
Supporting SIP-based End-to-End Data Distribution Service QoS in WANs

Akram Hakiria,b, Pascal Berthoua,b, Aniruddha Gokhalec, Douglas C. Schmidtc, Gayraud Thierrya,b

aCNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
bUniv de Toulouse, UPS, LAAS, F-31400 Toulouse, France
cInstitute for Software Integrated Systems, Dept of EECS

Vanderbilt University, Nashville, TN 37212, USA

Abstract

Assuring end-to-end QoS in enterprise distributed real-time and embedded (DRE) systems is hard due to
the heterogeneity and transient behavior of communication networks, the lack of integrated mechanisms that
schedule communication and computing resources holistically, and the scalability limits of IP multicast in
wide-area networks (WANs). This paper makes three contributions to research on overcoming these problems
in the context of enterprise DRE systems that use the OMG Data Distribution Service (DDS) quality-of-
service (QoS)-enabled publish/subscribe (pub/sub) middleware over WANs. First, it codifies the limitations
of conventional DDS implementations deployed over WANs. Second, it describes a middleware component
called Proxy DDS that bridges multiple, isolated DDS domains deployed over WANs. Third, it describes
the NetQSIP framework that combines multi-layer, standards-based technologies including the OMG-DDS,
Session Initiation Protocol (SIP), and IP DiffServ to support end-to-end QoS in a WAN and shield pub/sub
applications from tedious and error-prone details of network QoS mechanisms. The results of experiments
using Proxy DDS and NetQSIP show how combining DDS with SIP in DiffServ networks significantly
improves dynamic resource reservation in WANs and provides effective end-to-end QoS management.

Keywords: Bridge-Federate model; Proxy DDS; SIP; NetQSIP; QoS Framework; DiffServ;
Common Open Policy Service (COPS).

1. Introduction

Current trends and challenges. Regional
smart power grids or air traffic management systems
are examples of enterprise distributed real-time and
embedded (DRE) systems that disseminate high vol-
umes of data with low end-to-end latency and jit-
ter. These types of systems often comprise mul-

Email addresses: hakiri@laas.fr (Akram Hakiri),
berthou@laas.fr (Pascal Berthou),
a.gokhale@vanderbilt.edu (Aniruddha Gokhale),
d.schmidt@vanderbilt.edu (Douglas C. Schmidt),
gayraud@laas.fr (Gayraud Thierry)

tiple end-to-end application flows that may require
various quality-of-service (QoS) properties affecting
CPU, memory, and network resources. They also op-
erate in distributed and heterogeneous environments
that process data from large number of terminals,
media sources, and real-time data feeds [15] that orig-
inate over diverse geographic locations connected via
wide-area networks (WANs).

In enterprise DRE systems the right answer deliv-
ered too late becomes the wrong answer [61]. Key
challenges faced when fielding these systems thus in-
clude distributing a high volume of messages per
second while simultaneously meeting requirements

Preprint submitted to Elsevier January 12, 2014

for scalability and low/predictable latency, control-
ling trade-offs between latency and throughput, and
maintaining stability during bandwidth fluctuations.
Moreover, end-system mechanisms must work within
and across different communication access points,
network domains, and inter-domain links to ensure
end-to-end QoS requirements are met.

Over the past decade, standards-based middleware
has emerged that addresses many enterprise DRE
system challenges, including distributing high volume
data scalably/predictably and minimizing end-to-end
latency/jitter. In particular, the OMG Data Distri-
bution Service (DDS) [44] defines a standard archi-
tecture for real-time, data-centric publish/subscribe
(pub/sub) middleware capabilities that are used in
many DRE systems to provide efficient and pre-
dictable dissemination of time-critical data [36]. Due
to its flexible programming abstractions and rich sup-
port for QoS policies/mechanisms capable of con-
trolling the end-to-end properties of data distribu-
tion [27], DDS is a popular technology for building
enterprise DRE systems [2].

For example, DDS defines a set of network schedul-
ing policies (e.g., end-to-end network latency bud-
gets), timeliness policies (e.g., time-based filters to
control data delivery rate), temporal policies to de-
termine the rate at which periodic data is refreshed
(e.g., deadline between data samples), network pri-
ority policies (e.g., transport priority can be used to
set the DSCP field for DiffServ in the underlying data
transport), and other policies that affect how data is
treated in transit with respect to its reliability, ur-
gency, importance, and durability.

Although standards-based DDS implementations
have been used to develop many efficient and depend-
able DRE systems in local-area networks (LANs),
conventional implementations of the DDS standard
incur the following limitations that impede their use
for enterprise DRE systems that run in wide-area
networks (WANs) that comprise multiple network do-
mains.

Limitation 1: Lack of communication be-
tween isolated DDS domains. Conventional
DDS implementations run within an isolated DDS

domain1 traditionally deployed within a single
multicast-enabled LAN. For example, individual
power stations and power distribution plants of a
smart grid could operate within their own DDS do-
mains that are isolated from each other. As DRE
systems expand into enterprise DRE systems (such
as a regional smart power grid or air traffic manage-
ment system) there is a need to interconnect these
independent and isolated DDS domains.

The DDS standard, however, makes no mention
about interconnectivity among isolated DDS do-
mains. In fact, DDS domains were devised to iso-
late the individual communications within domains
from each other, which was necessary if multiple inde-
pendent domains operate within overlapping network
boundaries. In enterprise DRE systems, these DDS
domains are often distributed across WANs. Com-
munication between isolated DDS domains—even if
were addressed by the DDS standard—is hard due
to the challenge of delivering the topics along with
their expected end-to-end QoS requirements to par-
ticipants across a WAN and between isolated DDS
domains.

Limitation 2: Lack of IP multicast support
in WANs. Conventional DDS implementations are
oriented towards LANs and virtual LANs (VLANs).2

For example, in a regional smart grid, DDS will try
to discover various publisher (e.g., sources of anomaly
events at power generation facilities) and subscriber
(e.g., power distribution facilities) participants using
conventional IP multicast [21], where the network
equipment supports Ethernet multicast prefixes re-
served for IP multicast groups [20].

IP multicast is often not deployed in multi-domain
WANs, however, so conventional DDS implementa-
tions may be unable to distribute topics between
participants running in isolated DDS domains over
WANs. In particular, when DDS discovery messages
are blocked by edge routers for security and/or per-

1A DDS is a data-space consisting of publishers and sub-
scribers that communicate asynchronously and anonymously
with each other via typed messages called topics.

2A VLAN is a single layer-2 network that may be parti-
tioned to create multiple distinct domains that are mutually
isolated.

2

formance reasons they do not reach subscribers in re-
mote networks in a WAN. In the smart grid example,
for instance, topics published by a publisher in one
LAN may not reach subscribers in a geographically
distributed LAN.

Limitation 3: Lack of DDS QoS provision-
ing mechanisms in WANs. The DDS standard
only defines QoS mechanisms that control end-system
properties, such as OS-level parameters and tuning
network parameters for the connecting link. DDS
implementations tend to support these features well
only in the context of LANs/VLANs, and are limited
in their support of key QoS policies over WANs. For
example, events generated in one air traffic manage-
ment domain may require real-time dissemination to
another geographically distributed air traffic manage-
ment domain. In conventional DDS implementations,
however, it is hard to achieve these effects since they
provide proprietary—and often incomplete and inef-
ficient solutions—for provisioning/controlling end-to-
end QoS over WANs, which impedes QoS assurance
when participants span multiple network domains.

Overcoming the three limitations outlined above is
essential to assure the end-to-end QoS of DDS-based
enterprise DRE systems running over WANs.

Solution approach → Non-invasive DDS Ex-
tensions that Leverage IP Multimedia Core
Network Subsystem (IMS) [64] technologies
to ensure end-to-end QoS. To address Limita-
tion 1 (lack of communication between isolated DDS
domains) we developed Proxy DDS, which is a set
of cooperating software components that enable effi-
cient and seamless communication between DDS par-
ticipants in isolated domains, and provides signal-
ing. Proxy DDS components scalably decouple DDS
participants in time/space and minimize traffic ex-
changed between these participants.

To address Limitation 2 (lack of multicast support
in WANs), the Proxy DDS provides proxy-to-proxy
communication over WANs, thereby supporting scal-
able multicast. Likewise, to address Limitation 3
(lack of QoS provisioning mechanisms in WANs),
we integrated the Proxy DDS with NetQSIP, which
is a Session Initiation Protocol (SIP)-based [32, 10]
QoS framework that uses Differentiated Service (Diff-
Serv) [7] policies to enforce network-level differenti-

ated QoS for each DDS application data flow in a
WAN.

Our prior work [30] presented a framework called
Velox that conducted QoS negotiation and resource
reservations across network elements in a WAN to
meet scheduling requirements of DDS applications.
Velox incurs several reliability and maintainability
limitations, however, e.g., it cannot recover from fail-
ures dynamically and must be manually reconfigured
by human operators whenever a failure occurs. More-
over, Velox does not support dynamic QoS reconfig-
urations in DDS over WANs.

To overcome these limitations, this paper describes
how combining Proxy DDS and NetQSIP provides
an alternate strategy for supporting DDS QoS poli-
cies over WANs that does not introduce new capabil-
ities at the network layer (as Velox did), but instead
leverages standard SIP to achieve these goals. Al-
though SIP has traditionally been used to support
dynamic QoS-enabled IMS applications, this paper
demonstrates how it can be used to support dynamic
QoS management for DDS applications running in
enterprise DRE systems. In particular, this paper
makes the following contributions to research on as-
suring end-to-end QoS of enterprise DRE systems us-
ing DDS over a SIP-based WAN:

• It elaborates upon the limitations outlined above
of deploying conventional DDS implementations
over WANs.

• It describes how the Proxy DDS and NetQSIP
framework resolve limitations with conventional
DDS implementations over WANs by using SIP
and DiffServ to optimize pub/sub communica-
tion and assure end-to-end DDS application QoS
requirements. In addition to bridging isolated
DDS domains and ensuring the propagation of
the DDS QoS to different network domains,
NetQSIP enables self-network reconfiguration af-
ter failures by adapting applications to network
load.

• It empirically evaluates the capabilities of our
enhanced DDS implementation in a WAN to de-
termine how well (1) Proxy DDS optimizes the
bandwidth between remote participants and (2)

3

the NetQSIP framework can achieve lower end-
to-end delay.

Our solution preserves the DDS programming
model so developers can seamlessly use the new capa-
bilities of Proxy DDS and NetQSIP without chang-
ing their application designs. Moreover, since SIP is
a standard and universally available, our solution can
easily be adopted by different DDS implementations
and support interoperability.

Paper organization. The remainder of this pa-
per is organized as follows: Section 2 compares our
research on the Proxy DDS and NetQSIP with re-
lated work; Section 3 describes how Proxy DDS and
NetQSIP support effective and scalable inter-DDS-
domain communication, end-to-end QoS signaling,
and resource management in WANs; Section 4 ana-
lyzes the results of experiments that evaluate the ca-
pabilities of the Proxy DDS and NetQSIP in a WAN
testbed; and Section 5 presents concluding remarks
and lessons learned.

2. Background and Related Work

Conventional techniques for providing network
QoS to applications incur several key limitations, in-
cluding a lack of mechanisms to (1) specify deploy-
ment context-specific network QoS requirements and
(2) integrate functionality from network QoS mech-
anisms at runtime. This section evaluates limita-
tions with existing attempts to resolve these prob-
lems and outlines how our research on Proxy DDS
and NetQSIP address them.

To clarify the specific challenges (i.e., integrat-
ing DiffServ-based QoS provisioning mechanisms into
DDS middleware) addressed in this paper, this sec-
tion first provides an overview of OMG DDS and then
describes the limitations of the DDS Routing Service
(DDS-RS) [55], which is a content-aware middleware
service designed to bridge DDS data spaces. We then
compare and contrast Proxy DDS and NetQSIP with
related work on general middleware-based QoS man-
agement and network-level QoS management.

2.1. Overview of the OMG Data Distribution Service
(DDS)

The OMG DDS specification [44] defines a stan-
dard pub/sub architecture and runtime capabili-
ties that enable applications to exchange data asyn-
chronously, anonymously, and dependably in data-
centric DRE systems. DDS provides efficient, scal-
able, predictable, and resource-aware data distribu-
tion via its Data-Centric Publish/Subscribe (DCPS)
layer, which supports a global data store where pub-
lishers write and subscribers read data, respectively.
DDS’ modular structure and flexibility stems from its
support for

• Location-independence, via anonymous pub/sub,

• Redundancy, by allowing any numbers of readers
and writers,

• Real-time QoS, via its 22 QoS policies summa-
rized in Table 1,

• Platform-independence, by supporting a
platform-independent model for data definition
that can be mapped to different platform-
specific models (e.g., C++ running on VxWorks
or Java running on Real-time Linux), and

• Interoperability, by specifying a standardized
protocol [43] that allows implementations from
different DDS vendors to exchange data between
distributed publishers and subscribers.

DDS specifies several types of DCPS entities. A
domain represents the set of applications that com-
municate with each other. A domain acts like a vir-
tual private network [3, 57], allowing DDS entities
in different domains to communicate anonymously,
regardless of whether they reside on the same ma-
chine, in the same process, or on another host in the
network. A domain participant factory creates and
destroys domain participants, each of which provide

• A container for all DDS entities for an applica-
tion within a single domain,

• A factory for creating publisher, subscriber, and
topic entities, and

4

Table 1: DDS QoS Policies

DDS QoS Policy Description
User Data Attaches application data to DDS

entities
Topic Data Attaches application data to topics
Group Data Attaches application data to

publishers, subscribers
Durability Determines if data outlives the time

when written or read
Durability
Service

Details how durable data is stored

Presentation Delivers data as group and/or in
order

Deadline Determines rate at which periodic
data is refreshed

Latency
Budget

Sets guidelines for acceptable
end-to-end delays

Ownership Controls writer(s) of data
Ownership
Strength

Sets ownership of data

Liveliness Sets liveness properties of topics,
data readers, data writers

Time Based
Filter

Mediates exchanges between slow
consumers and fast producers

Partition Controls logical partition of data
dissemination

Reliability Controls reliability of data
transmission

Transport
Priority

Sets priority of data transport

Lifespan Sets time bound for “stale” data
Destination
Order

Sets whether data sender or receiver
determines order

History Sets how much data is kept to be
read

Resource
Limits

Controls resources used to meet
requirements

Entity
Factory

Sets enabling of DDS entities when
created

Writer Data
Lifecycle

Controls data and data writer
lifecycles

Reader Data
Lifecycle

Controls data and data reader
lifecycles

• A domain’s administration services, such as
allowing an application to ignore information
about particular DDS entities.

DDS is topic-based, which allows strongly-typed
data dissemination since the type of the data is
known throughout the DRE system. A DDS topic
describes the type and structure of the data to read
or write, a data reader subscribes to the data of par-
ticular topics, and a data writer publishes data for
particular topics. Publishers manage one or more
data writers, whereas subscribers manage one or more
data readers. Publishers and subscribers can ag-
gregate data from multiple data writers and readers

for efficient transmission of data across a network.
Topic types are defined via the OMG Interface Def-
inition Language (IDL) [45] that enables platform-
independent type definitions.

DDS provides a rich set of QoS policies (listed in
Table 1) and various properties of DDS entities can
be configured using combinations of these policies.
Each QoS policy has ∼2 attributes, with most at-
tributes having an unbounded number of potential
values (e.g., an attribute of type character string or
integer). The DDS specification defines which QoS
policies are applicable for certain entities, as well as
which combinations of QoS policy values are semanti-
cally compatible. DDS thus provides a wide range of
QoS capabilities that can be configured flexibly [34]
to meet the needs of topic-based DRE systems that
have diverse QoS requirements.

For communication between DDS participants to
occur efficiently, QoS policies on a publisher must
be compatible with corresponding policies on a sub-
scriber. DDS ensures this compatibility via its
Requested/Offered (RxO) contract model, where a
subscriber can specify a requested value for a par-
ticular QoS policy to be set in compatible manner
between the corresponding participants. If the RxO
contract matches, that QoS policy must be set both
at the publishing and subscribing sides.

In the DDS RxO model the publisher declares in-
formation it has and specifies the topic and the of-
fered QoS contract for that topic; its associated lis-
tener is then alerted of any significant status changes.
The subscriber declares information it wants and
specifies the topic and requested QoS contract; its
associated listener is then alerted of any significant
status changes. For example, if the subscriber re-
quests to receive data reliably while publisher defines
a best-effort policy, communication will not happen
as requested. If the RxO does not match, the com-
pliance of QoS policy on both sides is not requested.

2.2. DDS Routing Service

A notable earlier effort aimed at spatially decou-
pling DDS entities in the context of WANs is the
DDS Routing Service [55, 37] (DDS-RS). DDS-RS
establishes a content-aware interconnection service

5

Figure 1: Layered Bridge-Federate Architecture

to enable deploying existing application in transpar-
ent manner. It allows “DDS-to-DDS” bridging be-
tween different DDS domains using transparent data
transformation mechanisms (i.e., applications can be
reused without source code changes, even if they were
developed using incompatible interface definitions).

DDS-RS also provides features (such as domain-
bridging and topic-bridging) to allow data model
compatibility by enabling seamless communication
between data-spaces. Its domain-bridging mode en-
ables an application running in one data-space to ac-
cess a different data-space. It creates a bridge be-
tween data writers and data readers in two distinct
DDS domains, even with incompatible topics; the
topic-bridging allows sharing of distinct topics (with
different keys, names and data types) between DDS
participants. It can also act as a filter by transform-
ing data content in topic A to topic B.

One solution to match distinct DDS-domains is to
leverage existing capabilities of the DDS-RS and en-
hance them. We therefore implemented a Bridge-
Federate using the DDS-RS API that performs both
domain-bridging and topic-bridging. As described in
Figure 1, the bridge-federate is a software component
that adopts a layered architecture to make it possible
the interconnection of disjoint DDS domains. It acts
as a single federate that differs from other DDS par-
ticipants to forward DDS messages between disjoint
DDS domains.

Although the Bridge-Federate enables forwarding
data from one domain to the other, it has several lim-
itations that preclude it from fulfilling the bandwidth

and the data-delivery requirements of enterprise DRE
systems in WANs, as described in Section 4.2.1. In
particular, the Bridge-Federate does not optimize
bandwidth utilization between DDS participants, so
it can incur scalability problems if the number of
DDS participants increases significantly (as is often
the case in WAN-based enterprise DRE systems).

In addition, the Bridge-Federate enables a
federation-like communication model, where a central
federate matches remote participants and forces all
the traffic to pass through it, thus it does not provide
any mechanism for failover from failure. Moreover,
since DDS topics in a WAN may be routed over an
internet, which is composed of different network tech-
nologies (e.g., wired and wireless) with different link
capacities (e.g., satellite channel, mobile antenna, op-
tical carrier, etc.), providing QoS end-to-end between
different network domains is hard to be achieved and
cannot be resolved with the bridge-federate based on
the DDS-RS.

In contrast, our Proxy DDS approach provides
more scalable and QoS-aware communication be-
tween isolated DDS domains. Proxy DDS also op-
timizes the utilization of network resources and en-
hances the scalability, as shown in Section 4.2.2. In
addition, Proxy DDS incurs no single point of fail-
ure, i.e., if one proxy fails all other proxies continue
working correctly, and a notification is sent to alter
application participants about this failure.

2.3. Related Work on DDS-based and Pub/Sub QoS
Management

Enterprise DRE systems increasingly use DDS
middleware to disseminate data over large-scale net-
works [2, 12]. To ensure end-to-end interoperabil-
ity without requiring proprietary bridges [38], the
OMG defined a DDS Interoperability (DDSI) proto-
col [43] that enables seamless QoS-enabled communi-
cation between DDS implementations from different
suppliers. DDSI was designed to operate in stable
and controllable environments (such as LANs and
on-board embedded systems) since it enables plug-
and-play connectivity to simplify discovery of par-
ticipants. The DDSI discovery may be sufficient for
small to medium networks, but not for less determin-
istic environments, such as WANs, where the DDSI

6

multicast discovery packets will be dropped by the
edge networks and hence will not reach participants
on remote end-systems.

Mechanisms for matching DDS domains using
DDS-ESB (Enterprise Service Bus) integration archi-
tecture was proposed in [47]. Their approach enabled
an integrated architecture between DDS middleware
and ESB to allow exchanging information between
DRE systems and the enterprise system. Although
DDS-ESB focused on using DDS as a web service
transport to increase interoperability between DDS
implementations, it did not increase the scalability
of DDS-based enterprise DRE systems. In contrast,
the work we present in this paper does not use web
services as a transport mechanism between disjoint
DDS domains, but instead enhances the standard SIP
protocol to ensure interoperability of DDS implemen-
tations and increase scalability in WANs.

The Instant Message framework [49] was proposed
to integrate DDS with instant messaging services and
to enable publishing DDS topics across existing IMS
networks. This approach, however, uses a best-effort
based point-to-point architecture that is not well-
suited for the many-to-many communication model
of DDS. In contrast, the work presented in this pa-
per provides a QoS-enabled distributed architecture,
which enables dynamic resource management under
network load for many-to-many communication, i.e.,
all Proxy DDS components communicate with each
other at the same time.

Finally, many pub/sub standards and technologies
(e.g., Web Services Brokered Notification [42] and the
CORBA Event Service [17]) have been developed to
support distributed event-based systems [22]. These
standards and technologies, however, do not provide
fine-grained and robust QoS support, but instead fo-
cus on issues related to monitoring run-time applica-
tion behavior in a scalable manner. They therefore
do not address key open issues, such as end-system
QoS policies for reserving the network resources and
simplifying the control of the network behavior [28].

In contrast, the work presented in this paper en-
ables more effective control of applications in en-
terprise DRE systems via the Proxy DDS (which
maps the bandwidth, latency, and jitter QoS require-
ments to the underlying WAN as described in Sec-

tion 3.2.2) and NetQSIP (which allocates the network
resources as required by DRE applications without
over-provisioning the network equipments).

2.4. Related Work on Other Middleware and
Network-level QoS Management

Most applications of DDS in DRE systems either
use LANs or small-scale WANs whose QoS proper-
ties are relatively stable. In these environments, DDS
middleware uses IP multicast to allow publishers and
subscribers to operate in a scalable peer-to-peer fash-
ion. In large-scale WANs (such as the Internet or
enterprise intranets), however, IP multicast is often
disabled for performance and security reasons.

Overlay networks have been studied as an alternate
approach to shield applications from the heterogene-
ity present in WANs. For example, [29] propose in-
tegrating an open-overlay framework as part of the
middleware, thereby enabling end-systems to sup-
port multiple overlays running composite protocols
to allow dynamic reconfigurability. Hermes [48] pro-
vides an overlay broker for event-based middleware to
perform the content-based routing. Likewise, Tiny
DDS [8] is a pub/sub middleware that operates on
top of an Overlay Event Routing Protocols (OERP)
layer for event routing. Moreover, [14] propose a dis-
tributed hash table (DHT)-based overlay network to
perform scalable and efficient discovery scheme for
DDS entities over WANs.

In this related work, however, discovery messages
are sent to a limited number of remote nodes, even
communicating in peer-to-peer fashion. This work
also has a several limitations with enabling end-to-
end QoS provisioning, scalability, and performance
of the communication. In contrast, the work pre-
sented in this paper does not modify the middleware
layer to add an overlay network. Instead, the Proxy
DDS components provide diverse DDS QoS profiles
for LANs and WANs and provides proxy-to-proxy
communication over WANs, thereby supporting scal-
able multicast, as described in Section 3.2.1.

Authors in [33] proposed to adopt an overlay net-
work that allows Application-Level Multicast (ALM).
Members belonging to the same multicast group
are interconnected through an overlay network [35],

7

where end-systems rather than routers are responsi-
ble for replicating messages that are dispatched over
several distinct out-going links [26]. ALM over over-
lay networks has several drawbacks, however, includ-
ing lower performance than IP multicast, scaling lim-
itations, and degraded network resources caused by
increasing traffic load.

Prior middleware solutions for network QoS man-
agement focus on how to add network QoS services
for CORBA-based communication [19, 18]. A large-
scale event notification infrastructure for topic-based
pub/sub applications has been suggested for peer-
to-peer routing overlaid on the Internet [54]. Those
approaches can be deployed only in a single-domain
network, however, where one administrative domain
manages the whole network.

Extending network QoS solutions to the Internet
can result in traffic specified at each end-system be-
ing dropped by the transit network infrastructure of
other domains [6]. For example, [63] presented a net-
work communication broker to enable per-class QoS
for multimedia collaborative applications. Even if
this network broker enhanced the QoS allocation by
differentiating the traffic processing at the network
edges, it supported neither mobility service manage-
ment nor scalability since it adds complicated inter-
faces to both applications and middleware for the
QoS notification.

The peer-to-peer architecture described in [4, 16]
is designed to ensure data delivery with expected
QoS-levels to reliably disseminate events and bal-
ance data distribution load in non-multicast-enabled
WAN deployments. Likewise, [62] proposes a service-
oriented architecture to integrate remote DRE sys-
tems over the Internet based on the data-centric
publish-subscribe model. These prior efforts, how-
ever, do not support network resource provisioning
required to ensure end-to-end QoS. Finally, [23] fo-
cused on priority reservation and QoS management
mechanisms that can be coupled with CORBA at the
OS level to provide flexible and dynamic QoS provi-
sioning for applications running in DRE systems.

The work reported in this paper enhances prior
research on QoS management at the network layer
by integrating QoS along two key dimensions: (1) the
horizontal direction, i.e., between different adjacent

layers in the application, middleware, and network,
and (2) the vertical direction, i.e., within a particular
layer. In particular, our NetQSIP framework maps
application flow requirements into the DDS layer to
allow end-to-end QoS provisioning.

Our prior work [30] on Velox used an MPLS tunnel-
ing mechanism to propagate DDS QoS over an over-
lay model. Velox statically created a logical tunnel
between remote DDS participants to conduct QoS ne-
gotiation and resource reservations. Any time com-
munication failed, however, the user had to recon-
figure the network manually. Moreover, application
requirements could not change during runtime com-
munication between participants.

This current paper enhances our prior work on
Velox and overcomes its limitations by defining the
Proxy DDS, which communicates with the other
proxies without using any tunneling mechanisms. As
described in Section 3.2.1, our Proxy DDS compo-
nents do not require an overlay model to match dis-
tributed participants through the network. More-
over, our NetQSIP framework provides dynamic QoS
management and simplifies resource management by
using SIP to automate end-to-end QoS provisioning,
which described in Section 3.2.3.

3. Supporting DDS QoS Policies over WANs

This section focuses on the following two capabili-
ties we developed to support DDS QoS policies over
WANs:

• Interconnecting isolated DDS domains via
the Proxy DDS, which matches isolated DDS
domains to distribute topics and reduce the traf-
fic exchanged between remote DDS participants
in a WAN.

• Simplify network resource management
via the NetQSIP policy-driven QoS frame-
work, which leverages the Proxy DDS, SIP, and
the Common Open Policy Service (COPS) pro-
tocol for Diffserv Resource Allocation (COPS-
DRA) [56] to automate end-to-end QoS provi-
sioning and mapping DDS sessions from appli-
cation participants to the underlying WAN.

8

3.1. Supporting DDS QoS Policies Efficiently and
Scalably in WANs

Below we describe several challenges that arise
when attempting to use conventional DDS implemen-
tations for enterprise DRE systems running in WANs.

3.1.1. Challenge 1: Mapping DDS domains to
network-level mechanisms

Context. DDS middleware provides QoS policies and
mechanisms for DRE systems that run in stable and
controllable LANs. As these environments grow in
complexity and scale, it becomes necessary to deploy
DDS-based DRE systems in WANs. End-to-end QoS
requirements for these enterprise DRE systems still
require bandwidth, lossless delivery, and interoper-
ability even among disjoint DDS domains. In partic-
ular, DDS implementations should disseminate mes-
sages from publishers to subscribers under bandwidth
fluctuations without overloading the capacity of the
WAN, even between disjoint DDS domains.

Problem. The DDS domains of enterprise DRE sys-
tems are deployed over different network-domains,
where each one is administrated only by a single
provider, on which the policies and administration
can differ, i.e., one provider may not have the full
control over the network. It is hard to obtain the ex-
pected QoS at the overlay level, and they may have
various restrictions (such as not allowing multicast
traffic, using different protocols and policies that de-
pend on how routing tables are created, etc.) that
may affect QoS.

The DDS standard does not specify how to dis-
tribute topics between independent data spaces. For
example, OpenSplice DDS (www.prismtech.com/
opensplice) provides network partitions that en-
able WAN communications, but does not propagate
QoS across a WAN. Likewise, RTI Connext DDS
(www.rti.com/products/dds/) provides a unicast
service for propagating QoS policies across a WAN,
but does not provide a mapping of these policies in
edge routers, which require advanced APIs for queue
management. In both cases, multiple DDS domains
are not supported unless custom gateways/bridges
are used, which still does not resolve WAN-level QoS

problems, such as scalability and delivery guarantees
end-to-end.

One approach is to use point-to-point IP encapsu-
lated tunnels, such as VPN-MPLS [50, 41, 1]. Our
prior work on the Velox framework [30] used MPLS
tunneling mechanism to propagate DDS QoS over
an overlay model. Although this work demonstrated
how standard DDS QoS policies can be supported
end-to-end in WANs, the Velox framework had the
following limitations:

• It did not support multiple DDS domains with
inter-domain traffic; rather it assumed that all
participants shared the same global data-space
through different IP network domains.

• Its QoS management was static, i.e., the network
configuration was done only once during system
initialization and hence it could not support dy-
namically changing application requirements.

• It used the Multi-Protocol Layer Switching
(MPLS) [41] tunneling mechanism to propagate
DDS QoS over an overlay, which lacks robust
means to ensure end-to-end semantic consistency
of QoS policies and requires manual user inter-
vention during initial configuration, as well as
reconfiguration after failures.

Solution summary. Section 3.2.1 describes how we
address Challenge 1 by introducing the Proxy DDS,
which is a software component for enabling efficient
and seamless communication between participants in
isolated domains. The Proxy DDS scalably decouples
DDS participants in time/space and minimizes traffic
exchanged between these participants.

3.1.2. Challenge 2: Enabling scalable
multicast-based DDS discovery in
WANs that cross IP network domain
boundaries

Context. The DDS discovery service is used by DDS
applications for automatic publication and subscrip-
tion discovery and enables QoS-enabled DRE system
architectures without the need for any centralized
broker. This service periodically sends heartbeat dis-
covery messages to remote nodes to check whether

9

www.prismtech.com/opensplice
www.prismtech.com/opensplice
www.rti.com/products/dds/

these nodes are still alive and able to receive data
(e.g., processes discovery events generated by un-
derlying DDS middleware and notify DDS partici-
pants whenever change occurs in the discovery ser-
vice). Communication between nodes uses the stan-
dard DDS request/offered (RxO) contract in which
each participant presents compatible QoS parameters
to enable sending and/or receiving of data.

Problem. To enhance DDS applications QoS over
WANs, DDS’ discovery mechanisms should enable
the efficient and scalable exchange of topics between
distinct data spaces. Typical LAN-based implemen-
tations of DDS uses IP multicast, which does not
scale to WANs. DDS multicast services in WANs
must therefore deal with the following deployment
problems:

• Multicast discovery messages are often blocked
in edge routers and do not reach remote networks
since IP multicast is often disabled whether for
safety or performance reasons.

• IP multicast forces routers to maintain per-
group state (e.g., members to the group) that
(1) is highly variable over time and (2) imposes
scalability and reliability penalties. IP multicast
often incurs performance limitations on routers
(e.g. it fails to filter incoming messages beyond
a few dozen multicast groups), so IP multicast
does not scale to a large number of groups [60].

• The deployment of IP multicast requires all
routers to be appropriately configured, which
makes it quite impractical in large scale or open
settings, i.e., where one does not have full con-
trol over the networking environment.

Solution summary. Section 3.2.2 describes how we
address Challenge 2 by describing NetQSIP, which
is a middleware framework that bridges the gap be-
tween DDS applications and SIP to allow communi-
cation between distributed participants over isolated
DDS domains. It also supports end-to-end QoS sig-
naling to all distributed participants to leverage the
limitations of IP multicast without affecting the dis-
covery protocol.

3.1.3. Challenge 3: DDS QoS provisioning
with the DDS domain overlays that sub-
sume multiple network domains is hard

Context. To simplify the development and evolu-
tion of applications for enterprise DRE systems, the
details of interacting with low-level network QoS
mechanisms for provisioning and resource allocation
should be encapsulated within a middleware signaling
service API. One way to implement such a signaling
service involves using the Session Initiation Protocol
(SIP) [53, 10] to request only the desired resources for
the DDS application and avoid the over-provisioning
of WAN resources [40].

Problem. The following problems must be addressed
to use SIP effectively as the basis for a high-level
signaling service for DDS:

• Semantic gap between SIP and DDS. SIP
uses predefined Session Description Protocol [31]
(SDP) messages to allow the communication be-
tween SIP-compliant clients. These messages use
specific media attributes for SIP that do not in-
clude any fields for the standard DDS QoS poli-
cies.

• Respecting the DDS requested/offered
(RxO) contract model. DDS QoS policies
should respect the RxO contract model that
matches publisher QoS needs to subscriber QoS
capabilities. DDS implementations use the DDS
RxO contract model described in Section 2.1
to ensure that communication only occurs when
a QoS policy requested from one participant is
compliant with a QoS policy offered by another
participant. SIP by itself does not support the
RxO model.

• Choice of the exact DDS QoS policies.
Most DDS QoS policy settings are not modifiable
at run-time and must therefore be designated
before compiling the DDS applications them-
selves. Only QoS policies that control simultane-
ously topics, data readers, and data writers can
therefore be used to control the end-to-end path.
These policies must be generic for all DDS imple-
mentations to allow interoperability between dif-

10

ferent middleware vendors. Since SIP does not
understand the semantics of DDS, it cannot na-
tively support such QoS configurations.

• Incompatibility of a SIP codec with a DDS
session. SIP allows applications to select the
appropriate codec to adapt their bandwidth with
the network load. SIP clients must therefore
agree on the codec they want to use to adapt
their sending rate to fulfill the required QoS. The
caller sends a codec map as part of its initial in-
vite message so the receiving application can se-
lect the appropriate codec and adapt their band-
width to the network load. In contrast, however,
DDS has no notion of a codec to adapt the pub-
lish rate. It is therefore necessary to adapt DDS
QoS profiles to SIP signaling mechanisms with
respect to their traffic profile. In particular, a
DDS signaling service needs to specify the net-
work QoS support and the session management
that can provide the different DDS QoS proper-
ties.

• Lack of resource reservation mechanisms
in edge routers. Although SIP can trans-
port the QoS requests (including bandwidth, la-
tency, and class of service) sent by DDS appli-
cations within their signaling messages to notify
the network about the application’s QoS require-
ments [59], it cannot reserve the resources to ful-
fill these requirements. Advanced QoS provision-
ing mechanisms are therefore needed to imple-
ment QoS requests in edge routers of each net-
work domain.

Solution summary. Section 3.2.3 describes how we
address Challenge 3 by integrating Proxy DDS and
NetQSIP so that Proxy DDS components carry QoS
policy messages in SIP control messages. NetQSIP
simplifies resource allocation by automating end-to-
end QoS provisioning and provides service-level dif-
ferentiation required by applications in DRE sys-
tems.

3.2. Supporting Enterprise DRE Systems over
WANS using Proxy DDS and SIP Signaling

To address the challenges described in Section 3.1,
we now describe the structure and functionality of
Proxy DDS and NetQSIP. Proxy DDS enables effi-
cient and scalable communication between isolated
domains in a WAN. NetQSIP simplifies DDS resource
management by automating end-to-end QoS provi-
sioning over WANs. NetQSIP uses Proxy DDS to
match distinct and isolated DDS domains over dif-
ferent IP network domains, SIP to support end-to-
end QoS signaling, and the COPS protocol as a QoS
manager for dynamic resource allocation over Diff-
Serv infrastructure.

Below we outline how the challenges described in
Section 3.1 are addressed in the remainder of this
section:

1. The Proxy DDS matches isolated DDS domains
and optimizes the bandwidth usage between re-
mote participants, as described in Section 3.2.1.

2. DDS QoS policies are mapped into SIP messages
to carry the QoS requests from the application
to the network, as described in Section 3.2.2.

3. NetQSIP uses these SIP messages to reserve QoS
mechanisms in edge routers and provide end-to-
end resource reservation, as described in Sec-
tion 3.2.3.

3.2.1. Resolving Challenge 1: Create a Proxy
DDS to Match Isolated DDS Domains

The Bridge-Federate presented in Section 2.2 suc-
cessfully interconnects DDS-based DRE systems sit-
uated in isolated DDS domains. This solution only
partially solves Challenge 1, however, due to exces-
sive flow duplications when the number of partici-
pants increases, as shown by our empirical results in
Section 4.2.1. To address this problem, therefore, we
enhanced the Bridge-Federate functionality via a new
component we called the Proxy DDS, which does not
use the DDS-RS approach (described in 2.2).

The Proxy DDS provides the same functionality
as the Bridge-Federate model (i.e., it matches iso-
lated DDS domains). It also optimizes DDS band-
width, even if used over heterogenous IP network do-
mains. Instead of using a single software component

11

(the DDS-RS-based Bridge-Federate model), Proxy
DDS can deploy many proxies in many IP network
domains, thereby providing the following capabilities:

Capability 1: Matching isolated DDS do-
mains over different network domains and
optimizing end-to-end bandwidth utilization.
Each Proxy DDS component subscribes to all topics
sent by participants in its IP domain, selects those of
interest (i.e., topics that will be sent to other remote
participants in remote DDS domains belonging to re-
mote IP network domain), and retransmits them to
the (virtual) global data space, as shown in Figure 2.

To receive DDS data, each proxy subscribes to
those topics from the global data space and publishes
(replicas of) them in its IP domain for interested sub-
scribers. Each Proxy DDS component performs the
deployment and configuration of the DDS implemen-
tation with respect to application requirements (such
as latency, bandwidth, class of service, etc.). It spec-
ifies only the topics exchanged in the virtual global
data space with remote proxies.

Capability 2: Supporting Multiple QoS pro-
files for LAN and WAN. Each Proxy DDS com-
municates with both the local participants (in its net-
work domain) and the other remote proxies over a
WAN. It therefore uses the following distinct DDS
QoS profiles:

• The first QoS profile ensures consistency be-
tween DDS participants in the same IP domain,
i.e., the QoS profile should be consistent be-
tween all the participants and the Proxy DDS
in the same DDS domain (LAN QoS-profile in
Figure 2),

• The second QoS profile enables communica-
tion between different DDS proxies to distribute
data in an inter-proxies manner (Proxy-to-Proxy
QoS-profile shown in Figure 2).

Capability 3: Ensure interoperability be-
tween the DDS QoS-Policies and network QoS
policies. Each Proxy DDS uses the DDS Trans-
port Priority QoS to mark the DiffServ DSCP field of
the packets sent to other remote proxies. For exam-
ple, assume that Proxy DDS1 receives a topic A from
the participants that belong to its IP domain with

the DSCP value equal to 46, which is the IP transport
priority that corresponds the Expected Forward Per-
Hop Behavior (EF-PHB). Proxy DDS1 then trans-
forms and forwards the messages corresponding to
topic A with the DSCP value 10, which corresponds
to the Per-Hop Behavior Assured Forward (PHB-
AF11).

3.2.2. Resolving Challenge 2: Interface Map-
ping between DDS and SIP

To bridge the semantic gap between DDS QoS
policies and SIP control messages, we developed
NetQSIP, which is middleware that resides between
the DDS application and the underlying network ser-
vice plane (SIP session layer). NetQSIP helps resolve
Challenge 2 described in Section 3.1.3 by extending
the semantics of the SIP media flow attribute (the so-
called “a” attributes) included in the SIP/SDP mes-
sage (a set of lines of the form < attribute >=<
values >), as shown in Figure 3. Both the publisher
and the subscriber use the information carried within
these attributes to negotiate with the underlying net-
work on how the QoS reservation should be done us-
ing a new predefined precondition.

As discussed in Section 3.1.3, SIP was designed to
support codec negotiation between clients. DDS does
not support the notion of codecs, but instead it has
several QoS parameters that may change at runtime.
Those QoS parameters are adapted in the context of
SIP to enable dynamic publish rates for DDS-based
DRE applications.

For each DDS topic, NetQSIP defines several QoS
profiles (stored in its topic map) that can replace the
codec map used by SIP. As an enhancement to the
standard SDP in [51], we devised new DDS QoS at-
tributes and syntax to incorporate into the signaling
procedure. The DDS publisher and the subscriber ex-
change SIP messages that include the resource reser-
vation demands in the topic map and the current sta-
tus to support the QoS demands in each direction.
The “qos-dds” token described in Table 2 specifies
the QoS policies carried within the SIP/SDP Invite
message for the dynamic network QoS allocation.

Table 3 also shows the new “qos-dds” token we
created to support the specific DDS-based QoS re-
quirements, which contains the Offer/Answer SDP

12

Figure 2: Matching Disjoint DDS Domains Over Different Network Domains

Field Description

Dead-
line

Data reader expects a new sample
updating the value of each instance at
least once every deadline period. Data
writer indicates that the application
commits to write new value for each
instance managed by this data writer
at least once every deadline period.
The Deadline is a duration ”0 0”.

Latency The delay from data writing until its
delivery is inserted in the receiver’s
application cache and the receiving
application is notified of the fact. The
Latency Budget is duration ”0 0”.

Relia-
bility

the reliability of the service. Could be
Reliable (“R”) or Best Effort (“BE”).

Priority Transport Priority is a hint to the
infrastructure used to set the priority
of the underlying transport used to
send data in the DSCP field for
DiffServ. This value is presented as an
integer.

Table 2: Encoding the DDS QoS policies in the “qos-dds”
Fields

extension specified in RFC3264 [51].

Table 3: SIP Invite Message with the New “a” Including the
qos-dds Token

INVITE sip:ahkiri@laas.org SIP/2.0
Via:SIP/2.0/UDP 193.49.97.17
Via:SIP/2.0/UDP 193.49.97.81
From:sip:ahkiri@iptel.org
To:sip:ahkiri@laas.org
CSeq: 1 INVITE
o = akram 53655765 2353687637 IN IP4 193.49.97.18
s = -
c = IN IP4 ahkiri@laas.org
t = 0 0
b = AS:512
a=qos-dds-send: current 0 20000000 0 20000000 R 46 send
a=qos-dds-recv: current 0 20000000 0 20000000 R 32 recv

The “qos-dds” token identifies a QoS mechanism
that is supported by the entity generating the ses-
sion description. A token that appears in a “qos-
dds-send” attribute identifies DDS QoS policies sup-
ported by data writers to help the resource reser-
vation for traffic sent by publishers generating SDP
messages. A token appearing in a “qos-dds-recv” at-
tribute identifies the DDS QoS policies that can be
supported by data readers to reserve the resources
for traffic coming from DDS publishers. These ex-
tensions remain transparent to the edge router and
work seamlessly in the context of DiffServ networks.

We used the SDP session description attributes
presented in Figure 3 to describe the new offer/-
answer extension that supports signaling for DiffServ.

13

a = status-type SP qos-dds SP direction-tag

status-type = ("desired" "current" "acceptable" "unacceptable")

SP = space

qos-dds = ("deadline" "latency" "reliability" "priority")

direction-tag = ("send" "recv" "send-recv")

status-type:

- desired: DDS participant indicates the DDS QoS he wants to use.

- current: informs the remote DDS participant about the QoS DDS

to be used in the current session.

- acceptable: indicates that the DDS QoS is acceptable and

compliant with the R/O contract.

- unacceptable: indicates that the current DDS QoS policies

are not compliant with the R/O contract (reject the communication).

direction-tag :

- send: DDS participant indicates it desire to send topics (Publish mode).

- recv: DDS participant indicates he wants to receive topics (Subscribe mode).

- send-recv: DDS participant indicates that he wants to send and receive topics

(both Publish mode and Subscribe mode are supported).

Figure 3: The New SDP Attributes for DDS with Preconditions

These attributes describe a DDS communication re-
quest for total bandwidth of 512 kbits per second
(designated in line “b”) with the following “qos-dds-
send” and “qos-dds-recv” attributes of the DDS me-
dia session:

Offer/answer behavior. When using “qos-dds-
send” and “qos-dds-recv” attributes, an offer/answer
negotiation is done between the publisher and the
subscriber to allow endpoints to load a list of DDS
QoS profiles. Participants negotiate the direction in
which those profiles are exchanged with respect to
both preconditions [9] and DDS changeable table pa-
rameters [44]. Participants also use other QoS pa-
rameters (e.g., the bandwidth, jitter, delay param-
eters described in RFC3312 [11]) to negotiate per-
Class QoS setting for DiffServ.

Offer behavior. The publisher includes “qos-dds-
send” flow information in the publication direction
to inform subscribers about the DDS QoS profiles
supported by publishers. Similarly, a participant can
use “qos-dds-recv” attributes to specify which kind
of QoS policies can be supported at subscribers.

Answer behavior. After receiving an offer from
a remote participant with the “qos-dds-send” at-
tributes, NetQSIP translates those attributes into

network QoS settings for the resource reservation pro-
cess. These attributes correspond to the DDS QoS
policies within the QoS profiles supported in the sub-
scriber direction. A participant uses these attributes
in a “qos-dds-recv” attributes in the answer. For
example, when a participant receives an offer with
“qos-dds-recv” attributes, the answerer uses the cor-
responding QoS translation mechanisms it supports
in the publisher direction and then includes them in
the “qos-dds-send” attributes.

3.2.3. Resolving Challenge 3: Supporting
PubSub QoS properties over WAN

To support QoS signaling and resource provision-
ing over WANs, the Proxy DDS uses NetQSIP to
transport DDS QoS policies within its control mes-
sages. These messages include the information (e.g.,
bandwidth, latency, priority, etc.) about applica-
tion requirements. DDS applications interested in
publishing data can specify the media description by
sending SIP control message to the network. If their
requests are accepted, then the required resources
are allocated, and they can securely exchange data.
These features are part of the NetQSIP framework,
which provides:

14

• A resource allocator (defined as a part of the
Proxy DDS) to use these messages for signaling
the QoS to the network on behalf of an applica-
tion;

• A policy-based network configurator to enforce
the resource allocation in the network infrastruc-
ture.

Enhancing the Proxy DDS for QoS Signaling. In ad-
dition to the functionality presented in Section 3.2.1,
the Proxy DDS maps DDS sessions between an ap-
plication and the underlying network. We enhanced
the Proxy DDS to include the DDS QoS policies us-
ing the JAIN SIP [25] [24] proxy. We also extended it
to parse the new “a” attribute that support the QoS
policies described in Section 3.2.2.

The enhanced Proxy DDS acts as a resource allo-
cator that communicates with the DDS participant
via the SIP/DDS interface and intercepts the DDS
QoS policies from the SDP message. It also commu-
nicates with the QoS configurator to provision key
traffic control, classification, and shaping properties
of the priority queue. In addition, it infers the ses-
sion characteristics (such as bandwidth, the prior-
ity level (DSCP), the sender/receiver IP addresses/-
Ports) from an XML file (an excerpt of which is shown
in listing 1).

Listing 1: QoS Policies Provided by DDS Middleware

<?xml version="1.0"?>
<NetworkInterfaceAddress>193.49.97.81
</NetworkInterfaceAddress>
</General>

<Partitioning>
<GlobalPartition Address="unicast"/>
<GlobalPartition Address=

"193.49.97.17"/>
</Partitioning>

<Channels>
<Channel default="true" enabled="true"
name="BestEffort" reliable="false">
<PortNr>54100</PortNr>

<Resolution>10</Resolution>
<FragmentSize>554</FragmentSize>
<AdminQueueSize>4000</AdminQueueSize>
<Sending>
<DiffServField>18</DiffServField>
<MaxBurstSize>500</MaxBurstSize>
<QueueSize>400</QueueSize>
<ThrottleLimit>1024</ThrottleLimit>
<MaxRetries>10</MaxRetries>
<RecoveryFactor>3</RecoveryFactor>

</Sending>
<Receiving>

<ReceiveBufferSize>1000000</ReceiveBufferSize>
<Scheduling>

<Priority>60</Priority>
<Class>Realtime</Class>
</Scheduling>
</Receiving>

</Channel>

<Channel enabled="true" name="Reliable"
reliable="true">

<PortNr>54110</PortNr>
</Channel>

</Channels>

Figure 4: Session Register and Deregister with proxies

For example, since SIP does not allow sending data
in multicast, we configured the source and the des-
tination IP addresses in the attributes “NetworkIn-
terfaceAddress” and “GlobalPartition,” respectively.
The attribute “PortNr” specifies the port number
on which each DDS participant receive data. Like-
wise, the attribute “DiffServField” allows specifying
the value that will be used to mark the DSCP field,
which may change at runtime if a participant decides
to change it. The attributes “MaxBurstSize” (topic
size in bytes) and “Resolution” (in ms) describe the
publish rate (i.e throughput calculated at runtime
by the DDS middleware) at which the publisher can
send DDS topics. The publish rate is defined by the
relation: rate = (MaxBurstSize × 8 × (1000

Resolution))
(b/s).

The application contacts the Proxy DDS during

15

the registration phase to access to the registrar, as
shown in Figure 4.

The registrar receives two the QoS requests sent
by the publisher and the subscriber. It then forces
all signaling messages to pass across it with the
header “record route” and intercept those messages
to analyze the information about the session. Af-
ter the publisher is configured to make and receive
calls, NetQSIP processing begins with the registra-
tion phase in the registrar (user registration in the
SIP location database).

We considered the case where the registration is
done by both remote SIP proxies of each network:
the publisher sends a register request to the proxy
belonging to its network domain which intercepts it
and adds the address of record (AddressOfRecord) to
enforce messages to pass through the registrar. After
the destination address is found in its local database
(local database to avoid the usage of a DNS), it redi-
rects the message to the destination. The remote
proxy (belonging to the same network domain of the
subscriber) intercepts this message, checks if the sub-
scriber belongs to its domain, and forwards the In-
vite message to it if it belongs to the domain.

Network QoS configurator for resource reservation.
To reserve QoS in the edge-router, we devel-
oped a resource configurator based on the COPS-
DRA [56] protocol as part of the NetQSIP frame-
work. NetQSIP also integrates the resource allocator
in the Proxy DDS to translate the DDS QoS poli-
cies in the SIP/SDP messages into network QoS, and
negotiate the DDS QoS policies on behalf of the ap-
plication. These translation requests are submitted
to the resource configurator which configures the pri-
ority queues of the edge-router based on the DSCP
marking for IP packets with the Transport Priority
DDS QoS setting. Below we describe the QoS nego-
tiation during the signaling process.

Session initiation. The publisher (shown as
DDS participant ”A” in Figure 5) sends the Invite
message including a list of DDS QoS profiles with the
source/destination IP addresses, the ports number,
the DDS QoS attributes, the DSCP field descriptor,
and the media descriptor.

This message indicates the direction for exchanging
DDS topics between remote participants (forwarding
and back to topic flows with ”qos-dds-sendrecv” to-
ken). When the publisher wants to change the DDS
QoS profile, it sends a message including “qos-dds-
send” token with the “desired” status. If the pub-
lisher wants to receive the DDS QoS profiles, it sends
message including “qos-dds-recv” token also with the
“desired” status. In this case, the following two sit-
uations can occur: Situation 1. The remote DDS
participant ”B” (subscriber) receives the list of DDS
QoS profiles (topic map) and intersects it with its ex-
isting profiles. For DDS to match the publisher with
the subscriber, they both need to agree the RxO con-
tract, which indicates their QoS profiles are compli-
ant. They should find the common parameters in the
QoS profiles (i.e., DDS QoS parameters described in
Table 2 and carried by SIP invite message). Since
several QoS profiles are grouped in topic map, pub-
lishers and subscribers only need to select the compli-
ant ones, (i.e., the publisher profile should be com-
pliant with the subscriber profile) via the following
steps:

1. If subscriber ”B” supports at least one DDS
QoS profile satisfying the RxO contract, it will
can reply with an “acceptable” status. It there-
fore selects the first DDS QoS profile compliant
with the RxO contract and compares the IP ad-
dresses and port numbers on which it can re-
ceive DDS topics as described in the XML file
shown in Listing 1. As described in Figure 5,
the subscriber then sends the response ”183 Ses-
sion In Progress” with the ”acceptable” status to
its Proxy DDS, which forwards the reply to the
remote publisher ”A”. The proxy forwards this
message to the publisher and indicates that the
session has been established in both directions.

2. Proxy DDS next sends a reservation request via
the NetQSIP resource allocator, which triggers
the resource reservation process as described in
Figure 6. The NetQSIP resource configurator
intercepts this request to negotiate the required
QoS with the edge router. This information—
called ”QoSState”—is stored by the proxy DDS
to keep track of the session.

16

Figure 5: QoS Reservation within SIP/DDS Session

3. Proxy DDS then sends a QoS request (embed-
ded within the SDP message) to the resource al-
locator in the remote domain ”B” to request the
QoS in both directions. The publisher subse-
quently sends a ”Prack” [52] message to confirm
the 183 Session in Progress has been received
and waits for subscriber “B” to send the 200OK
message (for Prack).

4. The session establishment is confirmed when
both proxies (for participants ”A” and ”B”) ex-
change 200OK and ACK messages. The pub-
lisher starts transmitting data to remote sub-
scribers and the data path is established.

The “qos-dds” attributes include the DSCP prior-

ity tag the publisher has added to SIP/SDP Invite
messages (described by the Transport Priority DDS
QOS policy). The resource allocator sends the re-
quest message (REQ message) to the resource config-
urator to install the desired QoS. The resource con-
figurator analyzes the request (consults its database
for verification), performs the DiffServ resource allo-
cation, and replies to the resource allocator with a
decision message (DEC) message.

The resource configurator uses the DSCP value to
classify DDS traffic regarding their priority in each
edge-router. An XML parser translates the follow-
ing QoS settings: latency budget, deadline in the
“a” field into bandwidth, latency, and jitter. The re-

17

Figure 6: Session Establishment with DDS QoS Support

source allocator subsequently generates a report mes-
sage “RPT” to indicate the success of the decision.
The 183 session in progress message is also sent
to the publisher’s Proxy DDS to indicate successful
resource allocation in its direction.

The DDS discovery protocol performs discovery in
both direction. The neighbor discovery is provided
from the information (IP addresses) provided by the
proxy and registrar near to each DDS participant, so
that the interconnection between distinct DDS do-
mains can be easily performed. NetQSIP matches
DDS data writers and data readers by sending pub-
/sub declarations embedded within DDS messages,
which include a Globally Unique ID (GUID), QoS
policies, etc.

Situation 2. Two cases must be considered
if the subscriber does not support any DDS QoS
profile satisfying the required QoS (e.g., Trans-
port Priority=0). The first case is shown in Fig-
ure 7 where no DDS QoS profile can be used to im-
plement the network QoS. This case corresponds to
the default best-effort service without QoS that can
be established at the network level. In the second
case there is a violation of the DDS requested/of-
fered (RxO) contract between the publisher and sub-

scriber. Since session establishment cannot occur the
NetQSIP proxy thus sends a rejection message back
to the first DDS publisher with the status token fixed
at ”Unacceptable” to reject the communication.

Session Liberation When the publisher wants
to finish the session, it sends a Bye message to the
remote subscriber, which replies with a 200OK mes-
sage (for Bye). The deregistration procedure from
the proxies is performed similarly to the registration
phase: a register message, almost similar to the
registration message, is sent with the the “Expires”
field set to 0.

When the publisher sends a Bye message to
its nearest Proxy DDS component, this component
sends the QoS FREE message to the resource allo-
cator to request the liberation of the resources. The
resource configurator receives this message and sends
an uninstall message to release the allocated re-
sources at the end of session. After releasing the re-
sources, the subscriber sends the 200 OK message to
reply to the Bye message.

18

Figure 7: Session establishment without QoS (Best-Effort service)

4. Experimental Results and Discussions

This section analyzes the results from experiments
we conducted to evaluate the efficacy of the Proxy
DDS components and NetQSIP framework presented
in Section 3.2. Section4.2 evaluates the performance
of the Proxy DDS against the Bridge-Federate in
the best-effort QoS architecture described in Sec-
tion 4.2.1. Section4.3 evaluates NetQSIP in terms
of its timing behavior, overhead, and end-to-end la-
tencies observed in different scenarios.

4.1. Hardware and Software Testbed and Configura-
tion Scenario

The performance evaluations reported in this pa-
per were conducted in the Laasnetexp testbed shown
in Figure 9. Laasnetexp consists of a server and 38
dual-core machines that can be configured to run dif-
ferent operating systems, such as various versions of
Windows and Linux [46]. Each machine has four
network interfaces per machine using multiple trans-
port protocols with varying numbers of senders, re-
ceivers and 500 GB disks. The testbed also con-
tains four Cisco Catalyst 4948-10G switches with 24
10/100/1000 MPS ports per switch and three Juniper
M7i edge routers connected to the RENATER net-

work 3.
To serve the needs for the emulations and real net-

work experiments, two networks have been created in
Laasnetexp: a three-domain real network (suited for
multi-domain experiments) with public IP addresses
belonging to three different networks, as well as an
emulation network.

In our evaluation scenario, a number of real-time
DDS applications sent their monitored data to each
other so that appropriate control actions are per-
formed by the military training and Airbus Flight
Simulators we used. Figure 9 shows several simu-
lators deployed on EuQoS5-EuQoS8 blades commu-
nicating based on the Opensplice DDS middleware
implementation 4. To emulate network traffic behav-
ior, we used a traffic generator that sends UDP traffic
over the three domains with configurable bandwidth
consumption.

4.2. Evaluation of the Proxy DDS in a Best-Effort
WAN

Below we present the results of experiments
conducted to evaluate the Bridge-federate in Sec-
tion 4.2.1 and the proxy DDS in Section4.2.2. These

3http:www.renater.fr
4http://www.prismtech.com/opensplice

19

http:www.renater.fr
http://www.prismtech.com/opensplice

Figure 8: Session Termination and Resources Release

results evaluate the bandwidth and the overhead of
both solutions and show the impact of using the
Proxy DDS to replace the Bridge-Federate implemen-
tation described in Section 2.2 .

4.2.1. Evaluating the Bridge-Federate Model

Below we describe the results of evaluating the per-
formance and overload of using the Bridge-Federate
model to interconnect disjoint DDS domains in
Domain-Bridge model and compare these results with
an implementation of the Topic-Bridge model.

Evaluation of the Domain-Bridge Model.

Rationale. The Domain-Bridge model enables
matching application running in a data space by cre-
ating a bridge between data writers and data read-
ers in two isolated DDS domains. It ensures that
all events occurring in DDS domain “A” (with do-
main id “0”) should be notified to other participants
in remote DDS domain “B” (with domain id 1). Each
DDS participant is described in a global XML-based
configuration file, as shown in Listing 2.

Listing 2: Bridge-Federate Configuration as a Domain-Bridge

<?xml version="1.0"?>
<routing_service name="defaultBothWays">

<domain_route name="TwoWayDomainRoute">
<participant_1><domain_id>0</domain_id> </participant_1>
<participant_2><domain_id>1</domain_id> </participant_2>

<session name="Session1">
<auto_topic_route name="AllForward">
<publish_with_original_info>true</publish_with_original_info>

<input participant="1">
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>
<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
</input>

<output>
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>
<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
</output>

</auto_topic_route>
</session>

<session name="Session2">
<auto_topic_route name="AllBackward">
<publish_with_original_info>true</publish_with_original_info>

20

Figure 9: Laasnetexp testbed

<input participant="2">
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>
<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
</input>

<output>
<allow_topic_name_filter>*</allow_topic_name_filter>
<allow_registered_type_name_filter>*
</allow_registered_type_name_filter>
<creation_mode>ON_DOMAIN_AND_ROUTE_MATCH</creation_mode>
</output>

</auto_topic_route>
</session>

</domain_route>
</routing_service>

The example in Listing 2 includes the topics to
transfer during the DDS session and the behavior to
follow to route them to different DDS domains.

The Bridge-Federate model creates a virtual net-
work link (called a global routing domain) between
DDS domain A to DDS domain B to transfer all top-

ics from one data-space to its neighboring domains.
It also allows a bi-directional connection between sev-
eral DDS sessions. These DDS sessions contain the
following information:

• Session 1 includes the input domain (with do-
main id ”0”) as ”Input”, comprising all partici-
pants generating topics, and the output domain
(with domain id ”1”) as ”Output”, to which top-
ics will be redirected and

• Session 2 defines the reverse operations, e.g., the
necessary information to transfer topics from do-
main ”B” (with domain id ”1”) to domain ”A”
(with domain id ”0”).

Analysis This test considers a publisher sending
DDS topics (with a key “UserID” and a “Content-
type” sequence of bytes) to remote subscribers as
shown in Figure 10. The experiments described in

21

Figure 10: Domain-Bridge Deployment Between Disjoint DDS
Domains

Figure 11: Traffic Exchanged Using the Domain-Bridge

Figure 11 showed that all topic instances sent by a
publisher in DDS domain A) are forwarded to ev-
ery subscriber on DDS domain B). As we increased
the number of subscribers in the DDS domain B
we found that the traffic transmitted between dis-
tributed nodes is proportional to the number of re-
mote subscribers. When the number of subscribers
increases, the stream sent by the publisher is also du-
plicated proportionally to the number of subscribers
identified by the DDS Discovery service. For N sub-
scriber nodes, therefore, the traffic exchanged is mul-
tiplied by N .

Although the Domain-Bridge allows matching dis-
tinct DDS domains (”A” and ”B”), topics are dupli-
cated by the Bridge-Federate, which is not manda-
tory. The configuration of the Bridge-Federate in the
Domain-Bridge model added a new problem of flow
duplication. This solution is considered partial since
it routes the traffic between two different IP network

domains, but does not optimize bandwidth utiliza-
tion.

Evaluation of the Topic-Bridge.

Rationale. In addition the Domain-Bridge de-
scribed above, the Bridge-Federate model can be used
as a Topic-Bridge to perform data transformation be-
tween distinct DDS domains, transforming topics in
the DDS domain ”A” (with domain id ”0”) by pub-
lishing them to another topics having the same data
content to the DDS domain ”B” (with domain id
”1”). The Listing 3 depicts how the Topic-Bridge
performs this operation.

Listing 3: Bridge-Federate Configuration as a Topic-Bridge

<?xml version="1.0"?>
<domain_route name="DomainRoute" enabled="true">
<participant_1>
<domain_id>0</domain_id>

</participant_1>

<participant_2>
<domain_id>1</domain_id>

</participant_2>

<session name="Session" enabled="true">
<auto_topic_route name="SquaresToCircles">
<!-- Reading data from participant_1 -->

<input participant="1">
<registered_type_name>ShapeType</registered_type_name>

<!-- Reading topic Square -->
<topic_name>Square</topic_name>
</input>

<output>
<!-- Writing the same type -->
<registered_type_name>ShapeType</registered_type_name>

<!-- With the same topic -->
<topic_name>Square</topic_name>

</output>

</auto_topic_route>
</session>
</domain_route>

In particular, this figure shows that the Topic-
Bridge creates only a single session to take data from
participant 1 (as an input participant), reads the reg-
istered topic type-names, and transforms them to
participant 2.

To check whether the bandwidth utilization de-
pends on the number of subscribers to these topics,
this test consists of publishing topics (e.g., squares

22

in Figure 12) from participant A and subscribing to
them by DDS subscribers (Participants B and C)
in different network domains and different DDS do-
mains. The purpose of this configuration is to per-
form topic transformation from DDS domain “A” to
DDS domain “B” (as shown in Figure 12), thereby
transforming topics published on domain “A” to an-
other topics having the same data content on do-
main “B.” Figure 12 also shows how the Topic-Bridge

Figure 12: Experiments with the Topic-Bridge Model

model can regenerate the original topics, even when
the number of exchanged topics between different ma-
chines is high.

Analysis Figure 13a shows the traffic flow sent
by the publisher in participant “A” and received
by the remote subscribers (participant “B” and
“C”): traffic (1) describes the flow sent by publisher
at 20Kbps (distribution of a single topic instance
(square)) and traffic (2) shows topic data received
by the DDS-RS at 40Kbps, which corresponds to a
subscriber registering for two topic instances (circle
and triangle).

Figure 13b shows the traffic sent and received by
the Topic-Bridge on participant ”B”. In this sce-
nario, traffic (1) describes topics received by partici-
pant ”A” which is the same traffic (1) on Figure 13a.
Traffic (2) shows topic data published by participant
”A” to the bridge. Traffic (3) shows topic data re-
transmitted by the bridge and received by participant
”C” at 80Kbps, which corresponds to the distribution

(a) Outgoing Bandwidth Captured on Participant A

(b) Data Flow with the Topic-Bridge

Figure 13: Traffic Exchanged Using the Topic-Bridge

of two and four topics instances. From the expecta-
tion of Figure 13a and Figure 13b, the volume of
the traffic published by participant ”A” on the DDS
domain A to subscribers participant ”B” and partici-
pant ”C” on the DDS domain B is independent of the
number of subscribers and the number of publishers
at run-time. Instead, it depends solely on the topic
types being exchanged. The Topic-Bridge model de-
creased the bandwidth between remote DDS applica-
tions in different network domains and different DDS
domains.

Despite the absence of data replication, however,
the bandwidth from participant ”A” to participant
”B” is twice big as when they are in the same DDS do-
main. This solution therefore does not offer the same
performance in the case of a single domain DDS. In
particular, the flow exchanged between participants
should be optimized to overcome the limits on its flex-

23

(a) Deployment of Two Proxy DDS Components

(b) Test Scenario Using Proxy DDS Components

Figure 14: Deployment and Test Scenario with Two Proxy DDS

ibility, extensibility and scalability when the number
of participant increase, and hence the number of flows
exchanged increase accordingly.

4.2.2. Evaluation of the Proxy DDS

The goal of these experiments is to evaluate Proxy
DDS against the Bridge-Federate model in terms of
optimizing bandwidth and meeting application com-
munication requirements in inter-DDS domains.

Implementation and Deployment of the DDS Proxy.
We consider the publisher Pub T1 in IP domain 1
and DDS domain ”A” sending topic data T1 to a
subscribers in IP domain 2 in distinct DDS domain
”B”, and two proxies at the edge of each network, as
shown in Figure 14a. The scenario to distribute DDS
topics is as follows:

• Step 1: the publisher produces topic instances

T1 and send them to its local neighbors in DDS
domain “A” using multicast service.

• Step 2: The Proxy DDS1 subscribes to this topic
T1 and consumes all its samples (in DDS domain
“A”).

• Step 3: The Proxy DDS1 stores the topics com-
ing from “A” in a FIFO queue, redistribute T1

topic by transforming it into another topic T′
1

(only the name changed). This transformation
avoids the pub/sub loop to the same topic by
Proxy DDS1 (avoid the subscription to T1).

• Step 4: The Proxy DDS2 subscribes to topic T′
1

using unicast service once it is presented on its
DDS domain “B,” transforms T′

1 instances to T1

instances, and sends all topic to all participants
using multicast.

24

(a) Throughput Between Each Proxy and Its Local Neighbors (b) Throughput Between Two Proxies

Figure 15: Evaluation of the Proxy DDS

• Step 5: Subscribes in DDS domain “B” receive
all samples of topic T1 published by their proxy.

The deployment of these proxies should also en-
sure the coherence of the DDS QoS profiles among
different DDS participants in the same DDS domain
(between neighbors) and between proxies in differ-
ent DDS domains over WAN. These QoS profiles are
encoded on XML configuration file, i.e., ensure each
proxy is compliant with the requested/offered (RxO)
contract described on each QoS-profile. In addition,
the queuing mechanism enables the proxies to adapt
their publish rate under bandwidth fluctuation and
avoid packet loss that can occur in WANs.

For example, if the publish rate of Proxy DDS1

is much higher than the subscription capacity of the
subscriber proxy, the publisher proxy stores topics on
its FIFO queue. It increases dynamically the capacity
of the datawriter cache (uses the Resource Limits
DDS QoS policy to avoid consumption excess and
forward them later.

Evaluation of the Proxy DDS.

Rationale. We performed several experiments
to evaluate the bandwidth utilization between each
proxy DDS and its neighbors subscribers and be-

tween remote proxies. This scenario is depicted in
Figure 14b. This figure shows the following:

• A publisher (participant A) in DDS domain “A”
sends “UserInfo” topic and subscribes to “Car-
Info” topic, and many participants that sub-
scribe to the “UserInfo” topic and publish “Car-
Info” topic, all in the same DDS domain “B”

• At the edge of each network many proxies de-
ployed to subscribe to topics sent by their corre-
spondent proxies and reflect them to their local
DDS participants.

Analysis Figure 15a describes the traffic trans-
mitted between the Proxy DDS1 and its neighbors in
the same DDS domain “A.”

Curve (1) shows the throughput for the “User-
Info” topic sent by Proxy DDS1 and received by the
subscriber machine at 15Kbps. Curve (2) describes
the throughput of the “CarInfo” topic sent from a
subscriber to its neighbor Proxy DDS1 at 2.5Kbps
average bit rate. Figure 15b describes the band-
width utilization between Proxies DDS1 and DDS2,
the traffic data sent from Proxy DDS2 to its local
subscriber, and the flow transmitted from the neigh-
bor subscriber to Proxy DDS2. Curve (1) shows the
traffic exchanged between Proxy DDS1 and Proxy

25

(a) Without QoS (b) With QoS

Figure 16: Impact of NetQSIP Signaling on Latency

DDS2, which corresponds to the distribution of the
topics “UserInfo” at 15Kbps. Curve (2) describes
the throughput which results from sending “CarInfo”
topic data between the remote proxies at 2.5Kbps av-
erage.

These results show that the traffic exchanged be-
tween proxies does not depend on the number of sub-
scribers, but depends on the topic types (topic size).
In comparison with the Bridge-Federate, the Proxy
DDS reduced the traffic and thereby optimizes band-
width utilization.

4.3. Evaluation of the NetQSIP Framework

Below we present the results of experiments con-
ducted to evaluate the performance of the NetQSIP
framework described in Section 3.2.3. These results
evaluate NetQSIP’s latency performance. In partic-
ular, we identified two topic flows sent from the pub-
lishing application and used them to evaluate the im-
pact of NetQSIP on the time delay by (1) generat-
ing real-time traffic containing DDS topic messages
that use the DiffServ expedited forwarding per-hop-
behavior (PHB) model [5] (whose characteristics of
low delay, loss, and jitter are suitable for voice, video,
and other real-time services) and (2) perturbing UDP
best-effort traffic using the Jperf [58] traffic genera-
tor, which is a framework for writing and running

automated performance and scalability tests.

4.3.1. Evaluation transmission delay

Rationale. To study the impact of the NetQSIP
resource provisioning mechanisms on the moving av-
erage delay, we consider two variants of tests as fol-
lows:

1. DDS traffic is generated by DDS participant
publishing SDP messages, which include the
DDS QoS policies. These DDS QoS fields are
translated by the proxy into control messages
to perform QoS allocation. In this configura-
tion, the NetQSIP resource configurator does not
provide any QoS mechanism between the pub-
lisher and the subscriber. The default configu-
ration therefore uses the Best-Effort (BE) service
and the DDS traffic goes through the best-effort
queues of the edge routers.

2. This variant of the experiments uses the same
QoS mechanism configurations in all compo-
nents, as described in Section 3.2.3. NetQSIP
configures the DDS application with the DiffServ
Expected Forward (EF) network QoS class, con-
figures the edge routers queues to support 40%
Best-Effort (BE) traffic, 30% EF traffic and 20%
DiffServ Assured Forward (AF) traffic, and 5%
for network control packets.

26

Analysis. Figure 16 depicts the moving average
delay between the publisher and subscriber.

The results in this figure confirm that the average
delay experienced by the NetQSIP QoS management
mechanism (Figure 16b) performs better results than
the application without using NetQSIP QoS allocator
(Figure 16a). The average delay remains 15ms when
using NetQSIP QoS mechanisms, but without any
QoS consideration in the network the average delay
remains 4 times higher (∼60ms).

To further validate these results, we considered the
dispersion and variability of the delay obtained from
traces (Figure 17). The minimum value of the latency
is ∼13ms and its maximum value is ∼16ms. These
results confirm the potential of NetQSIP to perform
network resource reservation. In addition, Figure 18

Figure 17: Statistical Distribution of the Moving Average De-
lay

depicts the results of experiments on the competing
UDP background traffic injected from Jperf traffic
generator.

This figure shows the packet delays (ms) and the
packet lost experienced by the competing UDP flow.
The delay experienced for the perturbing UDP flow
(curve in Figure 18a) increases dramatically up to
∼500 ms due to the impact of the prioritization of the
DDS traffic experienced by NetQSIP. The packet loss
rate (Figure 18b) reaches 20% for the UDP best-effort
traffic, which has DSCP value 0. UDP packets are
dropped because the buffers of the router queues are
flooded by the DDS traffic that should be processed
in priority.

4.3.2. Evaluation Session Establishment Delay

Rationale. The parameter that describes the ef-
fectiveness of the signaling system is the setup-release

(a) Packet Delay

(b) Packet Lost

Figure 18: Impact of DDS QoS Mechanisms on the concurrent
UDP Flow

27

latency, which is represented by the average (a similar
parameter describes the effectiveness of the signaling
system in telephony networks). DDS session estab-
lishment can only be achieved if the proxy sends the
200OK message to the publisher and the resource
allocation is achieved. This scenario involves a set
of messages that should be negotiated between the
caller participant and the called during the session
establishment, as described in Section 3.2.3.

To evaluate session establishment delay, we an-
alyzed the performance of the signaling system,
i.e., those components that introduce significant de-
lay to setup/release latencies. This scenario in-
cludes all messages exchanged by DDS participants
(i.e., Start DDS session, Invite, 183 Progress,
Prack, 200OK Prack, 200OK, and Ack) and the
messages (i.e., Decision, Report, Reserve, and
Response) exchanged between the Proxy DDS, the
resource allocator, resource configurator.

The setup procedure starts when a publisher sends
an Invite message and is finished on receiving ACK
by the subscriber. The 200OK message that reaches
the remote subscriber, however, already informs it
about successful connection establishment. We there-
fore define the setup latency as the time elapsed be-
tween sending Invite message and receiving 200OK
message.

Analysis. Figure 19 shows both the overall setup
latency and time delay for each individual SIP mes-
sage.

The cumulative time latency shown in this figure
quantifies the potential impact of the addition of QoS
control mechanisms in session establishment. The
results in Figure 19 also evaluate the potential of
NetQSIP to support the end-to-end DDS QoS poli-
cies in WAN-based enterprise DRE systems.

The cumulative transfer delay of 200ms is suffi-
cient to establish real-time communication between
end-points. The setup latency for each transaction
is around 30ms, which is the average of the accept-
able setup latency for end-to-end connection estab-
lishment. The time delay achieved by the Invite
and the 200OK messages is 23.8ms and 21.42ms, re-
spectively.

These results underscore another benefit of
NetQSIP: additional network processing delays are
not incurred since messages are not intercepted by
the NetQSIP resource configurator at both edge net-
works. The 183 session in progress message, how-
ever, had a moving average delay of ∼46.5ms because
this message incurs additional delay when the mes-
sage should pass through the resource configurator.
In addition to the data transfer time delay, the time
delay for session establishment is added by the im-
plementation of QoS, so the total time reaches values
∼205ms.

Figure 19: End-to-End Session Establishment Latency

4.3.3. Evaluating the QoS Setup Delay

Rationale. The goal of this experiment is to
measure the temporal impact incurred by NetQSIP’s
resource configurator during session establishment.
These experiments are based on the COPS-PEP con-
figured in provisioning mode and the COPS-PDP,
which are described in Figure 6. The experiment thus
aims to evaluate the latency incurred when the QoS
is configured in edge networks.

Latency has been measured many times with more
than 100 messages exchanged between them. These
messages are (1) the Request message (req) per-
formed by the resource allocator to request QoS reser-
vation to the resource configurator, (2) the Decision
message (dec) sent from the QoS configurator to the
resource allocator after checking its policy database,
to inform it that the session is established with suc-
cess, and (3) the Report message (rpt) transmitted

28

Message Delay (ms)
Message req (pep→pdp) 1.83
Message dec (pdp→pep) 35.56
Message rpt (pep→pdp) 37.94
Total 75.33
Min 73.5
Max 78.22

Table 4: Transmission Delay and Processing Time of NetQSIP
Messages (ms)

by the resource allocator after the reception of the
dec message, setting the QoS.

Analysis. Table 4 shows the transmission delay
and processing time of NetQSIP messages. The req
message requires less than 2ms to reach the resource
configurator because it does not involve any specific
process on it. The dec message requires 35.56ms to
be received by the pep. The resource configurator
starts processing req message, refers to its internal
policy database to select the appropriate elements for
triggering dec message, and then triggers all the de-
cision process to the resource allocator.

The resource allocator receives the dec message,
analyzes the decision being received to implement the
QoS policies required by the media sessions, and send
the rpt report message to the configurator. This pro-
cess incurs an average delay of ∼38ms. The overall
moving average delay for the QoS negotiation on the
control plane is thus ∼75ms, which is accepted for
SIP-based communication as an additional delay to
the session setup.

5. Concluding Remarks

Enterprise distributed real-time and embedded
(DRE) systems often span wide area networks
(WANs). Quality-of-service (QoS)-enabled publish/-
subscribe (pub/sub) communications, such as the
topic-based model supported by the OMG Data Dis-
tribution Service (DDS) standard, is a hallmark of
enterprise DRE systems. Realizing WAN-based en-
terprise DRE systems is hard for a variety of reasons,
including

• Lack of connectivity among isolated DDS do-
mains that may be geographically distributed
across the WAN,

• Lack of IP multicast at the network level that
hinders discovery of publishers and subscribers
at the WAN-scale, and

• Lack of capabilities to enable DDS QoS policies
end-to-end over WANs.

To overcome these challenges, this paper presents
the design and evaluation of Proxy DDS and
NetQSIP, which are middleware that provides net-
work QoS signaling for DDS-based applications in
enterprise DRE systems running in WANs. NetQSIP
helps configure the underlying WAN transparently
on behalf of applications by integrating Proxy DDS
components with SIP. This integration enables Proxy
DDS components to connect isolated data-spaces, op-
timize the network resources, and automate the QoS
management in QoS-enabled IP networks. The re-
sults from experiments we conducted quantify the
impact of Proxy DDS and NetQSIP to deliver as-
sured QoS to enterprise DRE systems implemented
using DDS and running over WANs.

We learned following lessons from developing and
evaluating our Proxy DDS and NetQSIP framework:
• Autonomic/Self adapting mechanisms are

needed to automate DDS QoS configurations.
This paper describes the design and implementa-
tion of NetQSIP, which is middleware framework
that allows network QoS signaling for DDS-based
DRE-applications. Experiments show the potential
of NetQSIP to deliver guaranteed and certifiable QoS
over the Internet. For certain type of DRE systems,
however, NetQSIP’s strategy for allocating network
resources may be too limiting. In particular, IP-
based cyber-physical systems present a challenging
environment for network and service management,
which requires a new approach.

We are therefore extending NetQSIP to support
adaptive content delivery using ontologies for hetero-
geneous mobile systems [13]. For example, to provide
a QoS-based service selection, DDS applications will
require tools to decide which network transport pol-
icy and which DiffServ service (AF, EF, etc.) fits

29

its requirements best. The use of ontologies makes it
possible to detect the Service Level Agreement (SLA)
to perform matching between DDS application needs
and the network service(s) offered at runtime. This
tool will implemented as an adjacent layer to DDS
middleware to detect the real behavior of the net-
work service.

• Reliable discovery protocol is needed to
enhance the reliability between remote DDS
participants. This paper described the integration
of Proxy DDS and SIP for request session establish-
ment and installing DDS QoS policies at edge routers.
The communication between the DDS participants
is based on the unreliable UDP protocol for and in-
stalling DDS QoS policies at edge routers. The com-
munication between the DDS end-points is based on
the unreliable UDP protocol for compliance with ex-
isting SIP stacks. For reliable communication, appli-
cations perform the sending acknowledgment (ACK-
NAK) hop-by-hop between proxies. This situation
is not always preferred as it requires publishers to
receive ACK from remote subscribers. Addressing
this challenge effectively requires end-to-end reliable
mechanisms for managing the acknowledgment be-
tween data writers and data readers on end-systems.
Our future work will align this requirement with
ongoing work to enhance discovery protocol in the
DDSI specification and associated scalability issues
on DDS-based communication.

• Supporting additional dimensions of QoS
require refinements. The paper addresses the end-
to-end timeliness issues in large-scale networks, which
relies on information sharing between different par-
ticipants among shared data-spaces. Since DDS is
deployed in mission-critical and enterprise real-time
systems for its ultra-low latency benefits, the frame-
work should support high information assurance re-
quirements without overloading the overall system. A
minimum and efficient use of cryptography is there-
fore required to enhance the integrity of the infor-
mation dissemination. In particular, security policies
to control and restrict access to information to only
the authorized recipients should be included to the
framework to prevent denial of service attacks and
ensure the non-repudiation of information.

Our future work will focus on developing security
policies to allow authentication, authorization, ac-
cess control, and secure transport. These capabilities
can be done with the help of the Security Assertion
Markup Language (SAML) to allow exchanging pub-
lic/private keys as part of the DDS QoS policies, for
example within a confidential DDS topics that may
be transported using Datagram Transport Layer Se-
curity (DTLS) protocol. We are also exploring tech-
niques for assuring the reliability of the event dissem-
ination and tolerance to failures.
• Mechanisms are needed to refactor the

network at the control plane. The results pre-
sented in this paper show the importance of integrat-
ing the QoS policies into the proxy to allow end-to-
end resource allocation in the edge routers. NetQSIP
allows QoS provisioning for DDS applications using
the existing QoS routing protocols, but does not ad-
dress how those protocols communicate with the for-
warding plane to deliver DDS Topics end-to-end. In
particular, it does not allow re-engineering the DDS
traffic to test out new protocols in existing networks.

Our future work focuses on adding software-defined
networking technology, which separates the network
control plane from the data plane so the two can
evolve independent of each other. Specifically, we
plan to use a software-defined networking technology
called OpenFlow [39], which is designed to abstract
the network state, to orchestrate the network ele-
ments and the network topology, and perform func-
tions including QoS support, traffic monitoring, secu-
rity management, and flexible diagnostics under net-
working constraints (such as routing costs). We will
use an OpenFlow-based controller to enable scalable
DDS applications that can react faster and thus cope
with higher update rates to ensure consistency, dura-
bility, and scalability while maintaining a logical view
of the network.

References

[1] K. Almeroth. The evolution of multicast: From
the mbone to inter-domain multicast to Inter-
net2 deployment. IEEE Network, 14, 2000.

[2] K. An, S. Pradhan, F. Caglar, and A. Gokhale.

30

A publish/subscribe middleware for dependable
and real-time resource monitoring in the cloud.
In Proceedings of the Workshop on Secure and
Dependable Middleware for Cloud Monitoring
and Management, SDMCMM ’12, 2012.

[3] L. Andersson and T. Madsen. Provider Provi-
sioned Virtual Private Network (VPN) Termi-
nology. RFC 4026 (Informational), Mar. 2005.

[4] Antonio, C. and Luca, F. A DDS-compliant P2P
infrastructure for reliable and QoS-enabled data
dissemination. 2009.

[5] B. Davie and A. Charny and J.C.R. Bennet and
K. Benson and J.Y. Le Boudec and W. Court-
ney and S. Davari and V. Firoiu and D. Stil-
iadis. An Expedited Forwarding PHB (Per-Hop
Behavior), 2002.

[6] J. Balasubramanian, S. Tambe, B. Dasarathy,
S. Gadgil, F. Porter, A. S. Gokhale, and D. C.
Schmidt. NetQoPE: A Model-Driven Network
QoS Provisioning Engine for Distributed Real-
time and Embedded Systems. pages 113–122,
2008.

[7] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An Architecture for
Differentiated Service. IETF RFC 2475, 1998.

[8] P. Boonma and J. Suzuki. TinyDDS: An In-
teroperable and Configurable Publish/Subscribe
Middleware for Wireless Sensor Networks, chap-
ter 9, pages 206–231. IGI Global, June 2010.

[9] G. Camarillo and P. Kyzivat. Update to the
Session Initiation Protocol (SIP) Preconditions
Framework. RFC 4032, 2005.

[10] G. Camarillo, B. Marshall, and J. Rosenberg.
Integration of Resource Management and SIP.
IETF Internet Draft, 2002.

[11] G. Camarillo, W. Marshall, and J. Rosenberg.
Integration of Resource Management and Ses-
sion Initiation Protocol (SIP). RFC 3312, 2002.

[12] B. Cao, J. Yin, S. Deng, Y. Xu, Y. Xiao, and
Z. Wu. A highly efficient cloud-based architec-
ture for large-scale stb event processing: indus-
try article. In Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-Based
Systems, DEBS ’12, 2012.

[13] R. Carlos, L. S. Rito, Álvarez Sabucedo Luis M.,
and C. Paulo. An ontology for managing network
services quality. Expert Syst. Appl., 39(9), July
2012.

[14] S.-Y. Chae, S. Ahn, K. Kang, J. Kim, S. Lee, and
W.-t. Kim. Fast discovery scheme using dht-like
overlay network for a large-scale dds. In Control
and Automation, and Energy System Engineer-
ing, volume 256. 2011.

[15] Chen, Jaime and Dı́Az, Manuel and Rubio,
Bartolomé and Troya, José M. PS-QUASAR:
A publish/subscribe QoS aware middleware for
Wireless Sensor and Actor Networks. J. Syst.
Softw., 86(6), June 2013.

[16] M. Cinque, C. Di Martino, and C. Esposito. On
data dissemination for large-scale complex criti-
cal infrastructures. Computer Networks, 2011.

[17] CORBA-OMG. Common Object Request Bro-
ker Architecture (CORBA/IIOP). Object Man-
agement Group, Inc.

[18] B. Dasarathy, S. Gadgil, R. Vaidyanathan,
A. Neidhardt, B. Coan, K. Parmeswaran,
A. McIntosh, and F. Porter. Adaptive network
QoS in layer-3/layer-2 networks as a middleware
service for mission-critical applications. JSS, 80,
2007.

[19] B. Dasarathy, S. Gadgil, R. Vaidyanathan,
K. Parmeswaran, B. Coan, M. Conarty, and
V. Bhanot. Network QoS Assurance in a
Multi-Layer Adaptive Resource Management
Scheme for Mission-Critical Applications using
the CORBA Middleware Framework. IEEE.
RTAS, 2005.

[20] S. Deering. Host extensions for IP multicasting.
RFC 1112 (Standard), 1989.

31

[21] S. Deering and D. Cheriton. Host groups: A mul-
ticast extension to the Internet Protocol. RFC
966, 1985.

[22] Dianes, J. A. and Diaz, M. and Rubio, B. Using
standards to integrate soft real-time components
into dynamic distributed architectures. Comput.
Stand. Interfaces, pages 238–262, 2012.

[23] S. R. E., L. J. P., R. Craig, S. D. C., K. Yamuna,
and I. Pyarali. Flexible and adaptive qos control
for distributed real-time and embedded middle-
ware. In Proceedings of the ACM/IFIP/USENIX
2003 International Conference on Middleware,
Middleware ’03, pages 374–393, 2003.

[24] M. Femminella, R. Francescangeli, F. Giacinti,
E. Maccherani, A. Parisi, and G. Reali. Scala-
bility and performance evaluation of a jain slee-
based platform for voip services. In Teletraf-
fic Congress, 2009. ITC 21 2009. 21st Interna-
tional, pages 1–8, 2009.

[25] M. Femminella, R. Francescangeli, E. Mac-
cherani, and L. Monacelli. Implementation and
performance analysis of advanced it services
based on open source jain slee. In Local Com-
puter Networks (LCN), 2011 IEEE 36th Confer-
ence on, pages 1–8, 2011.

[26] M. Ge, S. V. Krishnamurthy, and M. Faloutsos.
Application versus network layer multicasting in
ad hoc networks: the alma routing protocol. Ad
Hoc Netw., 4(2), 2006.

[27] Gerardo Pardo-Castellote. OMG Data Distribu-
tion Service: Architectural Overview. ICDCSW,
2003.

[28] Gill, C. D. and Gossett, J. M. and Corman,
D. and Loyall, J. P. and Schantz, R. E. and
Atighetchi, M. and Schmidt, D. C. Integrated
Adaptive QoS Management in Middleware: A
Case Study. Real-Time Syst., 29:101–130, 2005.

[29] P. Grace, D. Hughes, B. Porter, G. S. Blair,
G. Coulson, and F. Taiani. Experiences with

open overlays: a middleware approach to net-
work heterogeneity. SIGOPS Oper. Syst. Rev.,
42, 2008.

[30] A. Hakiri, P. Berthou, A. Gokhale, D. Schmidt,
and T. Gayraud. Supporting End-to-end Scala-
bility and Real-time Event Dissemination in the
OMG Data Distribution Service over Wide Area
Networks. Submitted to Elsevier Journal of Sys-
tems Software (JSS), May 2013.

[31] M. Handley, V. Jacobson, and C. Perkins. SDP:
Session Description Protocol. RFC 4566 (Pro-
posed Standard), July 2006.

[32] M. Handley, H. Schulzrinne, E. Schooler, and
J. Rosenberg. SIP: Session Initiation Protocol.
RFC 2543, 1999.

[33] M. Hosseini, D. Ahmed, S. Shirmohammadi, and
N. D. Georganas. A survey of application-layer
multicast protocols. Communications Surveys
Tutorials, IEEE, 9, 2007.

[34] G. Hunt. DDS Use Cases: Effective Application
of DDS Patterns and QoS. In OMG’s Workshop
on Distributed Object Computing for Real-time
and Embedded Systems, Washington, D.C., July
2006. Object Management Group.

[35] X. Jin, K.-L. Cheng, and S.-H. G. Chan. Island
multicast: combining ip multicast with overlay
data distribution. IEEE Transactions on Multi-
media, 11(5), 2009.

[36] W. Kang, K. Kapitanova, and S. H. Son. Rdds:
A real-time data distribution service for cyber-
physical systems. Industrial Informatics, IEEE
Transactions on, 8, 2012.

[37] J. M. Lopez-Vega, J. Povedano-Molina,
G. Pardo-Castellote, and J. M. Lopez-Soler.
A content-aware bridging service for publish/-
subscribe environments. J. Syst. Softw., 86,
2013.

[38] Lu, Xinjie and Yang, Tian and Liao, Zaifei and
Li, Xin and Wang, Yongyan and Liu, Wei and
Wang, Hongan. A Novel QoS-Enable Real-Time
Publish-Subscribe Service. ISPA ’08, 2008.

32

[39] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, and J. Rexford.
OpenFlow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communi-
cation Review, pages 69–74, 2008.

[40] Mingozzi et al. EuQoS: End-to-End Quality
of Service over Heterogeneous Networks. IFIP,
Comput. Commun., 2009.

[41] K. Muthukrishnan and A. Malis. A Core MPLS
IP VPN Architecture. RFC 2917, 2000.

[42] OASIS. Web Services Brokered Notification Ver-
sion 1.3. http://www.oasis-open.org/, 2006.

[43] Object Management Group. The real-time
publish-subscribe wire protocol dds interoper-
ability wire protocol (ddsi), 2009.

[44] OMG-DDS. Data Distribution Service for Real-
Time Systems Specification. Object Management
Group, Inc, 2007.

[45] OMG Specification. IDL Language Mapping
Specifications. OMG specification, 2013.

[46] P. Owezarski, P. Berthou, Y. Labit, and
D. Gauchard. LaasNetExp: a generic polymor-
phic platform for network emulation and experi-
ments. 4th International Conference on Testbeds
and Research Infrastructures for the Develop-
ment of Networks and Communities, Mar. 2008.

[47] Y. Park, D. Chung, D. Min, and E. Choi. Mid-
dleware integration of dds and esb for inter-
connection between real-time embedded and en-
terprise systems. In G. Lee, D. Howard, and
D. lzak, editors, Convergence and Hybrid Infor-
mation Technology, volume 206. Springer Berlin
Heidelberg, 2011.

[48] P. R. Pietzuch and J. Bacon. Peer-to-peer over-
lay broker networks in an event-based middle-
ware. In Proceedings of the 2nd international
workshop on Distributed event-based systems,
DEBS ’03, 2003.

[49] J. Povedano-Molina, J. M. Lopez-Vega,
J. Sánchez-Monedero, and J. M. Lopez-Soler.
Instant Messaging Based Interface for Data
Distribution Service. XIII Jornadas de Tiempo
Real, 2010.

[50] E. Rosen and Y. Rekhter. BGP/MPLS IP Vir-
tual Private Networks (VPNs), 2006.

[51] J. Rosenberg and H. Schulzrinne. An Offer/An-
swer Model with Session Description Protocol
(SDP). RFC 3264, 2002.

[52] J. Rosenberg and H. Schulzrinne. Reliability of
Provisional Responses in Session Initiation Pro-
tocol (SIP). RFC 3262, 2002.

[53] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler. SIP: Session Initiation
Protocol. RFC 3261 (Proposed Standard), 2002.

[54] A. I. T. Rowstron, A. M. Kermarrec, M. Cas-
tro, and P. Druschel. SCRIBE: The Design of
a Large-Scale Event Notification Infrastructure.
pages 30–43, 2001.

[55] RTI Innovation. RTI Routing Service for DDS,
2010.

[56] S. Salsano. COPS Usage for Diffserv Resource
Allocation (COPS-DRA). IETF Draft, 2001.

[57] Sebastian Marius Rosu and George Dragoi. VPN
Solutions and Network Monitoring to Support
Virtual Teams Work in Virtual Enterprises, vol-
ume 8. 2011.

[58] T. Brethour and K. Gibbs. Jperf version 1.0 The
Iperf Front End, 2003.

[59] L. Veltri, S. Salsano, and D. Papalilo. Sip exten-
sions for qos support in diffserv networks. IETF
Draft, draft-veltri-sip-qsip-00, October 2000.

[60] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan,
K. Birman, R. Burgess, G. Chockler, H. Li, and
Y. Tock. Dr. multicast: Rx for data center com-
munication scalability. In Proceedings of the 5th
European conference on Computer systems, Eu-
roSys ’10, 2010.

33

[61] N. Wang, D. C. Schmidt, A. Gokhale, C. Ro-
drigues, B. Natarajan, J. P. Loyall, R. E.
Schantz, and C. D. Gill. QoS-enabled Mid-
dleware. In Q. Mahmoud, editor, Middleware
for Communications, pages 131–162. Wiley and
Sons, New York, 2004.

[62] Y.-H. Wang, S.-H. Yang, A. Grigg, and J. John-
son. A dds based framework for remote integra-
tion over the internet. 7th Annual Conference
on Systems Engineering Research (CSER 2009),
April 2009.

[63] C. Zhang, Sadjadi, S. Masoud, S. Weixiang,
R. Raju, and D. Yi;. A user-centric network
communication broker for multimedia collabo-
rative computing. IEEE, CollaborateCom, 2006.

[64] L. Zhou, L. H. Ngoh, X. Shao, T. Chai, T. K.
Lee, and J. Teo. Ims service plane enabled
heterogeneous networks for multimedia applica-
tions. In GLOBECOM Workshops (GC Wk-
shps), 2010 IEEE, 2010.

34

	Introduction
	Background and Related Work
	Overview of the OMG Data Distribution Service (DDS)
	DDS Routing Service
	Related Work on DDS-based and Pub/Sub QoS Management
	Related Work on Other Middleware and Network-level QoS Management

	Supporting DDS QoS Policies over WANs
	Supporting DDS QoS Policies Efficiently and Scalably in WANs
	Challenge 1: Mapping DDS domains to network-level mechanisms
	Challenge 2: Enabling scalable multicast-based DDS discovery in WANs that cross IP network domain boundaries
	Challenge 3: DDS QoS provisioning with the DDS domain overlays that subsume multiple network domains is hard

	Supporting Enterprise DRE Systems over WANS using Proxy DDS and SIP Signaling
	Resolving Challenge 1: Create a Proxy DDS to Match Isolated DDS Domains
	Resolving Challenge 2: Interface Mapping between DDS and SIP
	Resolving Challenge 3: Supporting PubSub QoS properties over WAN

	Experimental Results and Discussions
	Hardware and Software Testbed and Configuration Scenario
	Evaluation of the Proxy DDS in a Best-Effort WAN
	Evaluating the Bridge-Federate Model
	Evaluation of the Proxy DDS

	Evaluation of the NetQSIP Framework
	Evaluation transmission delay
	Evaluation Session Establishment Delay
	Evaluating the QoS Setup Delay

	Concluding Remarks

