
Data Synchronization Patterns in Mobile Application Design

Zach McCormick and Douglas C. Schmidt, Vanderbilt University
{zach.mccormick,d.schmidt}@vanderbilt.edu

1. Introduction
As Internet-enabled devices become more prevalent in the form of smartphones and

tablets, the need for mobile application development patterns grows in importance. Differ-
ent technologies, such as Nokia’s Symbian, Apple’s iOS, Google’s Android, and Microsoft’s
Windows Mobile, have arisen and will continue evolving to provide platforms for develop-
ing applications for mobile devices. These technologies build on years of experience devel-
oping flexible, open-ended frameworks and platforms, and the developers of these technol-
ogies have provided many resources for application developers. While best practices have
been documented for nearly every component, such as the guidelines for Android Designi
and the iOS App Programming Guideii, a comprehensive pattern collection or pattern lan-
guage for mobile application development has not yet been produced, which exacerbates
the difficulty of solving problems or conveying solutions effectively in this domain.

Many mobile applications are data-centric, and are designed to replace pocket atlases,
dictionaries, and references, as well as create new digital pocket references for data that
changes dynamically by leveraging technologies that did not exist in these form factors be-
fore. This paper is intended as an initial step in a larger work on mobile application devel-
opment patterns and will focus only on patterns related to data synchronization, which in-
volves ensuring consistency among data from a mobile source device to a target data stor-
age service (and vice versa).

With some datasets, such as with Google Maps, it is impossible to store all of the data
the application can leverage on the device, so specific strategies must be employed to syn-
chronize the necessary data. With other datasets, such as stock prices, mobile applications
that allow users to manage their portfolios are useless without the most recent data, so
strategies must be employed to ensure users only see the most recent data. This paper de-
scribes common concerns related to data synchronization as a collection of patterns,
grouped by the problems they address.

The patterns described here have been collected from examining open-source applica-
tions, inspecting the platforms and frameworks that comprise these mobile systems, evalu-
ating of other pattern catalogs and languages for applicable patterns, and documenting our
experiences developing mobile applications. Open-source examples and insights into the
platforms and frameworks will be cited explicitly, and some examples of these patterns in
popular consumer applications will also be mentioned.

2. Pattern Format
The patterns presented here were initially documented using a variant of the Gang of Four
and POSA pattern forms, but have been abbreviated to remove the Structure, Participants,
and Collaboration sections to reflect the types of patterns covered in this document. The
following are the sections in our abbreviated pattern form.

mailto:zach.mccormick@vanderbilt.edu

Pattern Name

Intent
State the intent of the pattern

Problem
State the problem(s) that this pattern works to solve

Applicability
Constraints of the specific contexts that would elicit the use of this pattern

Solution
Explain how this pattern solves the problem considering the constraints of the context

Consequences
Anything resulting from the use of the pattern aside from solving the given problem

Examples/Known Uses
Explained examples of the problem and/or known uses of the pattern

3. Data Synchronization Mechanism Patterns
Data synchronization mechanism patterns address the question: “when should an applica-
tion synchronize data between a device and a remote system, such as a cloud server?” This
problem is common in mobile application design, and is often overlooked, but there is no
one-size-fits-all solution. Instead, mobile application developers must consider the con-
straints of many factors, including network availability, data freshness requirements, and
user interface design.

Data synchronization mechanism patterns are often architectural patterns. An architec-
tural pattern is described as followsiii: “An architectural pattern expresses a fundamental
structural organization schema for software systems. It provides a set of predefined sub-
systems, specifies their responsibilities, and includes rules and guidelines for organizing
the relationships between them.” The following data synchronization patterns should
therefore be viewed as structural organization schemas that address the question of when
an application should synchronize data between a device and a remote system in a variety
of different contexts.

Asynchronous Data Synchronization

Intent
Manage a data synchronization event asynchronously and without blocking the user inter-
face. Alternatively, allow a data synchronization event to occur independently of the user
interface.

Problem
One benefit of using mobile applications is having quick access to data. Responsiveness and
waiting time are two key components to quick access of data in a mobile environment. A
non-responsive or slow-to-respond application will quickly fall into disuse from frustra-
tion. Even if an application responds to user input quickly, however, a user will be frus-
trated if they must wait for significant periods of time for data to load. It is therefore im-
portant to ensure an application does not block when data synchronization occurs (or is
attempted).

Applicability
The contexts eliciting the use of an asynchronous data synchronization mechanism can be
considered from two perspectives: uploading and downloading. Uploading is defined as a
transfer of data from the mobile application to a remote system. Downloading is defined as
a transfer of data from the mobile application to the remote system. In both cases, the suc-
cess or failure of the operation should be conveyed to the user, with appropriate error in-
formation if a failure occurs. The following are two applicability considerations for asyn-
chronous data synchronization from each perspective outlined above.

Uploading

 The next state of the user interface or functionality of the application does not depend
on the result of uploading data.
o For example, in an application that manages many online social media services, a

“status update” can be initiated for a number of different services. These uploading
operations can happen simultaneously and the user can continue to interact with
the application (or other applications on a mobile device that supports multi-task-
ing) while the transfers are occurring since the state of the application does not de-
pend on the results of the transfers.

Downloading

 While fresh data is preferred, the application can at least partially fulfill its functionality
with stale data. This constraint entirely depends on the nature of the data.
o For example, a mobile application can manage the times, locations, and summaries

of talks in a conference. When the user opens the application, it starts to download
in the background any updates for the times and locations from a remote system.
The nature of the data is such that fresh data (e.g., one of the talks has been resched-
uled and this change is reflected on the remote system but not on the device) is pre-
ferred, but stale data can still be used (it is still useful to read the summaries and
view the titles of the talks).

o Moreover, an application could have a dataset that rarely changes, such as an appli-
cation that shows the menu for a restaurant. It makes no sense to block the user in-
terface for a synchronous download every time the application is opened. Rather,
this download can be performed asynchronously from the user interface.

Solution
Initiate data transfer asynchronously via a trigger (such as a user action, a timer tick, an
Android “intent”, or a push notification in iOS) and performed asynchronously. A notifica-

tion mechanism (such as Android “toasts” or iOS “UIAlertViews”) can be used to notify the
user of the result of the data transfer. Likewise, a callback mechanism (such as an Android
“intent” or a general callback function) can be used to notify the system when the data
transfer completes.

Consequences

Benefits

 Availability of the application during data synchronization
o The application is still usable during synchronization. Intuitively, the latest data will

not be available, but for many situations, a user can take advantage of being able to
interact with stale data while data synchronizes. In the case where the data is al-
ready up-to-date, user experience is not degraded by waiting on data to load.

 Background synchronization of data
o If the system triggers a synchronization event (e.g., via an Android “intent”, an iOS

push notification, etc.) while the application is not in the foreground, the application
can synchronize data in the background so it is conveniently up-to-date next time it
opens.

Liabilities

 Inconsistencies stemming from concurrent access to a shared dataset
o What happens when the Data Access Object (a pattern defined as an object that ab-

stracts and encapsulates all access to the data sourceiv, here with the data source be-
ing some flavor of local storage) is performing transactions on the dataset and the
user is exposed to user interface components that are backed by elements of the
same dataset? One solution is to perform the transfer asynchronously and perform
any transactions synchronously. Thus, rather than blocking the user interface for
the transfer and the transactions in the local data source, do the (slower) transfer in
the background and only block the user interface for the (faster) transactions.

Examples/Known Uses

 Crash data for an application is collected on a remote system. Every time the applica-
tion detects a crash, upload crash data asynchronously to a remote system.

 Usage statistics for an application are collected on a remote system once a week. A tim-
er on the device ticks and the usage statistics are uploaded asynchronously.

 An application receives push notifications when a remote dataset is changed, and syn-
chronizes the dataset on the device asynchronously.

 An application polls a remote system for updates on a given time interval. A timer on
the device ticks and the data is synchronized asynchronously.

 Both Android and iOS have push notification systems built into the operating system
(Android as of [check version number] and iOS as of [check version number]). They
provide developers an online API to issue push notifications for their applications
where the transactions are serviced through Google and Apple’s infrastructures. By fol-
lowing the rules of the API, these notifications can serve as the trigger for asynchronous
updates in an application.

 The Facebook and Twitter applications for both Android and iOS both allow a user to
access the application while the data is being synchronized, thus using the pattern with
opening the application as the trigger.

Synchronous Data Synchronization

Intent
Manage a data synchronization event synchronously; blocking the user interface while it
occurs.

Problem
Some mobile application systems rely on datasets that must be constantly up-to-date or
only have a very small window in which data is considered up-to-date. It would be useless
for such applications to allow users to work with stale datasets. Similarly, some mobile ap-
plication systems may rely on the response for an action from a remote system before an-
other action can be performed. To prevent an application from entering unknown, non-
functional states, a developer must ensure an application blocks until data synchronization
is complete (successfully or unsuccessfully).

Applicability

 Fresh data is crucial to the functionality of the application.
 The application cannot advance to the next state without knowing the result of a prior

synchronization action.

Solution
Initiate data transfer via a trigger (such as a user action, timer tick, etc.) and perform the
transfer synchronously. The application only proceeds to the next state when a result (pos-
itive or negative) is reached.

Consequences

Benefits

 The state of the mobile application system can be managed more easily
o Consider the difference between writing a simple multithreaded program and a sim-

ple single-threaded program. A single-threaded program executes its instructions in
order and a state machine can easily be built from the code. A multi-threaded pro-
gram can follow many paths of execution, thereby significantly increasing the num-
ber of states needed to build a state machine. By using the Synchronous Data Syn-
chronization pattern, therefore, the extra states caused by asynchronous events can
be eliminated.

Liabilities

 User interface thread blocking
o As explained in the Asynchronous Data Synchronization pattern, user experience suf-

fers when user interface thread blocking occurs. If the synchronization of data oc-
curs on the same thread as the user interface, blocking for a network call or a
lengthy database operation could occur and the application could become unrespon-

sive. It may be more practical to perform the transfer asynchronously on another
thread, but treat it as a synchronous action in the application by using a loading dia-
log, thus not to block the user interface. This approach has the added advantage of
allowing the option to cancel the synchronizing event.

Examples/Known Uses

 A user presses a “submit” button to submit a work order to a digital maintenance sys-
tem. A loading dialog is shown and the order is transmitted synchronously (the user is
made to wait until a result is reached).

 A user opens an application to view the current stock of a warehouse. A loading dialog
is shown and the dataset is downloaded synchronously before the application contin-
ues.

4. Data Quantity Patterns
Data Quantity patterns address the question: “how much data should be transferred?” This
question arises in both the design of a mobile application and the design of a remote sys-
tem with which it interacts. Often, mobile application projects have constraints (such as
network speed/bandwidth or capacity) both remotely and locally. Likewise, the capacity of
local storage is often limited relative to the whole dataset needed for a computation.

Lazy Synchronizationv

Intent
Synchronize data only as needed to optimize network bandwidth and storage space usage.

Problem
Network bandwidth and storage space are two vital concerns for mobile application design.
Many applications that would be possible with non-mobile (e.g., laptop, desktop, server,
cloud, etc.) computer storage capacity and a broadband connection are still possible as a
mobile application, but specific attention must be paid to these issues. While a solution for
larger systems would be to increase the network bandwidth or increase the storage capac-
ity for each device, this is impractical on mobile devices, especially from the perspective of
a mobile application developer.

Applicability

 The entire dataset is either too large to store on the device or it is impractical to trans-
fer the entire dataset because much of it is not needed.

 The entire dataset is not needed in its entirety for an application to function; rather,
parts can be transferred as needed.

Solution
Data is synchronized dynamically “on-demand” by triggers in the application, most typi-
cally using a variant of the Virtual Proxy patternvi. A virtual proxy is an object with the
same interface as the object used by the system that “intercepts” method calls, allowing ini-
tialization of fields only when they are needed. In Lazy Synchronization the Virtual Proxy

pattern can be combined with the Data Access Object pattern by creating a virtual proxy
that handles the process of on-demand synchronization.

Consequences

Benefits

 Storage space is reduced
o Rather than storing an entire dataset on the device, the system retrieves data as it is

needed and used, thereby allowing mobile applications to use far larger datasets
than can be stored on the device.

 Datasets can be synchronized at various levels of granularity
o By synchronizing data only as needed, portions of the dataset can be used and modi-

fied at a fine-grained level in parts, even if the whole dataset cannot be loaded at
that granularity. This approach operates similarly to the fine-grained control of task
scheduling in an operating system, without needing to know the same level of detail
about memory management or hardware addressing.

Liabilities

 Network connectivity
o More network calls are involved, and if connectivity changes during operation, lazy

loading can fail and render the application useless.
 Network bandwidth/speed

o If the on-demand network operations used by Lazy Synchronization run for a signifi-
cant amount of time, user interface responsiveness and waiting time can cause user
experience to degrade quickly.

Examples/Known Uses

 In an application for a library, a user enters search terms for a particular topic and a da-
ta transfer is invoked. The resulting title, author, and availability for each book is re-
turned and displayed. The user chooses one and another data transfer is invoked. The
remaining details of the particular item are returned and displayed.

 The Google Maps application works by displaying a relevant map at a certain level of
granularity and downloading new tiles as needed when the map is zoomed in or out,
thus eliminating the need for storing the entire map at every level of detail on the de-
vice, but requiring network connectivity to be used.

Eager Synchronizationvii

Intent
Synchronize data before it is needed so the application has better response or loading time.

Problem
While wireless connectivity is widespread and highly available in many places, there are
times when network connectivity is not available or not desired, but an application must
still function. Lazy Synchronization works by loading data on demand, much like a mobile
website, and will not work in such a scenario. Moreover, the possibility of low network
bandwidth/speed could be an issue for application responsiveness.

Applicability

 The entire dataset should be synchronized between the device and the remote system
during a synchronization event.

Solution
Store the entire dataset on the device and keep it wholly (as opposed to partially via Lazy
Acquisition) synchronized.

Consequences

Benefits

 Reliance on network connectivity is decreased
o If the network is not available, the data used by the application cannot be synchro-

nized, but the application can still be used if stale data allows certain functionality.

Liabilities

 Device storage usage is increased
o The device must have all of the data it needs stored locally, so the dataset must be

able to fit on the device.

Examples/Known Uses

 An application should be completely usable offline.
 An application has a relatively small dataset that will not change often/significantly.
 An application suspects that its dataset has become corrupt and needs a new copy of

the entire dataset.

5. Reconciliation Patterns
Reconciliation patterns address the problem of set reconciliation: “how can we synchronize
between sets of data such that the amount of data transmitted is minimized?” As discussed
above, network bandwidth/speed is often a concern of mobile applications, so developers
should write their applications to minimize resources to accomplish the task of synchroniz-
ing data. Some types of data (such as records with a timestamp to keep track of changes)
lend themselves to more efficient methods of reconciliation than others, while other types
of data (such as files containing compound documents) have less efficient methods of rec-
onciliation without becoming overly complex.

Full Reconciliation

Intent
On a synchronization event, the entire dataset is transferred between the mobile device
and the remote system.

Problem
Some types of data (such as static files or datasets that change entirely after a synchroniza-
tion event like a “Message of the Day”) either cannot use or will not benefit from a complex
reconciliation scheme. Moreover, some situations (such as a corrupt dataset) are more eas-

ily handled by a simple reconciliation scheme since a more complex scheme that uses fewer
resources may take more time and effort to develop.

Applicability

 The dataset of an application is small enough that it can be downloaded/uploaded in
one piece.

 A complex data reconciliation scheme is not needed or provides little benefit over a
simple one.

Solution
Reconcile data between a device and a remote system by transferring the entire contents of
one to the other and making any appropriate changes when data is received.

Consequences

Benefits

 It is the simplest solution
o At the most basic level, either the device or the remote system sends all of its data to

the other one, who replaces his dataset with the received one. Both the device and
the remote system, then, are guaranteed to have the same data.

Liabilities

 Redundancy of data being sent
o If the data only changes partially or not at all, sending data that will not be changed

wastes bandwidth.

Examples/Known Uses

 An application detects an error in its dataset. Rather than using a complex reconcilia-
tion scheme, it uses Full Reconciliation to easily replace the faulty dataset.

 An application displays the top ten news articles for a newspaper issued daily (so that
the top ten news articles do not change). The dataset changes every time the applica-
tion is updated, so it uses Full Reconciliation.

Timestamp Reconciliation

Intent
On a synchronization event, only the parts of the dataset changed since the last synchroni-
zation are transferred between the mobile device and the remote system using a last-
changed timestamp.

Problem
With the issue of network speed and bandwidth on mobile devices, the amount of data
transferred to reconcile datasets between a device and a remote system should be mini-
mized. Full Reconciliation wastes too many resources and the dataset does not fit the more
strict requirements for Mathematical Reconciliation. It is still imperative to synchronize
data, but another method is needed to minimize data transfer.

Applicability

 The dataset of an application can be downloaded/uploaded in specific pieces.
 The pieces of data must have a field to store a timestamp denoting the last time it was

modified.

Solution
A timestamp provided by the remote system from the last successful update is bundled
with a request for changed data. The remote system returns only data that has been added
or changed after that timestamp. For submitting data, the device only submits data that
has been added or changed since the last successful submission.

Consequences

Benefits

 Lower bandwidth utilization than Full Reconciliation

Liabilities

 Careful attention must be given to the source of timestamps
o It is important to keep the source of timestamps consistent, as synchronization can

become inconsistent if different timestamps are used. It is common to use the re-
mote timestamp for any downloaded data and the device timestamp for any up-
loaded data.

 It is not immediately apparent how to handle deletion of data
o A timestamp will not do any good if data is deleted on a remote system and a device

tries Timestamp Reconciliation, as the deleted data does not exist for a timestamp
comparison. A common solution to this problem is to use a Boolean filed on each
piece of data to signify whether or not it has been deleted.

Examples/Known Uses

 An application stores routes for public transportation. It uses Timestamp Reconciliation
to only transfer new, changed, or removed routes when it updates.

 Twitter and Facebook’s public APIs each offer developers the ability to retrieve the lat-
est posts using a “since” value, thus supporting Timestamp Reconciliation.

Mathematical Reconciliation

Intent
On a synchronization event, only the parts of the dataset changed since the last synchroni-
zation are transferred between the mobile device and the remote system using a mathe-
matical method.

Problem
Network bandwidth and speed are concerns, so Full Reconciliation cannot be used to recon-
cile a dataset between a device and a remote system. The structure of the dataset also may
not be able to keep track of changes efficiently using timestamps, or alternatively, a math-
ematical method can reconcile changes more efficiently than timestamps can.

Applicability

 The dataset of an application can be synchronized using a mathematical method.
 The application should use the absolute minimum bandwidth required to synchronize

datasets, and time can be spend developing a complex mathematical method.

Solution
A mathematical method or algorithm decides what is transferred between a device and a
remote system to synchronize a dataset.

Consequences

Benefits

 This method potentially uses the least bandwidth
o For synchronizing something such as a very large binary file where only a few bits

are changed, Timestamp Reconciliation and Full Reconciliation perform the same ac-
tions. With a mathematical method, such as dividing the file into blocks, computing
checksums, and comparing checksums before transferring data, bandwidth used can
be reduced.

Liabilities

 Mathematical methods are often highly context-dependent
o An important paradigm of programming in general, code reuse, is unlikely to be ap-

plicable here, as the mathematical method of reconciliation will be different for dif-
ferent types of data.

 Mathematical methods often require more time to develop
o Most mathematical methods will be more complex than Full Reconciliation or

Timestamp Reconciliation, as they will at least have more steps involved in the pro-
cess of reconciliation.

Examples/Known Uses

 An application synchronizes an image taken from a webcam periodically between a de-
vice and a remote system. The remote system stores the previous image and uses the
“sum of absolute differences” method to determine whether to send a whole new frame
or just the difference between the two.

i http://developer.android.com/design/index.html
iihttp://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSP
rogrammingGuide/Introduction/Introduction.html
iii Frank Buschmann, Régine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stahl
1996. Pattern-Oriented Software Architecture— A System of Patterns, New York, NY: John
Wiley and Sons, Inc.
iv Deepak Alur, Dan Malks, and John Crupi. 2001. Core J2EE Patterns: Best Practices and De-
sign Strategies. Prentice Hall PTR, Upper Saddle River, NJ, USA.

v M. Kircher, Lazy Acquisition Pattern, European Pattern Language of Programs conference,
Kloster Irsee, Germany, July 5-8, 2001,
http://www.cs.wustl.edu/~mk1/LazyAcquisition.pdf
vi Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides: Design Patterns – Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1995
vii M. Kircher, Eager Acquisition Pattern, submitted to European Pattern Language of Pro-
grams conference, Kloster Irsee, Germany, July 4-7, 2002, http://kircher-
schwanninger.de/michael/publications/EagerAcquisition.pdf

