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a  b  s  t  r  a  c  t

System  performance  improvements  are  critical  for  the  resource-limited  environment  of  multiple  inte-
grated applications  executing  inside  a single  distributed  real-time  and embedded  (DRE)  system,  such
as  integrated  avionics  platform  or vehtronics  systems.  While  processor  caches  can  effectively  reduce
execution  time  there  are  several  factors,  such  as  cache  size,  system  data  sharing,  and  task  execution
schedule,  which  make  it hard  to quantify,  predict,  and  optimize  the  cache  usage  of  a  DRE  system.  This
eywords:
RE
eployment
ptimization
euristic

article  presents  SMACK,  a novel  heuristic  for estimating  the  hardware  cache  usage  of  a DRE  system,
and  describes  a method  of  varying  the  runtime  behavior  of DRE  system  software  without  (1) requiring
extensive  safety  recertification  or (2) violating  the real-time  scheduling  deadlines.  By using SMACK  as
a  maximization  target,  we were  able  to reduce  integrated  DRE  system  execution  time  by an  average  of
2.4%  and a  maximum  of  4.34%.
ache

. Introduction

Current trends and challenges: Distributed real-time and
mbedded (DRE) systems, such as integrated avionics systems and
ehtronics systems, are subject to stringent real-time constraints.
o ensure these real-time requirements are met, these systems
ust minimize software execution time. One approach to reduce
RE execution time is to reduce the time spent loading data from
emory by efficiently utilizing processor caching hardware.
Multiple design techniques have been researched for reducing

ystem execution time by increasing processor cache utilization.
or example, Bahar et al. (2005) examined several different cache
echniques for reducing execution time by increasing cache utiliza-
ion efficiency. Their experiments showed that efficiently utilizing
 processor cache can result in as much as a 24% reduction
n execution time. Likewise, Manjikian and Abdelrahman (1995)
emonstrated a 25% reduction in execution time as a result of
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modifying the source-code of the executing software to use cache
partitioning.

Many optimization techniques (Reineke et al., 2007; Nayfeh and
Olukotun, 1994; Sprangle et al., 2002) exist to increase how effi-
ciently caches are utilized by modifying application source code
to increase the temporal locality of data accesses, which defines
the proximity with which shared data is accessed in terms of
time (Kowarschik et al., 2003). For example, loop interchange and
loop fusion techniques can be used to increase temporal locality
of accessed data by modifying software application source code
to change the order in which application data is written to and
read from a processor cache (Kowarschik et al., 2003; Manjikian
and Abdelrahman, 1995). Increasing temporal locality increases
the probability that data common to multiple tasks will persist in
the cache, resulting in reduced cache-misses and software execu-
tion time (Kowarschik et al., 2003; Manjikian and Abdelrahman,
1995).

In general, however, prior work has focused on source-code
level modifications for single applications, which is problematic
for DRE systems built from multiple integrated applications, such
as the architecture shown in Fig. 1. Source code modifications in

an integrated DRE system are infeasible due to 1) the proprietary
nature of individual applications, and 2) safety requirements which
necessitate extremely extensive certification after any source code
modifications.
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Fig. 1. Example of an 

An integrated DRE system is composed of many individual appli-
ations, which are frequently provided by distinct subcontractors.
icense issues may  prevent access to the source code, or prevent the
ight to modify or recompile the source code. Moreover, DRE system
esigners may  not have the expertise to safely modify application-
pecific source code to improve the temporal locality of the source
ode.

Integrated DRE systems are often subject to stringent safety
equirements, such as bounding the frequency at which hardware
ailures can occur and preventing code-level errors in application
oftware, middleware, and operating systems. To help ensure pre-
ictable behavior, applications in integrated DRE systems must
ndergo a rigorous safety inspection process. After this process is
ompleted and the result has been certified, any alteration to an
pplication may  invalidate the certification. Safety requirements
hus pose a significant barrier to the use of cache optimization
echniques that require source code alterations.

Solution approach → Heuristic-Driven Schedule Alteration
f Same-rate Tasks to Increase Cache Utilization.

Priority-based scheduling techniques can help ensure DRE sys-
em software executes without missing real-time deadlines. For
xample, rate-monotonic scheduling (Pingali et al., 2007) is a tech-
ique for creating task execution schedules that satisfy real-time
onstraints by assigning priorities to tasks based on the task period-
city and ensuring utilization bounds are not exceeded. These tasks
re then split into sets that contain tasks of the same priority/rate.

Rate-monotonic scheduling specifies that tasks of the same rate
an be scheduled arbitrarily (Dhall and Liu, 1978). Fig. 2 shows
wo different valid task execution schedules generated with rate-

onotonic scheduling. As Task A1 and Task B1 share the same
riority, their execution order can be swapped without violat-

ng real-time constraints. Each scheduling problem with at least

ne valid execution order therefore has a number of equally valid
ermutations, which can be created by rearranging the order
f same-rate tasks. This research shows that it is possible to

Fig. 2. Valid task execution schedules.
ated avionics system.

improve the cache hit-rate of integrated DRE systems by select-
ing a valid execution order that increases the temporal locality of
data accesses.

Critically, our approach for improving cache utilization of inte-
grated DRE systems does not require any source code modifications.
This allows DRE system integrators to improve integrated DRE
system performance without invalidating application safety recer-
tification, requiring legal agreements to share source code, or
needing specialized expertise for each application. Our modifica-
tions only change the execution order of same-rate tasks, which
results in a system that is still a valid rate-monotonically sched-
uled application as interchanging tasks of identical utilization does
not change the value of the Liu–Layland bound (Dhall and Liu,
1978). To select the best valid schedule from the set of all possi-
ble valid schedules, we introduce the System Metric for Application
Cache Knowledge (SMACK) heuristic, which measures the maximum
possible cache utilization of a given execution schedule. SMACK
considers several factors, such as cache size, data sharing, and task
execution schedule, to provide developers with a way  to determine
which orderings of same-rate tasks have higher potential for cache
utilization. SMACK enables DRE system designers to manipulate
models of system runtime behavior without having to repeatedly
construct and measure potential system implementations, thereby
yielding performance increases without expending undue effort on
multiple implementations.

This article provides the following contributions to integrated
DRE system creation and deployment:

• We  present a real-time scheduling heuristic for same-rate tasks
that satisfies real-time scheduling constraints and safety require-
ments, increases cache hits, and requires no new hardware,
software, or middleware. Proper use of this heuristic enables
reduction in execution time of rate-monotonically scheduled DRE
systems without requiring recertification.

• To motivate the need for scheduling enhancements to improve
the efficiency of cache utilization in integrated DRE systems, we
present an industry case study of an integrated avionics system
in which modifications to the constituent applications are pro-
hibitively expensive due to safety certification requirements.

• We provide a formal methodology for calculating the “SMACK
score”, which quantifies the temporal locality of different exe-
cution schedules for the same-rate tasks in an integrated DRE
system.
• We present empirical results of the performance of 44 simulated
integrated DRE systems, each with different data sharing char-
acteristics and task execution schedules, and demonstrate that
the calculated SMACK score correlates with an increased cache
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Table 1
Hypothetical cache memory characteristics.

Line size 32 bytes
Associativity 8-way

To prevent interaction between integrated software applica-
tions the architecture in Fig. 4 uses the ARINC 653 standard to
allow applications to operate at different safety levels by parti-
tioning space (memory) and execution time along safety criteria.

Table 2
Fig. 3. Avionics system

hit rate, thereby providing a means for comparing potential sys-
tem implementations in terms of expected cache effectiveness
without requiring actual implementation.
We  show that altering the task execution schedule to optimize
the SMACK score can improve the cache hit-rate of integrated
DRE systems while simultaneously satisfying safety constraints
and real-time requirements.

This work extends our prior publication on cache efficiency
Dougherty et al., 2011). This work formalizes the prior research
ith a mathematical model of SMACK, and generalizes the heuris-

ic to work with a more diverse range of architectures. Specifically,
e addressed the need to optimize multiple compute nodes simul-

aneously, whereas our prior publication focused on the effect
f using SMACK on a single multitenant compute node. We  also
rovide additional empirical evaluations on the effect of using the
MACK heuristic in various production systems by showing the
ange of effects resulting from using our SMACK heuristic under
arious data sharing and cache contention factor values.

Paper organization:  The remainder of the paper is organized as
ollows: Section 2 describes how a typical integrated avionics sys-
em is designed to meet real-time deadlines and provide required
afety constraints; Section 3 summarizes the challenges of creat-
ng a metric that predicts integrated DRE system performance at
esign time and guides execution schedule modifications; Section 4
xplains how the SMACK metric can be calculated to predict DRE
ystem performance and applies it to create cache-effective execu-
ion schedules; Section 5 analyzes the results of experiments that
emonstrate the effectiveness of SMACK for predicting cache hits
nd runtime reductions; Section 6 compares SMACK with related
ork; and Section 7 presents concluding remarks.

. Integrated avionics system case study

This section presents a case study that shows current practices
or integration of multiple applications in modern avionics systems,
uch as the system shown in Fig. 1. This case study also describes a
eneric method for integrating applications while simultaneously
nsuring that avionic safety constraints and real-time scheduling
equirements are met. Section 5.4 describes our contributions to
his method of application integration, which increase cache hit-
ates while maintaining the goals of real-time scheduling and safety
onstraints.

.1. Avionics system integration architecture
The avionics system in our case study is realized as a set of com-
uting nodes connected by one or more networks, as shown in
ig. 3. Each node contains a single core computing element con-
isting of a Consumer-Off-The-Shelf (COTS) processor with main
Total Size 1 MB
Instruction/data allocation Shared
Replacement policy Pseudo-least recently used

memory and a two-level cache. The cache can be assumed to have
the characteristics shown in Table 1.

While it is possible for there to be multiple network connections
available between the computing nodes in a system, we assume
a single, high-bandwidth connection between nodes, as the other
connections typically carry much less traffic. The network can be
assumed to be fiber optic with the characteristics shown in Table 2.

2.1.1. Software integration architecture
The software integration is structured as a set of (primarily) sin-

gleton objects that interact through a publisher/subscriber protocol
over the fiber optic network. While there are a few cases of a given
class having more than one instance in the system, these are excep-
tional and address specific goals. A given application in the system
typically corresponds to a single object, though some applications
may  comprise a small number of separate objects due to their size
or other structural criteria.

Each object in the system executes on a single node, communi-
cating with other objects through the use of a publisher/subscriber
network protocol that is managed transparently by the system mid-
dleware. Objects are overwhelmingly structured as collections of
tasks which operate on a set of private data structures. All com-
munication of data between two  objects is asynchronous and is
organized through the publisher/subscriber message protocol, not
through explicitly shared data structures.

Typically, an object will have a tasks identified for each message
it can receive from some other object, from the system, or from
some external source. When that message is received by the node
on which the object resides, the system middleware arranges for
the registered task for that message to be executed. The system uses
a real-time operating system (RTOS) which implements the time
and space partitioning specified in ARINC 653, Avionics Application
Software Standard Interface (Committee, 1997).
Proposed fiber optic network characteristics.

Bandwidth 400–1000 Mbps
Topology Switched fabric
Priority 1 (e.g., first-come first-served)
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Fig. 4. Time and space pa

pplications with lower safety levels cannot be integrated into the
ame partition as those with higher levels.

The case study also allows multiple time and space partitions
o execute on each node in the network. Fig. 4 shows an example
ystem structure with three partitions, in which seven different
oftware applications are implemented.

Each partition is allocated a fixed time slot during which only
ts applications can be executed. The sum of the partition durations
sually add up to the base frame duration discussed in the next
ection. The underlying real-time operating system (RTOS) “acti-
ates” partitions in the specified sequence, allowing the integrated
pplications inside each partition to execute in turn, then repeats
he sequence.

.2. Runtime integration architecture

To control application execution, each node executes its own
ystem scheduler, which is part of either the RTOS or middleware.
he system scheduler on each node in our case study implements

 rate-based pattern for integrating software execution, which
ecomposes time into a series of numbered frames of equal dura-
ion as shown in Fig. 5. Each frame is of duration seconds, such as
0 s, and this duration span is said to be the base rate of the system.
or example, if the system is scheduled with 75 Hz base rate, soft-
are that is executed at that rate is also said to run at a frequency

f 75 Hz.
At the start of each base frame two tasks are scheduled to exe-

ute sequentially. The task that executes at the base frame rate is
cheduled to run, followed by another task at a rate of lower fre-
uency. For example, at Frame 0 the scheduler will execute the
oftware that runs at 75 Hz and the software that executes at

7.5 Hz, or half as frequently. This pattern continues repeatedly
s shown in Fig. 5 until the lowest rate software in the system has
ompleted. All scheduling of application avionic software tasks in
he system occurs in this manner.

Fig. 5. Periodic scheduler inte
ned system architecture.

As previously noted, objects consist of collections of callbacks
that operate on shared data. Each callback is scheduled to run for
one of two reasons:

• The message registered for that callback has been received by the
node.

• The callback is registered to be executed at a fixed frequency.

We define for simplicity that objects process messages at the
same rate at which they are sent in the system, and further con-
sider that messages are always transmitted at their defined rate,
thus each callback in an object is executed at some fixed rate. The
system sets scheduling priority according to the frequency at which
software executes. For example, a callback which executes at rate
75 Hz is scheduled with a higher priority than callbacks at 37.5 Hz,
which in turn run at a higher priority than callbacks at rate 18.75 Hz,
and so on to the lowest defined rate in the system. Fig. 4 shows the
effect of priority-based interleaving of task from multiple appli-
cations in a partition. In particular, it shows how multiple tasks
from Application 1 in Partition 1 may  execute in a row, followed
by one or more tasks from Application 2, and so on. Our avionics
case study assumes integrated applications cannot influence inter-
leaved order other than specifying priority, which is determined by
execution frequency. This pattern is repeated in all partitions in the
system. (Fig. 6).

Fig. 7 shows the interleaved execution of software tasks. Appli-
cations 1 and 2 both have tasks that execute at rates N, N/2, and
N/4. The rate N tasks from both applications always execute before
any other tasks in a given frame. Although it is not necessarily the
case that all rate N tasks from Application 1 will run before the rate
N tasks from Application 2, our case study makes this order repeat-

able, i.e., the interleaving A1/B2/A2 will not change from frame to
frame after it is established when the system starts.

Safe coding practices require each object to allocate all the data
structures it intends to use when the system starts. Henceforth,

rleaves task execution.
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Fig. 6. Execution interl

ata structures are neither released nor moved in the address space.
imilarly, program text (instructions) are statically linked and do
ot move after they are loaded into main memory. Message buffers
re also allocated when the system starts and do not move there-
fter. In addition, if two  or more objects on a given node subscribe
o a received message, the two objects share a single read-only copy
f the message.

. Challenges of analyzing and optimizing integrated DRE
ystem architectures for cache effects

This section presents the challenges that DRE system integra-
ors face when attempting to optimize application integration to
mprove cache hit rate. Mission-critical DRE systems are often sub-
ect to multiple design constraints, such as safety requirements
nd real-time deadlines, that may  restrict which optimizations
re applicable. For example, the case system in Section 2 con-

ains several factors, such as system recertification, unknown data
oupling characteristics, and strict scheduling requirements, that
ake it hard to construct optimization techniques for integrated
RE systems. This section describes three challenges that must be

Fig. 7. Interleaved executio
 inside time partition.

overcome to ensure a processor cache optimization technique is
applicable for safety-critical DRE systems.

3.1. Challenge 1: altering applications may  invalidate safety
certification

Integrated DRE systems, such as the avionics case study in Sec-
tion 2, are often safety-critical. While software crashes may cause
minor inconveniences for most system users, unpredictable system
behavior in integrated avionics systems can yield catastrophic sys-
tem failures. For example, an exception that forces a word processor
to close unexpectedly may  cause mild frustration or minor data loss,
whereas a faulty system flight controller could cause an airplane to
crash. To prevent these catastrophes, the software and hardware
applications of safety-critical integrated avionics are heavily certi-
fied to ensure that as long as the software and hardware are not
modified, the system will execute in a safe, predictable manner.

Existing cache optimization techniques, such as loop fusion

and data padding (Kennedy and McKinley, 1994; Panda et al.,
2002), require modifications to the applications to increase cache
utilization and performance. Modifications of integrated applica-
tions, however, may  void previous application safety certifications.

n order is repeatable.
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multiple execution schedules, such as those shown in Section 2.2.
Fig. 8. This metric can the be used as a heuristic for metascheduling
to determine task execution schedules that increase cache utiliza-
tion efficiency.
0 H. Turner et al. / The Journal of S

e-certification of applications is a slow and expensive process,
hich increases cost and delays deployment. What is needed,

herefore, are techniques that alter the DRE system to optimize
 predictive performance metric while leaving the hardware and
oftware of the integrated applications unmodified. These tech-
iques would then not require recertification application for each
pplication. However, there would need to be a system integration
ecertification performed to ensure that no unexpected behavior,
uch as network thrashing, emerge when all of the optimized appli-
ations are executed concurrently. However, recertification of the
ystem is a minor cost compared to recertification of each appli-
ation. Section 5.4 describes how altering task execuion schedule
ncreases system performance through better cache utilization,
esulting in decreased system runtime while avoiding the need for
ostly system recertification.

.2. Challenge 2: data sharing characteristics of software
pplications vary

In contrast to small, stand-alone software applications, inte-
rated DRE systems are comprised of several systems made up of
any applications that work together. The data sharing character-

stics of applications can potentially have a large impact on system
erformance due to processor caching. System scale and the opacity
f the competive integration eco-system, however, makes data cou-
ling analysis cumbersome and time consuming. What is needed,
herefore, are optimization techniques that increase performance
egardless of data sharing characteristics a priori. Sections 5.3 and
.5 describe how altering task execution schedule effects the DRE
ystem execution time and cache performance of systems, regard-
ess of the amount of data sharing between tasks.

DRE system developers often focus on a small portion of the
pplications in a single subsystem, and are unaware of the inner
orkings of applications developed by other suppliers. For exam-
le, the software that controls the system flight controller may
onsist of applications developed by multiple companies that
ompete for sponsor funds. It is uncommon for these compet-
ng suppliers to interact with each other when making their
ource code design decisions. System integrators thus often lack
nowledge of key implementation details within the software
pplications that comprise the final DRE system. Therefore, direct
anipulation of applications is infeasible and dangerous.

.3. Challenge 3: optimization techniques must satisfy real-time
cheduling constraints

Safety-critical DRE systems are often subject to stringent sched-
ling constraints and commonly use priority-based scheduling
ethods, such as rate monotonic scheduling, to ensure that soft-
are tasks execute predictably (Stewart and Barr, 2002; Ghosh

t al., 1998; Naghibzadeh, 2002). This constraint prohibits many
imple solutions that would greatly increase cache hit-rate but
ould cause the system to behave unpredictably, with potentially

atastrophic results. What is needed, therefore, are optimization
echniques that can be applied and re-applied when necessary to
ncrease the cache hit-rate and decrease system execution time for
ny set of system task priorities. Section 5.4 describes how task exe-
ution schedules can be altered to increase the temporal locality of
ask execution schedules without violating real-time constraints.

For example, if Task A is assigned a priority that is twice the rate
f Task B, then Task B must execute twice before Task A executes

 second time. This method ensures that tasks of higher prior-

ty will execute completely, and that tasks of lower priority will
ot be starved of resources due to continuous preemption. Any
chedule optimization technique must result in a schedule that
oes not violate the restrictions outlined above.
s and Software 98 (2014) 25–43

4. Cache aware metascheduling with SMACK to improve
cache utilization efficiency

Altering the task execution schedule of applications can increase
cache hits without requiring code-level modifications, but may  vio-
late real-time constraints. Rate-monotonic scheduling, however,
allows for same-rate tasks to be scheduled arbitrarily while ensur-
ing real-time constraints are satisfied (Dhall and Liu, 1978). In
this section, we  examine the re-ordering of same rate tasks, or
metascheduling, which permutes existing execution schedules to
rapidly generate new valid schedules.

Metascheduling, however, often generates multiple valid task
execution schedules such as those shown in Fig. 8. As can be seen,
determining which task execution schedule that will yield the
largest increase in temporal locality and best utilize the cache is not
always immediately apparent. Metrics can be developed, however,
to quantify temporal locality of multiple execution schedules.

This section presents a metric for quantifying the temporal local-
ity of task execution schedules of integrated DRE architectures that
can guide the selection of a metaschedule to increase the efficiency
of processor cache utilization. We  first describe how scheduling
decisions affect temporal locality and subsequently cache utiliza-
tion efficiency. We  then provide a formal definition of a metric
for quantifying the temporal locality of task execution schedules.
Finally, we show how metascheduling can use this metric as a
heuristic to generate task execution schedules that increase cache
utilization efficiency without violating real-time constraints or
requiring code-level modifications.

Each node of the avionics system case study described in Sec-
tion 2 consists of multiple partitions of executing applications,
as shown in Fig. 4. The tasks that comprise these applications
described in Section 2.2 are scheduled for execution with a priority-
based scheduler local to each node. As tasks execute, cache hits may
occur between tasks that share a common partition. These cache
hits can yield substantial reductions in the total execution time of
the partition.

Each partition in Section 2.2 executes for a fixed-time duration
determined by the expected execution time for all tasks in the parti-
tion. This fixed-time duration, however, does not take into account
cache hits. The size of the partitions can be more finely configured
by factoring in the expected execution time savings due to cache
hits.

4.1. Goal: a cache hit characterization metric for software
deployments

To predict the relative performance that a specific task sched-
uling will yield we developed the System Metric for Application Cache
Knowledge (SMACK). SMACK can predict relative performance for
Fig. 8. Multiple execution schedules.
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Fig. 9. Scheduling w

.2. How real-time schedules may  impact cache hits

Section 2 shows how the structure of our avionics system case
tudy consists of multiple, separate nodes, where each node is
ivided into separate partitions in which applications execute. Sec-
ion 2.2 describes how each application executing in a partition
ontains tasks executing at various rates and priorities. Each node
s equipped with a priority-based scheduler that determines the
xecution order of these tasks. Different execution schedules can
ield more or fewer cache hits. While the reduction in system exe-
ution time resulting from a successful cache hit may  differ from
ode to node, we assume it is the same for applications executing
n the same node.

A task execution schedule is divided into minor frames and
ajor frames. A minor frame is a subset of tasks that execute before

he next set of tasks can begin executing, and is analogous to the
ase frames of the system described in Section 2. A major frame

s the set of minor frames that must execute before all tasks of all
ates are guaranteed to execute, similar to the partitions of an inte-
rated DRE system. For example, Fig. 7 shows an execution for a
et of tasks. Tasks A1 through B1 execute in the same minor frame,
hereas the major frame is the execution of all tasks from minor

rame 0 to minor frame 15.

.2.1. Intra frame transitions
Our case study examines the impact of transitioning between

asks on the effectiveness of the data cache. Transitioning between
asks executing in one or more minor frames potentially results in

 cache hit. For example, Fig. 9 shows a scheduling of multiple tasks
ith six tasks scheduled to execute in the same minor frame.

Task A1 executes and then Task B2 is scheduled to execute next.
e call the transition from A1 executing to B2 executing an intra

rame transition since task A1 and B2 share the same minor frame. If
asks A1 and B2 require common data, however, there is potential
or a cache hit.
.2.2. Extra frame transitions
Tasks may  also be scheduled to execute in separate minor

rames. A cache hit may  result from a transition from the final task
o execute in one minor frame and the first task to execute in the
ra frame transitions.

next minor frame. We  call this type of transition between sepa-
rate minor frames an extra frame transition.  For example, Fig. 10
shows two sets of tasks executing in separate minor frames. An
extra frame transition exists between Task B1 and A1. The proba-
bility of a cache hit occurring due to extra frame and intra frame
transitions, however, differs based on the cache contention factor.

4.2.3. Cache contention factor
Transitioning a new task onto the processor can result in a cache

hit, as described in Sections 4.2.1 and 4.2.2. We define the cache
contention factor, CCF, to estimate how many consecutive transi-
tions can potentially lead to a cache hit before all cached data from
the original task is invalidated, as shown in Eq. (1). The cache con-
tention factor is defined by the memory usage of the software, the
size of the cache, and the cache replacement policy.

CCF = CS

(DW/|T |) ∗ (1 − DS)
(1)

In this equation, CCF is calculated by dividing the size of the
cache, CS,  by the average amount of data written per task. To deter-
mine the average amount of data written per task, the total amount
of data written, DW, is divided by the number of tasks |T| and mul-
tiplied by the percent of task data shared between tasks DS.  DS is
determined by dividing the total number of variables that are read
by both tasks by the sum of the total number of variables in the two
tasks.

After invalidation, the probability of a cache hit is reduced to
0. While this model is simpler than the actual complex cache data
replacement behavior, it is effective enough to give a realistic repre-
sentation of cache performance (Robinson and Devarakonda, 1990).

For example, assume there are 5 applications consisting of 2
tasks, each consuming 2 kilobytes of memory of a 64 kB cache. The
hardware uses a Least Recently Used (LRU) replacement policy. This
policy replaces the cache line that remained the longest without
being read when new data is written to the cache. The cache con-
tention factor formulation will differ for other cache replacement
policies. Executing the tasks will require writing 20 kB to memory.

Since the cache can store 64 kB of data, all data from all applica-
tions can remain in the cache. The cache contention factor in this
case would be 32, as the data from any one task might remain
in the cache for 32 consecutive tasks. After 32 the data from that
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xecution of that task will no longer remain in the cache, although
ther tasks which accessed the same data may  cause it to remain
n the cache.

.2.4. Determining if tasks overlap
The integrated avionics system described in Section 2 assumes

hat tasks of different applications do not share any data. Cache hits
an therefore only occur if two tasks share the same application.

hile Eq. (1) identifies a set of new task transitions that may result
n a cache hit, Eq. (2) further reduces this set to only contain new
ask transitions that belong to the same application as the current
ask being examined. These two equations constitute the necessary
onditions for a cache hit to be possible. Eq. (2) returns 1 if two  tasks
re a part of the same application and 0 if they are not.

(ti, tj) =
{

1 if ti ≡ tj

0 if ti /= tj

(2)

.2.5. Quantifying cache hits for variable size tasks
Software tasks of the same application may  not read the same

mount of memory. The number of cache hits that result from a
ask executing will therefore differ based on the amount of com-

on  data read. Eq. (3) defines the maximum cache hits that can be
xpected if a task of an application executes after another task of
he same application. The total set of transitions for a minor frame

 is given by t(F).

Hit(t(Fi)j, t(Fx)y) = DS ∗ DR(t(Fx)y) (3)

he maximum cache hits is equal to the percentage of data shared
y the tasks multiplied by the amount of data read by the task
xecuting later.
.2.6. Determining total cache hits
Each intra frame and extra frame transition yields a probability

f a cache hit, based on the DRE system’s cache contention factor
tra frame transition.

and the task executing in the frame. We  consider each task execu-
tion, and sum the total probabilistic cache hits for all sets of tasks
in all partitions of a given node. Naturally, not all of the probabilis-
tic cache hits are ensured to occur, so this is an upper bound. Each
cache hit reduces the execution time of the system.

4.2.7. Cache hits due to intra frame and extra frame transitions
We calculate the maximum cache hits CHit for all intra frame

and extra frame transitions in the major frame MF. After a task
executes, the number of transitions that can occur before all data
written by the task to the cache is invalidated is determined by
the CCF. Each transition that occurs before the CCF is reached can
therefore potentially yield a cache hit and must be investigated.

Determining which task executes k transitions from a task is
shown in Eq. (4).

FR(Fij, k) =

⎧⎪⎨
⎪⎩

F[
j+
⌊

i + k

|F |

⌋]
[(i+k)%|F |]

if i + k < M(MF)

F[
j+
⌊

(i + k) − M(MF)
|F |

⌋]
[((i+k)−M(MF))%|F |]

if i + k≥M(MF)
(4)

TTot(SF)

=
|SF |−1∑

i=0

|F |−1∑
j=0

CCF−1∑
k=0

[CHit(t(Fi)j, FR(t(Fi)j, k))] ∗ O(t(Fi)j, FR(t(Fi)j, k))

(5)

We  define M(MF)  as the number of tasks that execute in a given
major frame. Two cases must be considered:
• A task may  execute k steps ahead of a task, but in the same major
frame, as shown in the first case of Eq. (4).

• Incrementing by k transitions may  exceed the boundary of the
major frame, whereby the task is determined by wrapping back
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to the beginning of the major frame and incrementing any
remaining transitions as shown in the second case of Eq. (4). This
equation only handles transitions up to one MF  ahead, which is
reasonable given the case study in Section 2, but can easily be
extended.

Eq. (5) accounts for all cache hits due to all transitions in the
ajor frame. The first summation in Eq. (5) accounts for all frames

n the major frame. The second summation examines all frame tran-
itions in the current frame. The innermost summation in Eq. (5)
ums the expected cache hits CHit for tasks that share the same
pplication, as given by O.

.2.8. Total cache hits of a partition
Each partition consists of one or more executing applications. To

etermine the total expected cache hits for a given partition p, the
otal expected cache hits of each application a for each application

 ∈ A executing on partition p must be summed, as shown in Eq. (6).

(p) =
|A|−1∑
k=0

ˇ(ak) (6)

ll tasks for a given partition, however, will execute in the same
ajor frame SF.  The total number of caches hits due to all transitions

n a major frame will therefore yield the total cache hits for the set
f applications in a partition, as shown in Eq. (7).

(p) =
|A|−1∑
k=0

ˇ(ak) = TTot(SF) (7)

.2.9. Execution time reduction on heterogeneous nodes
The overhead execution time reduction resulting from a suc-

essful cache hit may  differ from node to node. We  define this
eduction as the Cache Constant or Cc(n). This value must be
upplied by the DRE system designer or determined through pro-
ling. CC(n) is occasionally referred to as ‘cache miss impact,’
nd tools such as Intel VTune can be used to generate a pre-
ise value by monitoring differences in execution time and the
vent MEM  LOAD RETIRED . L2 LINE MISS. After calculating the
otal number of cache hits on the node as described in Eq. (7)
e multiply this value by the Cc(n) to determine the total average

verhead reduction (ms) for the node, as shown in Eq. (8).

.2.10. Total cache hits of a node
Each node consists of one or more executing partitions. To cal-

ulate the cache benefits Cm(n) of a single node n, we  must first
etermine the sum of the cache hits p for each partition p ∈ P exe-
uting on node n, as shown in Eq. (8).

m(n) = Cc(n) ∗
|P|−1∑
j=0

�(pj) (8)

his sum reflects an upper bound on the total probabilistic number
f cache hits of the partitions executing on the node.

.2.11. Total execution time reduction of a system
Finally, the physical structure of the system consists of multiple,

eparate nodes. To quantify the total cache benefits (the total reduc-
ion of system overhead due to successful cache hits) of the system,
he cache benefits of each node must be calculated and summed.
his process is described in Eq. (9), which defines the SMACK score

MACK of a total set of nodes N.

MACK(N) =
|N|−1∑
i=0

Cm(ni) (9)
s and Software 98 (2014) 25–43 33

The SMACK score is an estimation of the improvement of
the entire system. This includes the improvement of each node
contained within the system. While each node originally used a
schedule derived via rate monotonic scheduling, we transform
these original schedules via the rules laid out in this publication.
The SMACK metric is an estimation of the total system time reduced
by this transformation process.

4.3. Applying SMACK to increase system performance

We now describe how SMACK can be combined with
metascheduling to increase cache hit-rate while resolving the chal-
lenges described in Section 3. Scheduling techniques, such as rate
monotonic scheduling, can be used to generate new task exe-
cution schedules that ensure real-time constraints are satisfied.
Metascheduling, or reordering same-rate tasks, can then be used
to generate new task execution schedules that satisfy real-time
requirements. It is not always clear, however, which of these sched-
ules will most efficiently utilize the processor cache.

SMACK can be used to determine the “score” of task execution
schedules. For instance, if the SMACK score for schedule A is higher
than the score for schedule B, we  can conclude that schedule A has
potential to utilize the cache more efficiently. The SMACK score of
one task re-ordering may  be greater than that of others indicating
more efficient cache utlization. Maximizing the SMACK score can
therefore be used as a heuristic to drive metascheduling to maxi-
mize temporal locality and increase cache utilization efficiency.

As discussed in Section 2, tasks of different applications do not
share data. The cache contention factor determines how many task
executions of other applications can occur after a task executes
before the cache is potentially completely invalidated. Arrang-
ing tasks of the same application to execute consecutively will
therefore increase the SMACK score and therefore may  decrease
execution time, despite having limited or no knowledge of the data
coupling between tasks, as stated in Section 3.2. The more that is
known about the data coupling characteristics of the tasks between
common applications, the more accurate the SMACK score will be.

Finally, reordering the tasks to attempt to increase the SMACK
score of the system cannot be done in a haphazard fashion. Any
execution order must adhere to the real-time scheduling con-
straints defined in Section 3.3. This constraint greatly restricts the
total potential execution orders that satisfy all system deadlines.
Scheduling techniques, such as rate monotonic scheduling and
metascheduling, must be applied to create task execution schedules
that meet real-time requirements.

5. Empirical results

This section analyzes the results of a performance analysis
of multiple DRE systems with different SMACK scores. These
systems differ in task execution schedules and the amount of mem-
ory shared between tasks. We  investigate potential correlations
between the SMACK score and L1 cache misses, L2 cache misses, and
runtime reductions for each system. All data shown in this section
is the average value resulting from 30+ trial runs.

To examine the relationship between SMACK score and DRE
system performance, we  created multiple software systems to
mimic  the scale, execution schedule and data sharing of the
system described in Section 2. We  specified the number of appli-
cations, number of tasks per application, the distribution of task

priority, and the maximum amount of memory shared between
each task for each system. We  created a Java-based code genera-
tor to create C++ system code that possessed these characteristics.
Rate-monotonic scheduling was used to create a deterministic
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riority-based schedule for the generated tasks that adheres to
ate-monotonic scheduling requirements.

.1. Overview of the hardware and software testbed

The systems were compiled and executed on a Dell Latitude
820 with a 2.16 GHz Intel Core 2 processor with 2 × 32 kB L1

nstruction caches, 2 × 32 kB write-back data caches, a 4 MB  L2
ache and 4 GB of RAM running Windows Vista. For each exper-
ment, each system was executed 50 times to obtain an average
untime. These executions were profiled using the Intel VTune
mplifier XE 2011. VTune is a profiling tool that is capable
f calculating Intel processor metrics by monitoring processor
ignal events. For example, to determine the number of L2
ache misses of System A, we compiled and then executed it
ith VTune configured to return the total times that the event
EM  LOAD REQUIRED.L2 MISS is triggered. Fig. 11 shows the pro-

essor events that were profiled in the following experiments, as
ell as their semantic meanings.

.2. Method for creating simulated DRE systems

To test the SMACK-based schedule modification technique, we
reated a software suite for generating the C++ code of mock inte-

rated avionics systems that behave as specified in Section 2. As
hown in Fig. 12 these systems include a priority-based scheduler
nd multiple sample avionics applications consisting of a variable
umber of periodic avionic tasks.

Fig. 12. System crea
ts profiled with VTune.

Together these applications comprise a representative avionics
system. The data sharing and memory usage of these applications,
as well as the scheduling technique, are all parameterized and var-
ied to generate a range of test systems. We  use these simulated
systems to validate SMACK by showing that a lower SMACK score
correlates with better performance in terms of execution time and
cache misses.

5.2.1. Data sharing characteristics
The data shared between applications and shared between tasks

of the same application can greatly impact the cache effectiveness
of a system. For example, the more data shared between two appli-
cations, the more likely the data in the cache can be utilized by tasks
of the applications, resulting in reduced cache misses and faster
system runtime. The system described in Section 2 prohibits data
sharing between tasks of different applications. All systems pro-
filed in this section are thus also restricted to sharing data between
tasks of the same application. Applications that use a great deal of
message data in common, however, are likely to share memory. To
account for this sharing, our future work will extend the SMACK
calculation to account for these architectures.

5.2.2. Task execution schedule
The execution schedule of the software tasks of the system can
potentially affect system performance. For example, assume there
are two applications named App1 and App2 that do not share data.
Each application contains 1000 task methods, with tasks of the
same application sharing a large amount of data. The execution of

tion process.
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 single task stores enough memory to completely overwrite any
ata in the cache, resulting in a Cache Contention Factor of 1.

When a task from App1 executes it completely fills the cache
ith data that is only used by App1. If the same or another task

rom App1 executes next, data could reside in the cache that could
otentially result in a cache hit. Since no data is shared with App2,
owever, executing a task from App2 could not result in a cache hit
nd would overwrite all data used by App1 in the class. Multiple
xecution schedules therefore affect performance differently and
roduce different SMACK scores.

.3. Experiment 1: variable data sharing

Experiment design: The amount of data shared between multi-
le tasks can potentially have a large impact on the performance of

 system in terms of cache misses and system runtime, as discussed
n Section 5.2.1. Experiment 1 constructed 10 software systems to
xamine the effect of data sharing between tasks of common appli-
ations. Each system contained 5 separate applications consisting
f 10 tasks each. The body of the tasks consisted of floating and
nteger addition operations.

Although the total number of operations of the tasks was  con-
tant across all applications, the amount of data shared between
he same tasks was varied. For example, if the data sharing between
asks was set to 20%, then each tasks shared approximately 20% of
he variables used in operations with all other tasks. After generat-
ng these 10 software systems, we executed each system 50 times
nd determined an average runtime of each system.

Analysis of results: Fig. 13 shows that as the amount of data
hared between tasks of a single application increases, system exe-
ution time decreases. In this case, sharing 100% of data resulted
n an execution time of 2572.58 ms,  where as a sharing of no data
etween tasks, or 0%, resulted in an execution time of 3704.85 ms,
hich 30.56% slower. The curve shown in Fig. 13 is non-linear, how-

ver, with only an additional reduction of 9.40% occurring as a result
f increasing the shared data amount from 50% to 100%.

Increasing the amount of shared data between tasks also

eads to a decrease in cache misses. We  used the VTune Ampli-
er XE 2011 to determine the total number of L2 and L1
ache misses by monitoring for MEM  LOAD RETIRED.L2 MISS and
EM LOAD RETIRED.L1D MISS events. These events only take into
shared vs runtime.

account cache misses due to data write-back, however, and do not
include cache misses resulting from instruction fetching.

Fig. 14 shows the number of L2 cache misses as data sharing
between tasks increases. As the data sharing increases the number
of L2 cache misses decrease at an exponential rate, from 5.172 × 108

to 1.6 × 105, which is a reduction of 99.69%. As with runtime, the
vast majority of L2 cache miss reductions occurred by increasing
the amount of shared data from 0% to 50% or greater, resulting in
an 80.36% L2 cache miss reduction. Fig. 15 shows the number of L1
cache misses decrease as data between tasks increases. In contrast
to runtime and L2 cache misses, the decrease in L1 cache misses is
considerably more linear.

5.4. Experiment 2: execution schedule manipulation

Experiment design: The execution schedule of tasks can poten-
tially impact both the runtime and number of cache misses of a
system, as discussed in Section 5.2.2. Experiment 2 manipulated the
execution order of a single software system with 20% shared data
probability between 5 applications consisting of 10 tasks each to
create 4 new execution schedules. First, stride scheduling was used
to create an execution ordering that met  all scheduling constraints
(Waldspurger and Weihl, 1995). This schedule was then permuted
to change the total number of instances in which the execution of
two tasks from a common application executing could potentially
cause a cache hit, referred to as “overlaps.”

The number of overlaps that exist in an execution schedule is
affected by the number of task executions that must occur before
the amount of data written to the cache exceeds the size of the
cache, defined by the Cache Contention Factor. For example, if each
task writes 30k to memory and the cache size is 50k, then most
data written to the cache by the first task executing would persist
through the execution of two more tasks. The Cache Contention
Factor for this system would therefore be two.

The original execution schedule generated by Stride Scheduling
is referred to as “Unoptimized.” The experimental platform mod-
els real-world DRE systems such as the one described in Section
2, and resulted in a Cache Contention Factor of 15, thereby yield-

ing 655 overlaps for the Unoptimized schedule. This schedule was
then permuted to increase the number of overlaps while satisfying
priority scheduling constraints. This schedule is referred to as the
“Optimized” ordering and contained 801 overlaps.
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We  also created two execution schedules that do not satisfy
he priority scheduling requirement to maximize and minimize
he number of overlaps. To minimize the number of overlaps, we
ermuted the execution order such that no two tasks of the same
pplication executed consecutively, resulting in the “Worst” case
xecution order with 732 overlaps.2

Fig. 16 shows that as cache size increases, the Worst execution
rder may  result in more overlaps than other execution orders.
inally, we maximized the number of overlaps by executing all

asks of each application consecutively, resulting in 1,743 over-
aps. We  refer to this execution ordering as the “Best” execution
chedule. The Best schedule represents an upper bound on the

2 This execution order is the “Worst” since it yields 0 overlaps when the Cache
ontention Factor is one.
ed vs L1 cache misses.

performance improvement that can be achieved using task reorder-
ing techniques.

Analysis of results. Fig. 17 shows the average runtimes for the
different execution schedules. As shown in this figure, the task
execution order can have a large impact on runtime. The Best execu-
tion schedule, consisting of 1,743 overlaps, executed in 2790 ms  on
average. The Optimized execution schedule completed in 3299 ms,
which was an 18.24% increase from the Best execution schedule.
The Unoptimized and Worst execution schedules executed in 3337
and 3329 ms,  respectively.

Execution order was also shown to impact the number of
cache misses. Fig. 18 shows the L1 cache misses for all exe-

cution schedules. Once again, the execution schedule with the
most overlaps—the Best execution schedule—performed the best
of all execution orders, resulting in only 3.26 × 109 cache misses.
The Optimized execution schedule, consisting of 801 overlaps,



H. Turner et al. / The Journal of Systems and Software 98 (2014) 25–43 37

ention

g
L
m
i
r
o

s
e
t
c
f
i
s

Fig. 16. Cache cont

enerated 3.48 × 109 cache misses, an increase of 6.47% from the
1 cache misses of the Best execution order. Next, the Unopti-
ized execution schedule, consisting of 655 overlaps, resulted

n 3.51 × 109 L1 cache misses. Finally, the Worst execution order
esulted in 3.53 × 109 L1 cache misses, the most of all execution
rders.

The impact of execution order on L2 cache misses can be
een in Fig. 19. Similar to L1 cache misses and runtime, the
xecution schedule with the most overlaps—the Best execu-
ion schedule—produced the lowest results with 1.59 × 108 L2
ache misses. The Worst case execution schedule generated

ewer L2 cache misses than the Unoptimized schedule, which
n turn generated fewer L2 cache misses than the Optimized
chedule.

Fig. 17. Runtimes of various
 factor vs overlaps.

5.5. Experiment 3: dynamic execution order and data sharing

Experiment design: Sections 5.2.1 and 5.4 demonstrate the
effects of the data sharing characteristics of applications and exe-
cution order of tasks on runtime and cache misses. These sections,
however, do not examine the impact of altering both of these
aspects simultaneously. Experiment 3 therefore examined multiple
execution orders for multiple systems with different data sharing
characteristics. For example, the reduction in system cache misses
could be substantially different by altering the execution order of
a system with 80% shared data than a system with only 10% shared

data.

Analysis of results: Fig. 20 shows that the number of L1 cache
misses decreases as the number of overlaps in the execution order

 execution schedules.
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nd/or the amount of shared data increases. Again, the Best execu-
ion order consisting of the most overlaps resulted in the fewest L1
ache misses for all software systems. Unlike runtime, however, the
umber of L1 cache misses are only slightly less than those of the
ther execution orders. Moreover, L1 cache misses for all execution
rders decreased at near-linear rate.

Fig. 21 shows that the L2 cache misses decreased at an expo-
ential rate. Once again, the Best execution order resulted in the

owest number of cache misses for almost all trials, with the excep-
ion of the system with 90% data sharing in which the number of L2
ache misses were comparably negligible. The exponential nature

f the decrease in cache misses show that the greatest reduction
n L2 cache misses can be made by increasing the total amount of
hared data, if less than 50% of data is shared. Therefore, a reason-
ble source code design decision may  be to use a small (relative to

Fig. 19. Execution schedule
s vs L1 cache misses.

the cache) central state container for frequently accessed system
state.

For example, increasing the amount of data shared from 0% to
50% for the Optimized execution order resulted in an L2 cache miss
reduction of 77.64%. Increasing data sharing from 50% to 90%, how-
ever, does not yield as extreme benefits. Increasing the amount of
data shared from 50% to 90% for the Optimized execution order
resulted in an additional reduction of only 21.18%.

Fig. 22 shows the system execution time decreases as the
amount of shared data increases. The decrease in runtime, however,
is not constant across all execution orders. For example, the Best

execution order decreases from 2884 ms  when 0% of data is shared
to 2398 ms  when 100% of data is shared, a total decrease of 486 ms
or 16.85%. The Optimized execution order decreases from 3592 ms
to 2,582 ms  as the shared data increase from 0% to 100%, for a total

s vs L2 cache misses.
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Fig. 20. L1 cache misses vs 

untime decrement of 1010 ms  or 28.12%. Altering the amount of
ata shared reduced the system runtime of the Optimized execu-
ion order by 107.82% more than the same data alteration with the
est optimized execution order. These results therefore show that
ltering the amount of data shared has a larger impact on runtime
or systems with less efficient execution orders.

While adjusting the data sharing characteristics of a system may
e acceptable at design time, safety certification and other factors
ay  prohibit altering the data sharing characteristics of a system.
anipulating the execution order of the software tasks, however,

s permitted. Fig. 22 shows the potential benefits of altering sys-
em order for systems with different data sharing characteristics,
hich yields greater reduction in system runtime for systems that
hare less data between tasks. As data sharing increases, this reduc-
ion is not as great. For execution orders that satisfy scheduling
onstraints, the Optimized execution order consistently resulted
n faster runtimes than the Unoptimized execution order. Runtime

Fig. 21. L2 cache misses vs data s
hared and execution order.

reductions can therefore be realized by manipulating the task exe-
cution schedule without violating priority scheduling constraints.

5.6. Experiment 4: predicting performance with SMACK

Experiment design:  The previous experiments demonstrated
the impact of the data sharing and execution schedule of several
different systems. Experiment 4 examines the correlation between
the SMACK score and actual runtime for a system. SMACK uses
the execution order and data sharing characteristics in conjunc-
tion with a Cache Contention Factor to score systems in terms of
expected performance, as described in Section 4. SMACK provides

a basis for comparing multiple DRE systems in terms of expected
performance. For example, if System A produces a higher SMACK
score than System B, then System A has the potential to have a
lower runtime than System B.

hared and execution order.
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Section 5.5 presents 44 different systems with data sharing
anging from 0%-100% and 4 different execution schedules for each.
ach system was executed on the same hardware, thereby pro-
ucing the same value for the contention factor. The SMACK score

s calculated for each system taking into account the contention
actor, the execution schedule, and data sharing characteristics.

Analysis of results: Fig. 23 presents the SMACK scores for each
ystem. As the amount of data sharing increases, the SMACK score
ncreases, indicating a reduction in runtime. Comparing the SMACK
cores shown in Fig. 23 to the actual system execution times shown
n Fig. 22 shows that the SMACK score correlates with increased
erformance. Similarly to runtime, optimizing the execution sched-
le of a system is also increases the SMACK score. SMACK can

herefore effectively predict and compare the performance of mul-
iple DRE systems.

Section 5.4 presents 4 different execution schedules used to exe-
ute the software systems tested. Of these execution schedules,

Fig. 23. Smack score vs data sha
ed and execution order.

only the Unoptimized and Optimized execution schedules satisfy
priority based scheduling constraints. The Unoptimized schedule
was built without taking into account the effect of overlaps on
system performance. The Optimized execution order is created by
reordering the tasks executions so that overlaps are increased with-
out violating priority scheduling constraints.

Fig. 24 shows the percentage reduction in runtime by chang-
ing the unoptimized execution order to increase overlaps and
create the Optimized execution order. Altering the execution
order resulted in an average runtime reduction of 2.4%, with a
maximum reduction of 4.34%. This reduction can be achieved with-
out altering the underlying hardware or software executing on
the system. Optimizing system execution schedules to maximize

SMACK scores can therefore yield substantial reductions in sys-
tem execution time without requiring extensive knowledge of the
software, access to the code, recertification, or alterations to the
hardware.

red and execution order.
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Fig. 24. Percent runtime reduction vs data shared.

The optimized execution order presented above is not the opti-
al  execution order that would minimize the SMACK score. Even

or DRE systems with the same software, the hardware can have a
arge impact on the Cache Contention Factor, which is an integral
art of the SMACK score calculation. Section 5.4 demonstrates that
he Cache Contention Factor of a DRE system changes the effective-
ess of an execution schedule. Our future work is investigating an
lgorithmic technique that takes into account the Cache Contention
actor of a system to maximze the SMACK score and corresponding
erformance gains.

. Related work

This section compares the SMACK metric and its use as a
euristic for cache optimization with other techniques for opti-
izing cache hits and system performance, including (1) software

ache optimization techniques, (2) hardware cache optimization
echniques, and (3) other DRE system configuration optimization
echniques.

Software cache optimization techniques: Many techniques
hange the order in which data is accessed to increase the effec-
iveness of processor caches by altering software at the source
ode level. These optimizations, known as data access optimiza-
ions (Kowarschik et al., 2003), focus on changing the manner in
hich loops are executed. One technique, known as loop inter-

hange (Wolf et al., 1996), can be used to reorder multiple loops to
aximize the data access of common elements in respect to time,

eferred to as temporal locality (Allen and Kennedy, 1984; Yi and
ennedy, 2004; Wolf et al., 1996; Shiue and Chakrabarti, 2001).
nother technique, known as loop fusion (Singhai and McKinley,
997), is often applied to further increase cache effectiveness. Loop
usion maximizes temporal locality by merging multiple loops into

 single loop and altering data access order (Singhai and McKinley,
997; Kennedy and McKinley, 1994; Verdoolaege et al., 2003; Beyls
nd D’Hollander, 2001). Yet another technique for improving soft-
are cache effectiveness is to utilize prefetch instructions, which

etrieves data from memory into the cache before the data is
equested by the application (Kowarschik et al., 2003). Prefetch
nstructions inserted manually into software at the source code
evel can significantly reduce memory latency and/or cache miss
ate (Chen and Baer, 1992; Fu et al., 1992).

While these techniques can increase the effectiveness of soft-
are utilizing processor caches, they all require source code
ptimizations. Many systems, such as the avionic system case
tudy described in Section 2, are safety critical and must undergo
xpensive certification and rigorous development techniques. Any
lteration to these applications can introduce unforeseen side
s and Software 98 (2014) 25–43 41

effects and invalidate the safety certification. Moreover, develo-
pers may  not have source code proprietary applications that are
purchased. These restrictions prohibit the use of any code-level
modifications, such as those used in loop fusion and loop inter-
change, as well as manually adding prefetch instructions.

These techniques, however, demonstrate the effects of increas-
ing temporal locality on cache effectiveness and performance.
SMACK can be used as a heuristic to change the execution order
of the software tasks to increase cache effectiveness and perfor-
mance by ordering the tasks in such a way that temporal locality
is increased. The fundamental difference, however, between using
SMACK as a heuristic for cache optimization and these methods is
that no modifications are required to the underlying software that
is executing on the system, thereby achieving performance gains
without requiring source code access or additional application re-
certification.

Hardware cache optimization techniques: Several techniques
alter systems at the hardware level to increase the effectiveness of
processor caches. One technique is to alter the cache replacement
policy processors use to determine which line of cache is replaced
when new data is written to the cache. Several policies exist, such as
Least Recently Used (LRU), Least Frequently Used (LRU), First In First
Out (FIFO), and random replacement (Abandah and Abdelkarim,
2009; Guo and Solihin, 2006; Hassidim, 2010).

The cache replacement policy can substantially influence DRE
system performance. For example, LRU is effective for DRE systems
in which the same data will likely be accessed again before enough
data has been written to the cache to completely overwrite the
cache. Performance gains will be minimal, however, if enough new
data is written to the cache such that previously cached data is
always overwritten before it can be accessed (Smith and Goodman,
1985). In these cases, a random replacement policy may yield the
most cache effectiveness (Smith and Goodman, 1985).

Moreover, certain policies are shown to work better for different
cache levels (Abandah and Abdelkarim, 2009), with LRU performing
well for L1 cache levels, but not as well for large data sets that may
completely exhaust the cache. Unfortunately, it is hard—and often
impossible for users—to alter the cache policy of existing hardware.
Cache replacement policies should therefore be considered when
choosing hardware to maximize the effects of cache optimizations
made at the software or execution schedule level.

SMACK does not alter the cache replacement policy of hardware
since altering the hardware could invalidate previous safety certi-
fications, similar to to altering software at the source code level.
SMACK is used a heuristic to increase temporal locality by altering
the task execution order schedule. While many replacement poli-
cies exist, the SMACK calculation assumes an LRU replacement
policy. Our future work will examine the impact of cache replace-
ment policy on the performance gains of schedules altered via
SMACK.

DRE system configuration optimizations: While heuristic
techniques, such as heuristic-based scheduling with SMACK, can
be applied to increase the processor cache effects of existing
DRE systems, other techniques focus on increasing performance
through intelligent system construction. Constructing valid DRE
system implementations by configuring prefabricated COTS appli-
cations is non-trivial due to several constraints, such as real-time
requirements, budgetary limitations, and strict resource con-
straints. Substantial reductions in execution time, financial cost,
and resource requirements can be realized, however, by configur-
ing DRE systems intelligently (Dougherty et al., 2009, 2009).

Other techniques, such as software product lines (Borba and

Silva, 2009), examine points of variability in the hardware and
software of the system to determine if certain variants offer supe-
rior performance (Benavides et al., 2005; White et al., 2007).
These techniques are appropriate for constructing new DRE system
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mplementations or evolving existing system implementations so
hat all DRE system constraints are met. These techniques, how-
ver, do nothing to further optimize system performance after a
alid configuration has been determined.

SMACK can be used as a heuristic to optimize system perfor-
ance benefits due to processor caching. SMACK should not be

sed, however, to construct or evolve the configurations of existing
RE systems or alter system applications since it does not take into
ccount several constraints that must be honored for a system to be
alid. Instead, SMACK should be used to improve the performance
f existing valid configurations, as only the execution schedule of
he system is affected. Fortunately, optimizing execution schedules
ith SMACK takes into account real-time scheduling requirements

nd therefore ensures real-time constraints are satisfied.

. Concluding remarks

Processor data caching can substantially increase DRE system
erformance. Several factors, such as task execution schedule, data
haring characteristics, and system hardware, can influence the
aching effects of a system, which makes it hard to predict cache
ehavior. Moreover, satisfying real-time constraints makes it hard
o create valid task execution schedules that increase cache effects.

ithout a formal methodology for predicting the processor cache
ehavior of a system and ensuring schedulability, moreover, it is
ard to compare multiple potential system implementations or
pply performance optimizations.

This paper presents the System Metric for Application Cache
nowledge (SMACK) for quantifying the performance gains of pro-
essor caching of a system. System performance of multiple system
mplementations can be assessed and compared based on SMACK
core. The system with the highest SMACK score will better utilize
he processor cache than other system implementations, result-
ng in decreased system execution time. Moreover, certain aspects
f the systems (such as the task execution schedule) could poten-
ially be altered to optimize the SMACK score and decrease system
xecution time while ensuring real-time deadlines are met. We
mpirically evaluated applying the SMACK metric to 44 different
imulated industry avionics systems.

As a result of these efforts, we learned the following lessons from
redicting the impact of processor caching on system performance:

Both hardware and software design decisions affect the
SMACK score of a system: The processor cache size, data shar-
ing characteristics and task execution have a large impact on the
SMACK score. The SMACK score tends to improve with increases
in cache size and data sharing. The task execution schedule of the
system effects the SMACK score more dramatically when data
sharing between tasks is low.
Decreases in the SMACK score correlate with increased system
performance and decreased system execution time: Increas-
ing the data sharing and/or altering the execution order of a
system yields a decreased SMACK score. Reducing the SMACK
score correlated with an average runtime reduction of 2.4% with-
out requiring any additional software, hardware, or middleware.
Multiple system implementations can thus be compared based on
their SMACK scores. Future work may  include extending SMACK
to evaluate aperiodic and/or mixed-critical real-time schedules.
Effects of other cache replacement policies should be investi-
gated: The SMACK metric does not take into account the cache

replacement policy of a system and was only tested with random
replacement policy. The effectiveness of SMACK should be inves-
tigated for other cache policies, such as Least Recently Used (LRU)
and First In First Out (FIFO).
s and Software 98 (2014) 25–43

• Relatively minor system knowledge yields effective cache per-
formance assessments: Calculating the SMACK value of a system
does not require an expert understanding of the underlying soft-
ware. Reasonable estimates of data sharing and knowledge of the
executing software tasks are all that is required to determining
schedules that yield effective reductions in computation time.

• Real-world DRE architectures are required for continued
progress: A predominant challenge in this work is the use of
randomly-generated DRE architectures. While minor efforts have
been made to publish industry challenge problems, there is a
distinct lack of easily accessible real-world challenges. There are
likely many practical challenges for using a SMACK-esq metric in
a real system, with edge cases such as specialized data structures,
unique programming paradigms, or large dependencies. Future
work on large-scale DRE system improvements would be greatly
advanced by a set of industrial-scale challenge problems.

• Algorithmic techniques to maximize SMACK should be devel-
oped: The task execution schedule was shown to have a large
impact on system performance and SMACK score. Moreover, the
performance of task execution schedules differed based on the
Cache Contention Factor. Our future work will examine algorith-
mic  techniques that use SMACK and the Cache Contention Factor
as a heuristic for determining the optimal execution order for
tasks in specific systems.
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