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ABSTRACT
Commercial off-the-shelf (COTS) middleware is increasingly used
to develop distributed real-time and embedded (DRE) systems. DRE
systems are themselves increasingly combined using wireless and
wireline networks to form “systems of systems” that have diverse
quality of service (QoS) requirements. Conventional COTS mid-
dleware does not facilitate the separation of QoS policies from ap-
plication functionality, which makes it hard to configure and val-
idate complex DRE applications. Component-based middleware
addresses limitations of COTS middleware by establishing stan-
dards for implementing, packaging, assembling, and deploying com-
ponent implementations. There has been little systematic empirical
study of the performance characteristics of component middleware
implementations in the context of DRE systems. This paper there-
fore provides three contributions to the study of component-based
middleware. First, we describe the challenges involved in bench-
marking different CORBA Component Model (CCM) implementa-
tions. Second, we describe key criteria for comparing different
CCM implementations using key black-box and white-box metrics.
Third, we describe the design of ourCCMPerf benchmarking suite
to illustrate test categories that evaluate aspects of CCM imple-
mentation to determine their suitability for the DRE domain. Our
preliminary results underscore the importance of applying a range
of metrics to quantify CCM implementations effectively.

1. INTRODUCTION
Distributed real-time and embedded (DRE) systems are increas-

ingly becoming widespread and important. Common DRE systems
include telecommunication networks (e.g., wireless phone services),
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tele-medicine (e.g., robotic surgery), and defense applications (e.g.,
total ship computing environments). DRE systems are increasingly
used for a wide range of applications where multiple systems are
interconnected using wireless and wireline networks to form sys-
tem of systems. Such systems possess stringent quality of service
(QoS) constraints, such as bandwidth, latency, jitter and depend-
ability requirements. A challenge requirement for these new and
planned DRE systems therefore involves supporting a diverse set of
QoS properties, such as predictable latency/jitter, throughput guar-
antees, scalability, 24x7 availability, dependability, and security,
that must be satisfied simultaneously in real-time. Conventional
distributed object computing (DOC) middleware frameworks, such
as DCOM and Java RMI, do not provide capabilities for develop-
ers and end-users to specify and enforce these QoS requirements
simultaneously in complex DRE systems.

Component middleware[11] is a class of middleware that en-
ables reusable services to be composed, configured, and installed to
create applications rapidly and robustly. The CORBA Component
Model (CCM) [8] is a standard component middleware technology
that addresses limitations with earlier versions of CORBA middle-
ware based on the DOC model. The CCM specification extends the
CORBA object model to support the concept of components and es-
tablishes standards for implementing, packaging, assembling, and
deploying component implementations.

Component middleware in general – and CCM in particular – are
a maturing technology base that represents a paradigm shift in the
way DRE systems are developed. Several implementations of CCM
are now available, including (1) CIAO (Component Integrated ACE
ORB) [13], (2) MICO-CCM [4] (MICO’s CCM implementation),
and (3) Qedo [9]. As the CCM platforms mature and become suit-
able for DRE it is desirable to devise a standard set of metrics to
compare and contrast different implementations in terms of their:

� Suitability, i.e., how suitable is the CCM implementation for
DRE applications in a particular domain, such as avionics,
total ship computing, or telecom?

� Quality, i.e., how good is a CCM implementation,e.g., in
the DRE domain does an implementation provide predictable
performance and consume minimal time/space resources?

� Correctness, i.e., does a CCM implementation conform to
OMG standards,e.g., does an implementation meet the porta-
bility and interoperability requirements defined by the CCM
specification?



Earlier efforts, such as the Open CORBA Benchmarking project [12]
and Middleware Comparator [5], have focused on metrics to com-
pare middleware based on the DOC version of CORBA. Our work
enhances these efforts by focusing on a previously unexplored di-
mension: metrics to compare CCM implementation quality and
systematic benchmarking experiments to determine the suitability
of those implementations for representative DRE applications. To
quantify these comparisons in a systematic manner we are devel-
oping an open-source benchmarking suite calledCCMPerf that fo-
cuses onblack-boxandwhite-boxmetrics using criteria such as la-
tency, throughput, and footprint measures. These metrics are then
used to develop benchmarking experiments that can be partitioned
into the follow categories:

� Distribution middlewaretests that quantify the overhead of
CCM-based applications relative to applications based on ver-
sions of CORBA that do not support CCM capabilities.

� Common middleware servicestests that quantify the suitabil-
ity of using different implementations of CORBA services,
such as the Real-time Event [7] and Notification Services [6].

� Domain-specific middlewaretests that quantify the suitabil-
ity of CCM implementations to meet the QoS requirements
of a particular DRE application domain, such as static linking
and deployment of components in the Boeing Bold Stroke
avionics mission computing architecture [10].

The remainder of this paper is organized as follows: Section 2
provides an overview of CCM describing its run-time architecture;
Section 3 describes the challenges involved in developing a bench-
marking suite for CCM, outlines how these challenges are addressed
in CCMPerf, and illustrates the experiments in our benchmarking
suite; and Section 4 presents concluding remarks and future work.

2. OVERVIEW OF CCM
The CORBA Component Model (CCM) is designed to address

the limitations with earlier versions of CORBA middleware that
supported a distributed object computing (DOC) model [2]. Fig-
ure 1 shows an overview of the layered architecture of the CCM
model. Componentsin CCM are the implementation entities that
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Figure 1: Layered CCM Architecture

export a set of interfaces usable by clients. Components can also
express their intention to collaborate with other entities by defining
interfaces calledports. Portsexpress a component’s intent to col-
laborate with other components. There are several types of ports in

CCM, including (1)facets, which define an interface that accepts
point-to-point method invocations from other components, (2)re-
ceptacles, which indicate a dependency on point-to-point method
interface provided by another component, and (3)event sources/sinks,
which indicate a willingness to exchange typed messages with one
or more components.

A containerin CCM provides the run-time environment for one
or more components that provides various pre-defined hooks and
strategies, such as persistence, event notification, transaction, and
security, to the component(s) it manages. Each container manages
one type of component and is responsible for initializing instances
of this component type and connecting them to other components
and common middleware services. Developer-specified metadata
expressed in XML can be used to instruct the CCM deployment
mechanism how to control the lifetime of these containers and the
components they manage. In addition to the building blocks out-
lined above, the CCM also standardizes component implementa-
tion, packaging, and deployment mechanisms. The CCM Compo-
nent Implementation Framework (CIF) helps generate the compo-
nent implementation skeletons and persistent state management au-
tomatically using the Component Implementation Definition Lan-
guage (CIDL).

As shown in Figure 1, CCM is a layer that sits atop an ORB and
leverages ORB functionality (such as connection management, data
transfer, (de) marshaling of messages, and event/message demulti-
plexing), as well as higher-level CORBA services (such as Load
Balancing, Transaction, Security, and Persistence). CCM-based
applications therefore can incur additional overhead when com-
pared to their CORBA counterparts in the form of additional pro-
cessing in the code-path (i.e., additional function calls) and data-
path (i.e., parameter passing between the underlying ORB and the
CCM layers). Since this processing occurs in the critical path of
every request/response it may incur non-trivial overhead.

3. OVERVIEW & DESIGN OF CCMPerf
This section describes the challenges involved in developing a

benchmarking suite for CCM, outlines how these challenges are
addressed, and illustrates the three experimentation categories in
CCMPerf. The goals ofCCMPerf are to create comprehensive
benchmarks that allow users and CCM developers to:

1. Evaluate the overhead CCM implementations impose above
and beyond CORBA implementations that are based on the
earlier-generation DOC model.

2. Apply our benchmarks to systematically identify performance
bottlenecks in popular CCM implementations.

3. Compare different CCM implementations in terms of key
metrics, such as latency, throughput, and other performance
criteria.

4. Develop a framework that will automate benchmark tests and
facilitate the seamless integration of new benchmarks.

3.1 Benchmarking Challenges and their Res-
olutions

During the design ofCCMPerf we encountered the following
challenges:

� Heterogeneity in implementations
� Difference in implementation quality
� Difference in the domain of application and
� Heterogeneity in hardware & software platforms.

We describe each of these challenges below and then outline how
are addressing these challenges inCCMPerf.



3.1.0.1 Heterogeneity in implementations.
Our first challenge in developing a CCM benchmarking frame-

work stemmed from the heterogeneity in the tools and mechanisms
used in different CCM implementations. For example, CCM im-
plementations differ in terms of:

� The header files that must be included by each implementa-
tion, which are not standardized by the OMG. Moreover, the
process of obtaining the generated files (e.g., the compilation
chain for the different descriptor files used by the CCM) is
often specific to each ORB and its CCM implementation.

� The level of conformance to CCM features, such as automa-
tion of component assembly, which are only provided by cer-
tain CCM implementations.

� The overall level of maturity of the CCM implementations,
i.e., to what extent does the implementation conform to the
CCM specification.

3.1.0.2 Difference in implementation quality.
CCM implementations differ in the data structures and algorithms

they use, which affects the QoS they can deliver to DRE applica-
tions. Evaluating these quality differences necessitates instrumen-
tation of the code within the ORB/CCM implementation, which
presents the following benchmarking challenges:

� A thorough understanding of CCM implementations is needed
to instrument CCM middleware with probes that measure
its performance accurately. However, there is no system-
atic body of knowledge yet that identifies the critical features
within the CCM layer in which instrumentation points should
be added.

� CCM implementations are layered architectures, which makes
it necessary to isolate each layer to measure its influence on
overall end-to-end application performance. ORB-specific
configuration options influence the presence/absence of these
layers, however, which make it hard to identify the set of
steps within each layer for every combination of the config-
uration options.

3.1.0.3 Differences in software configuration options.

CCM implementations differ in the knobs that they provide to
maximize performance. For example, the run-time configuration
options, such as, number of threads, logging levels, and locks, that
can be enabled to fine tune different CCM implementations are
implementation-specific, which lead to the following challenges:

� The same set of configuration options many not be available
each of the CCM implementations. For example, CIAO al-
lows applications to configure the type of locks used within
the ORB, whereas MICO does not provide such a option.

� An implementation could be optimized for a given set of
configurations, yet perform poorly for other configurations.
For example, MICO is optimized for single-threaded appli-
cations and performs poorly in multi-threaded configurations.

Similarly, a change in the underlying hardware configuration (such
as processor speed of the computer and/or network bandwidth changes
across experiments) prevents valid comparisons of the results.

3.1.0.4 Differences in the domain of application.
Each CCM implementation may be tailored for a particular ap-

plication domain. For example, the CIAO CCM implementation is

tailored towards the DRE domain. Conversely, MICO-CCM is tar-
geted for general-purpose distributed computing. These domains
of applicability pose the following challenges:

� Use cases may change across domains. For example, some
applications in the DRE domain may require that the total
startup time be under two seconds. Component middleware
catering to this domain may need to be optimized to meet this
requirement, whereas middleware for the enterprise domain
might not not.

� Certain metrics (such as predictable end-to-end latency and
static/dynamic memory footprint) are important in the DRE
domain, but often less in the enterprise domain.

CCMPerf addresses each of the challenges outlined above as
follows:

� To overcome CCM implementation heterogeneity we are de-
veloping a set of scripts to configure and run theCCMPerf
tests. These scripts automatically generate CCM platform-
specific code and project build files for each implementation.

� To ensure equivalent configurations, we provide automated
scripts to configure and run each test.

� To evaluate domain-specific suitability, we provide scenario-
based tests and/or enactments of specific use cases deemed
important in a given domain, such as the DRE domain. In
this context, we are evaluating CCM implementations using
the scenarios present in Boeing’s custom component model
described in Section 3.2.3.

� To ensure consistent hardware and OS configurations, our
tests are run using EMULab [14] and Lockheed Martin Ad-
vanced Technology Lab’s (ATL) middleware comparator frame-
work [5]. These testbeds support systematic testing condi-
tions that enable equivalent comparisons of performance dif-
ferences between CCM implementations. ATL also allows
experiment data to be accessed readily from a convenient
web interface1.

3.2 CCMPerf Benchmark Design
The benchmarking tests inCCMPerf focus on the following met-

rics:

3.2.0.5 Black-box metrics.
Black-box metrics do not instrument the software internals when

evaluating the performance tests. We benchmarked each CCM im-
plementation end-to-end without knowledge of its internal structure
using standard operations published in the CCM interfaces and did
not modify or restructure the CCM ORB internals. We outline our
black-box performance metrics below:

� Round-trip latency, which measures the response time for a
twoway operation with a single type of parameter, such as an
array ofCORBA::Long .

� Throughput, which compares (1) the number of events per
second processed at the component server and (2) number of
requests per second at the client.

� Jitter, which measures the variance in round-trip latency for
a series of requests.

� Collocation performance, which measures response time and
throughput when a client and server are in the same process
vs. across processes on the same and different machines.

1More information is available at http://www.atl.
external.lmco.com/projects/QoS/



� Data copying overhead, which compares the variation in re-
sponse time with an increase in request size to determine
whether a CCM implementation incurs excessive buffer copy-
ing.

� Footprint, which measures the static and dynamic footprint
of a CCM implementation to determine whether it is suitable
for memory-constrained DRE systems.

CCMPerf measures each of these metrics in (1) single-threaded
and (2) multi-threaded configurations on both servers and clients.

3.2.0.6 White-box metrics.
White-box metrics are a performance evaluation technique that

employ explicit knowledge of software internals to select and ana-
lyze benchmark data. Unlike black-box metrics, white-box metrics
evaluate performance by instrumenting the software internals with
probes. We outline our white-box performance metrics below:

� Functional path analysis, which identifies CCM layers that
are above the ORB and adds instrumentation points to deter-
mine the time spent in those layers. Moreover, we analyze
jitter by measuring the variation in the time spent in each
layer.

� Lookup time analysis, which measures the variation in lookup
time for certain operations, such as finding component homes,
obtaining facets, and obtaining a component instance refer-
ence given its key.

� Context switch times, which measure the time required to
interrupt the currently running thread and switch to another
thread in multi-threaded implementations.

The benchmarking tests inCCMPerf can be categorized into the
general areas discussed below.

3.2.1 Distribution Middleware Benchmarks
Each CCM implementation sits on a CORBA ORB, as shown in

Figure 1. The ORB manages various network programming tasks,
such as connection management, data transfer, (de)marshaling, de-
multiplexing, and concurrency. Every CCM implementation adds
some overhead to the underlying CORBA ORB, as explained in
Section 2. CCMPerf’s distribution-specific benchmarks employ
black-box and white box metrics that measure various aspects of
performance overhead,e.g., for a given ORB and its CCM imple-
mentation the round-trip metric measures the increase in response
time incurred by the CCM implementation beyond the CORBA
DOC support. Application developers and end-users can apply
these metrics to select CCM implementations that can meet their
end-to-end QoS requirements. Moreover, these metrics can also
benefit users who are considering a move from DOC middleware
to component middleware so they can quantify the pros and cons
of such a transition.

3.2.2 Services-specific benchmarks
Service-specific benchmarks help to compare the performance of

various implementation choices applied to integrate common mid-
dleware services within the CCM containers. CCM leverages many
standard services and features, as described in Section 2. CCM im-
plementations can either use the standard CORBA service specifi-
cations or they can use customized implementations of these ser-
vices.

For example, component implementations can specify the event
sources and/or sinks through their interface definitions. It is left
to a particular CCM implementation, however, to choose the mode
of event distribution. Implementations are free to choose between

making a direct invocation on the target components or to use pub-
lish/subscribe mechanisms to push events. If CCM implementa-
tions use a publish-subscribe model, they can use the standard CORBA
event channel [7] or use a customized implementation (such as a
real-time event channel [3]). To benchmark the type of scenario
described above where the container uses the event channel to pub-
lish events,CCMPerf measures the overhead introduced by extra
(de)marshalling and indirection costs incurred within the container
for publishing the events to the all the receivers.

The characteristics of an application domain often influence the
selection and suitability of a particular service and/or its implemen-
tation. We therefore designed theCCMPerf benchmarking test
suites to use the black-box and white-box metrics defined in the
Section?? to empirically compare and contrast the implementation
choices for a particular application domain.

3.2.3 Domain-specific benchmarks
Domain-specific benchmarks include black-box and white-box

tests conducted for key use cases that occur in certain domains,
such as Boeing’s Bold Stroke platform [1] that is supports avion-
ics mission computing in the DRE domain. The purpose of these
tests is to identify whether a given CCM implementation can meet
the QoS requirements for a particular domain,e.g., an organiza-
tion might have a large number of components that need to be de-
ployed within a certain amount of time. In the DRE domain for
instance, Boeing’s Bold Stroke component-based architecture has
several uses cases with stringent timing constraints,e.g., their ar-
chitecture requires that total start up time for the entire system of
�3,000 components be under two seconds. Since Boeing is cur-
rently using a proprietary component model to achieve these tim-
ing goals we are using the Boeing scenarios to test the suitability
of COTS-based CCM implementations to meet the same require-
ments.

4. CONCLUDING REMARKS
Component middleware in general and QoS-enabled CCM im-

plementations in particular are important R&D topics. Several ini-
tiatives are underway to develop both commercial and research
implementations of CCM. However, there is not yet a substantial
body of knowledge that describes how to develop metrics that sys-
tematically measure correctness, suitability, and quality of CCM
implementations. This paper discusses the challenges present in
benchmarking CCM implementations and describes the design of
CCMPerf, which is an open-source benchmarking suite for CCM
we are developing.CCMPerf provides distribution, services and
scenario-based benchmarks to quantitatively and qualitatively com-
pare CCM implementations using black-box, and white-box, met-
rics. CCM implementations. TheCCMPerf benchmarking suite
currently includes experiments for black-box metrics, such as la-
tency, throughput, and jitter, using the CIAO and MICO-CCM im-
plementations of CCM.

Our first step in developing scenario-based benchmarking in-
volved running experiments with CIAO using Boeing’s Bold Stroke
avoinics mission computing platform as the target platform. The
tests focused on specific requirements in Bold Stroke, such as total
start-up time, throughput, and response time in collocated mode. In
Bold Stroke, several components are on the same processor board,
i.e., they are co-located rather than distributed. Communication
between these components therefore need not incur the overhead
of (de)marshaling and other network programming tasks. Other
domain-specific tests, such as total component assembly time given
a topology and component deployment time, can be integrated into
CCMPerf.



Our future work onCCMPerf will focus on completing the white-
box and scenario-based benchmarks and enhancing our test suite to
include other CCM implementations, such as Qedo and K2.CCM-
Perf is available for download fromdeuce.doc.wustl.edu/
Download.html .
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