM SIGCOMM °97 Conference on Applications, Technologies, Archi-

29

30

17l

18]

19]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

tectures, and Protocols for Computer Communication, pages 3—14, New

York, NY, USA, 1997. ACM Press.

Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C.
Schmidt, and Aniruddha Gokhale. DAnCE: A QoS-enabled Compo-
nent Deployment and Configuration Engine. In Proceedings of the 3rd
Working Conference on Component Deployment (CD 2005), pages 67—
82, Grenoble, France, November 2005.

Peter Druschel and Larry L. Peterson. Fbufs: A High-Bandwidth Cross-
Domain Transfer Facility. In Proceedings of the 14" Symposium on
Operating System Principles (SOSP), December 1993.

Abhishek Dubey, William Emfinger, Aniruddha Gokhale, Gabor Kar-
sai, William Otte, Jeffrey Parsons, Csanad Czabo, Alessandro Coglio,
Eric Smith, and Prasanta Bose. A Software Platform for Fractionated
Spacecraft. In Proceedings of the IEEE Aerospace Conference, 2012,
pages 1-20, Big Sky, M'T, USA, March 2012. IEEE.

Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message
Demultiplexing using Dynamic Code Generation. In Proceedings of ACM

SIGCOMM 96 Conference in Computer Communication Review, pages
53-59, Stanford University, California, USA, August 1996. ACM Press.

D. R. Fatland, M. J. Heavner, E. Hood, and C. Connor. The SEAMON-
STER Sensor Web: Lessons and Opportunities after One Year. AGU
Fall Meeting Abstracts, pages A3+, December 2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

Aniruddha Gokhale, Balachandran Natarajan, Douglas C. Schmidt, An-
drey Nechypurenko, Jeff Gray, Nanbor Wang, Sandeep Neema, Ted
Bapty, and Jeff Parsons. CoSMIC: An MDA Generative Tool for Dis-
tributed Real-time and Embedded Component Middleware and Appli-
cations. In Proceedings of the OOPSLA 2002 Workshop on Generative
Techniques in the Context of Model Driven Architecture, Seattle, WA,
November 2002. ACM.

BIBLIOGRAPHY 31

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

[22]

23]

Jahangir Hasan and T. N. Vijaykumar. Dynamic pipelining: Making
[P-lookup Truly Scalable. In SIGCOMM ’05: Proceedings of the 2005
Conference on Applications, technologies, architectures, and protocols
for computer communications, pages 205-216, New York, NY, USA,
2005. ACM Press.

George T. Heineman and Bill T. Councill. Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley, Reading,
Massachusetts, 2001.

Norman C. Hutchinson and Larry L. Peterson. Design of the a-Kernel.
In Proceedings of the SIGCOMM 88 Symposium, pages 65—75, Stanford,
Calif., August 1988.

Institute for Software Integrated Systems. Component-Integrated ACE
ORB (CIAO). www.dre.vanderbilt.edu/CIAO, Vanderbilt University.

John S. Kinnebrew, William R. Otte, Nishanth Shankaran, Gautam
Biswas, and Douglas C. Schmidt. Intelligent Resource Management and
Dynamic Adaptation in a Distributed Real-time and Embedded Sensor
Web System. Technical Report ISIS-08-906, Vanderbilt University, 2008.

Steven McCanne and Van Jacobson. The BSD Packet Filter: A New
Architecture for User-level Packet Capture. In Proceedings of the Winter
USENIX Conference, pages 259-270, San Diego, CA, January 1993.

Jeffrey C. Mogul, Richard F. Rashid, and Michal J. Accetta. The Packet
Filter: an Efficient Mechanism for User-level Network Code. In Proceed-
ings of the 11" Symposium on Operating System Principles (SOSP),
November 1987.

M. Nelson and J. Ousterhout. Copy-on-Write For Sprite. In USENIX
Summer Conference, pages 187-201, San Francisco, CA, June 1988.
USENIX Association.

Object Management Group. Lightweight CCM FTF Convenience Doc-
ument, ptc/04-06-10 edition, June 2004.

Object Management Group. The Common Object Request Broker: Ar-
chitecture and Specification Version 3.1, Part 2: CORBA Interoperabil-
ity, OMG Document formal/2008-01-07 edition, January 2008.

32

[24]

[25]

[26]

27]

28]

29]

[30]

31]

32|

BIBLIOGRAPHY

ObjectWeb Consortium. CARDAMOM - An Enterprise Middleware
for Building Mission and Safety Critical Applications. cardamom.
objectweb.org, 2006.

OMG. Deployment and Configuration of Component-based Distributed
Applications, v4.0, Document formal/2006-04-02 edition, April 2006.

William Otte, Aniruddha Gokhale, and Douglas Schmidt. Efficient and
Deterministic Application Deployment in Component-based, Enterprise
Distributed, Real-time, and Embedded Systems. Flsevier Journal of
Information and Software Technology (IST), 55(2):475-488, February
2013. <ce:title>Special Section: Component-Based Software Engineer-
ing (CBSE), 2011< /ce:title>.

William R. Otte, Aniruddha Gokhale, and Douglas C. Schmidt. Pre-
dictable Deployment in Component-based Enterprise Distributed Real-
time and Embedded Systems. In Proceedings of the 14th interna-
tional ACM Sigsoft symposium on Component based software engineer-

ing, CBSE ’11, pages 21-30, New York, NY, USA, 2011. ACM.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: A Unified
I/O Buffering and Caching System. ACM Transactions of Computer
Systems, 18(1):37-66, 2000.

Y. Rekhter, B. Davie, E. Rosen, G. Swallow, D. Farinacci, and
D. Katz. Tag Switching Architecture Overview. Proceedings of the IEEE,
85(12):1973-1983, December 1997.

Sartaj Sahni and Kun Suk Kim. Efficient Construction of Multibit Tries
for IP Lookup. IEEE/ACM Trans. Netw., 11(4):650-662, 2003.

Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor
Wang, and Christopher Gill. TAO: A Pattern-Oriented Object Request
Broker for Distributed Real-time and Embedded Systems. IEEE Dis-
tributed Systems Online, 3(2), February 2002.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2. Wiley & Sons, New York,
2000.

BIBLIOGRAPHY 33

[33]

[34]

[35]

[36]

37]

138

M. Shreedhar and George Varghese. Efficient Fair Queueing using Deficit
Round Robin. In SIGCOMM °95: Proceedings of the conference on Ap-
plications, technologies, architectures, and protocols for computer com-
munication, pages 231-242, New York, NY, USA, 1995. ACM Press.

Dipa Suri, Adam Howell, Nishanth Shankaran, John Kinnebrew, Will
Otte, Douglas C. Schmidt, and Gautam Biswas. Onboard Processing
using the Adaptive Network Architecture. In Proceedings of the Sizth
Annual NASA FEarth Science Technology Conference, College Park, MD,
June 2006.

George Varghese. Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices. Morgan Kaufmann Publishers
(Elsevier), San Francisco, CA, 2005.

George Varghese and Tony Lauck. Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer
Facility. IEEE Transactions on Networking, December 1997.

Jules White, Brian Dougherty, Richard Schantz, Douglas C. Schmidt,
Adam Porter, and Angelo Corsaro. R&D Challenges and Solutions for
Highly Complex Distributed Systems: a Middleware Perspective. the

Springer Journal of Internet Services and Applications special issue on
the Future of Middleware, 2(3), December 2011.

Jules White, Boris Kolpackov, Balachandran Natarajan, and Douglas C.
Schmidt. Reducing Application Code Complexity with Vocabulary-
specific XML language Bindings. In ACM-SE /3: Proceedings of the
43rd annual Southeast regional conference, 2005.

