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Abstract New and planned mobile Internet devices,

such as Apple’s iPhone and Motorola’s Droid, have pow-

erful processors and a variety of sensors that can be

leveraged to build cyber-physical applications that col-

lect sensor data from the real world and communicate it

back to Internet services for processing and aggregation.

This paper presents a sampling of key R&D challenges

facing developers of mobile cyber-physical applications

that integrate with Internet services and summarizes

emerging solutions that address these challenges. For

example, application software should be architected to

conserve power, which motivates R&D on tools that can

predict the power consumption characteristics of an ar-

bitrary mobile software architecture. Other R&D chal-

lenges involve the relative paucity of work on software

and sensor data collection architectures that cater to the

powerful capabilities and cyber-physical aspects of mo-

bile Internet devices, which motivates R&D on archi-

tectures tailored to the latest mobile Internet devices.
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1 Introduction

Emerging trends and opportunities. Mobile Inter-
net devices, such as the iPhone and Google Android-

based phones (such as the Motorola Droid), have be-

come incredibly popular. For example, Apple has sold

over 33.8 million iPhones. The Motorola Droid phone
sold over 400,000 units in its first week. The prolifer-

ation of these devices is expected to increase, e.g., the

Android platform will likely be available on 12 phones

in 26 different countries within a year.

The broad dissemination of these mobile Internet

devices, their accelerated processing power, and perva-

sive cellular connections make them ideal platforms for
building novel mobile cyber-physical applications that

process and react to data from external stimuli and

make decisions that also impact the physical world [31].

For example, cyber-physical applications can sense en-
vironmental stimuli from a device’s ambient light sen-

sors, accelerometers, GPS sensors, audio recorders, and

imaging systems, e.g., a device’s accelerometers can de-

tect traffic accidents and dispatch first-responders to

aid victims [32,15]. Cyber-physical applications can also
use a device’s WiFi and cellular networking connec-

tions to relay data back to Internet services for fur-

ther processing. When cyber-physical applications are

combined with Internet services they can leverage con-
text information the user environment, as well as social

network information derived from the user’s contacts,

Facebook account, and other social databases.
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Fig. 1 Mobile Cyber-physical Application to Detect and Report
Traffic Accidents

R&D efforts are tapping into the significant poten-
tial of these devices. For example, developers have built

cyber-physical applications and Internet services to de-

tect and track user activities for health purposes [28],

track and analyze CO2 emissions [10], detect traffic ac-

cidents and provide situational awareness services to
first responders [15] (shown in Figure 1), measure traf-

fic and derive road quality [27,23], and monitor cardiac

patients [17].

Developing cyber-physical applications and Internet

services for the new generation of mobile Internet de-

vices is an important emerging area that has not yet re-

ceived extensive coverage in the R&D community. The
new devices are significantly more sophisticated than

prior mobile phones and handheld computing devices,

which enables developers to create more sophisticated

applications. In particular, the current generation of

mobile Internet devices contain more processing power
and memory, as well as complex sensors and sensor in-

tegration platforms, that can be used to build cyber-

physical applications.

Building cyber-physical applications atop mobile In-

ternet devices offers a range of benefits compared to

developing specialized hardware and software solutions

with equivalent functionality. Maintenance of customized
hardware and software solutions, such as wireless sensor

networks, has historically been a key issue that must

be addressed [19]. Not only must sensors be kept in

working order, but they must also be supplied with ad-

equate battery power. In contrast, cyber-physical ap-
plications based on mobile Internet devices can rely

on their owners to maintain and charge the devices.

Complex networking strategies have also been required

in traditional custom hardware solutions to communi-
cate data back to base stations for compute-intensive

processing [20]. Mobile cyber-physical applications can

communicate with Internet services using standard IP

networking to transmit data for aggregation and receive

processed results.

Another promising area for cyber-physical applica-

tions built on mobile Internet devices is their ability to
travel with their owners and take measurements at mul-

tiple locations throughout the day. Conventional sensor

network nodes are often stationary due of the tremen-

dous power cost of movement. Moreover, monitoring
human-centered phenomena, such as traffic congestion,

is far easier when the sensors travel with mobile Inter-

net device users.

Open R&D challenges. Despite the benefits of

building mobile cyber-physical applications on top of

mobile Internet devices and Internet services, there are

a number of open R&D challenges limiting their devel-

opment and deployment. This paper presents a sam-
pling of key R&D challenges for mobile cyber-physical

applications and supporting Internet services, including

the following:

1. Optimizing power consumption early in the ap-

plication development life-cycle. It is hard to predict

how cyber-physical software architectures will con-
sume battery power early in the development life-

cycle, which makes it expensive and time-consuming

to develop applications that can run for extended

periods of time on a mobile Internet device.
2. Avoiding costly overprovisioning to support In-

ternet data processing services for mobile cyber-

physical applications is hard since average process-

ing loads can be significantly lighter than peak load.

Moreover, overprovisioning for occasional peak loads
wastes resources for common usage conditions.

3. Addressing platform variations, which compli-

cates cyber-physical application development. De-

veloping a configurable cyber-physical software prod-
uct for a wide range of targets is hard due to the

variations between target platforms, the difficulty

of optimizing the software for each platform, and

the complexity of determining that non-functional

constraints are met.
4. Integrating external sensors to exploit the ben-

efits of co-existing conventional sensor solutions and

emerging cyber-physical applications. The different

resource constraints and device capabilities of mo-
bile Internet devices and traditional sensor platforms

complicate the seamless integration and collective

evolution of heterogeneous sensor networks.

This paper summarizes efforts by ourselves and others

to address these challenges.

Paper organization. The remainder of this paper

is organized as follows: Section 2 summarizes a moti-

vating example of a cyber-physical application and sup-
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Fig. 2 The WreckWatch Traffic Accident Detection Application
for Mobile Internet Devices

porting Internet services for detecting traffic accidents

we developed; Section 3 explores a sampling of key R&D

challenges and solutions based on our motivating ex-

ample; Section 4 describes other emerging R&D oppor-
tunities in mobile cyber-physical systems and Internet

services; and Section 5 presents concluding remarks.

2 Motivating Example: WreckWatch

To motivate the capabilities available to mobile cyber-

physical applications built on Internet devices, this sec-
tion describes the structure and functionality of Wreck-

Watch, which is multi-tier cyber-physical application

for detecting traffic accidents. WreckWatch is one of nu-

merous open-source1 sensor mobile cyber-physical ap-

plications we developed on the Google Android and
iPhone platforms. We use WreckWatch as a motivating

example in this paper since the range of challenges we

faced to develop it are representative of gaps in current

R&D efforts to develop mobile cyber-physical applica-
tions and supporting Internet services.

WreckWatch is based on the premises that mobile

Internet devices now contain sufficiently sophisticated

sensors and networking capabilities that software appli-

cations can be built on top of them to serve as portable
black boxes. These black boxes that can travel with

drivers to help detect traffic accidents and provide crit-

ical situational awareness information to first respon-

ders. Unlike existing traffic accident detection systems,
such as OnStar, WreckWatch is not tethered to a partic-

ular vehicle and can be travel seamlessly with its owner.

WreckWatch runs as a background service on Google

Android and polls the accelerometer and GPS for cur-

rent speed and acceleration information. At speeds above

1 WreckWatch and our other applications for mobile Internet
device sensor networks are available in open-source form from
code.google.com/p/vuphone.

Fig. 3 The Wreckwatch Communication Paradigm

a predefined threshold, WreckWatch starts feeding speed

and deceleration information into a mathematical acci-

dent prediction model. If the model indicates that the
current pattern of deceleration and speed is indicative

of a traffic accident, WreckWatch reports the accident

to a central accident response server.

As shown in figure 2, WreckWatch does not immedi-

ately report the accident to the central server. Instead,

a dialog is presented to the user asking if an accident

has actually occurred so users can cancel an accident

report for a false positive. If the user does not respond
to the dialog before a predetermined timeout, Wreck-

Watch proceeds with the accident report.

WreckWatch uses a phone-based client and a central
Internet service to disseminate accident information to

first responders, emergency contacts derived from so-

cial data, and other motorists using a variety of voice

and data channels. Reported accidents are plotted by
the Internet service on Google Maps and made available

to first responders and other motorists via the Wreck-

Watch client application. The central accident report-

ing service uses the Asterisk Private Branch Exchange

(PBX) so it can automatically place emergency calls to
911 and dynamically provision an accident hot-line for

friends and family of the accident victims. WreckWatch

can also be configured to automatically send text mes-

sages to a list of emergency contacts with the emergency
hotline when wrecks occur.

Motorists can use WreckWatch’s multimedia upload

capabilities to provide first responders with detailed vi-
sual and audio information about wrecks. Likewise, ac-

cident bystanders can use their devices camera to take

pictures of the accident and share them via the cen-

tral server with first responders, as shown in figure 3.

Video can also be captured and made available to first
responders. WreckWatch’s ability to use networks of by-

standers to submit imagery of accidents helps improve

its cyber-physical capabilities.

3 Overview of R&D Challenges and Solutions

The capabilities of WreckWatch described in Section 2

incur a number of demands on the software architec-
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ture and Internet services that support it, e.g., careful

design is required to ensure it does not consume too

much power, overconsume network bandwidth, or over-

whelm central servers. This section describes a sampling

of these key R&D challenges and presents promising so-
lution approaches that we and others are developing to

address these R&D gaps. We selected these challenges

based on our experience developing WreckWatch and

other mobile cyber-physical applications and support-
ing Internet services described in Section 4.

3.1 Challenge: Optimizing Power Consumption of

Mobile Cyber-physical Software Early in the Lifecycle.

Context. Current mobile Internet devices have signif-

icantly increased processing capabilities, but this com-

putational power can easily be used by cyber-physical
software at the expense of increased power consump-

tion. Whereas simple applications written for previ-

ous generation devices could easily consume power slow

enough for devices to function for days between charges,

current mobile cyber-physical applications use so many
sensor that device batteries can be exhausted quickly,

e.g., the Apple iPhone specification lists the maximum

battery life with continuous 3G data connection usage

at 5 hours. When a mobile cyber-physical application
combines heavy processor usage with power drain from

a combination of sensors and data transfer, battery life

can be very short.

For example, WreckWatch runs continuously as a

background service on Google Android. In some of our
initial implementations, the highest possible update rate

provided by Android was used to receive GPS location

updates. The combination of processor usage for our

accident prediction model and GPS polling was able to
completely drain the battery of an HTC G-1 developer

phone in under two hours. Clearly, for a cyber-physical

traffic accident detection application that is designed

to be always on, this rate of power drain was a major

defect.

On software platforms that support multi-tasking,

such as Google Android and Palm Pre devices, cyber-

physical software may be required to share power, com-

puting, and sensor resources with multiple other ap-

plications. The cyber-physical software must not only
draw power slowly enough for the device to remain

charged for a full day but it must also do so while the

user places phone calls, browses the web, and checks

email. It is critical that cyber-physical software be de-
signed so that it does not become such a significant

power burden on a device that owners are unwilling to

run it.

Fig. 4 Layering of Middlware and OS Abstractions

Open problems. A major challenge for developers

of mobile cyber-physical applications is that it is hard

to predict the power consumption of a software archi-
tecture early in the development process. Our experi-

ence with WreckWatch showed that the sensor software

must be implemented, deployed, and tested on the tar-

get hardware to determine its power consumption char-

acteristics. This inability to predict power consumption
during the design stage was problematic since design

changes late in the development process are more costly.

Many hard-to-predict platform factors play a role in

determining how a particular software design consumes

power. Middleware and OS decisions on task scheduling

and memory utilization can affect a software architec-
ture consumes power [11]. Networking implementation

details, such as design decisions in the MAC layer of

the OS [1], can also play an important role. Moreover,

diversity in hardware (such as variation in sensors) can

consumer power at different rates across devices. Using
GPS on one device may be much more costly than on

another.

Conventional cyber-physical systems with custom

hardware and software typically use lightweight OS and

middleware layers, such as TinyOS [18], that provide

low-level programming APIs that tightly-couple the soft-
ware to the hardware. This minimalistic approach com-

plicates software development, but allows for more con-

trol over how power is consumed. The increased control

over how power is consumed makes it easier for devel-

opers to forecast power consumption.

In contrast, cyber-physical applicatons built on mo-

bile Internet devices are perched atop an intricate set of
OS and middleware layers that expose high-level APIs

to developers and simplify software development. Fig-

ure 4 shows Android’s layers of middleware and net-
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work stack abstractions and serves to show the diffi-

culty associated with predicting the power consumption

of each layer. For most applications, such as games or

user productivity applications that are not concerned

with power consumption, these higher-level APIs are
ideal. For cyber-physical applications that must con-

servatively consume power and always be on, these in-

termediate layers of abstraction make managing power

consumption harder.
Emerging solution → Model-driven power con-

sumption analysis. Model-driven engineering (MDE)

tools [30] help specify high-level cyber-physical soft-

ware architectures rapidly and then generate architec-

ture emulation code to run on target devices and to ob-
tain rough estimates of power consumption. By utilizing

MDE tools along with device- or platform-specific code

generation, it becomes possible to address the challenge

of predicting mobile cyber-physical application power
consumption early in the development cycle. These MDE

tools allow developers to analyze and evaluate poten-

tial designs on a physical device before comiting to a

specific architecture.

For example, the System Power Optimization Tool

(SPOT) [32] is an MDE tool that models mobile soft-

ware architectures and generates emulation code. SPOT

utilizes a visual modeling environment, based on the

Eclipse IDE, to allow developers to model the high-
impact aspects of their designs before any implementa-

tion is performed. Designers can specify sensor, CPU,

networking, and OpenGL utilization. SPOT then gen-

erates Java code for Android devices that allows devel-

opers to run and analyze their designs without the over-
head of implementing them by hand. It also allows de-

velopers to perform continuous integration testing [13]

by substituting actual cyber-physical application logic

for generated emulation code as the application logic
is developed. Using this continuous integration process,

developers can increase the overall accuracy of their

models as development progresses.

SPOT provides developers with a rough idea of how

their design will perform as early and with as little
overhead as possible. This MDE tool also addresses the

problems associated with seeing through multiple lay-

ers of abstraction to predict power consumption. Since

SPOT produces actual device code, speculation of how
these layers will affect power consumption is unneces-

sary because middleware interaction is accounted for in

the resulting data.

3.2 Challenge: Avoiding Costly Overprovisioning.

Context. Although the computational ablities of mo-

bile Internet devices have improved significantly, many

cyber-physical data processing tasks, such as image pro-

cessing, are not suitable for a mobile application. Timely

completion of tasks, such as large-scale data process-

ing activities is not possible on mobile Internet devices

due to their limited amount of memory and processing
power compared to server infrastructure. For example,

data aggregation of terabytes of information or image

manipulation on thousands of multi-megapixel files, are

beyond the capabilities of a mobile Internet device.

One approach to handling tasks that cannot be ac-

complished by mobile applications is to use Internet

services to aggregate and process data for the mobile

cyber-physical applications. These Internet services run

on supporting servers in a cluster [29]. Data harvested
by cyber-physical applications from device sensors is

sent to these Internet servcies that aggregate and pro-

cess the data before sending the results back to the indi-

vidual devices, e.g., Microsoft’s Bing Maps aggregates
user-submitted photographs and combines them using

its Photosynth technology to create 3D maps viewable

on mobile phones.

For example, WreckWatch uses a centralized Inter-

net services to perform enhanced emergency response
services for the mobile Internet devices. WreckWatch’s

Internet service can collect and disseminate images and

video from an accident for emergency response teams.

WreckWatch’s Internet service also provides more com-
putationally taxing functions, such as the ability to dy-

namically provision emergency response VOIP hotlines

through its integrated Asterisk PBX. These features of

WreckWatch are only possible through the use of both

client-side accident detection and imaging code in the
mobile cyber-physical application and server-side media

aggregation and PBX functionality.

Open problems. Using Internet services to sup-

port mobile cyber-physical applications requires devel-

opers to confront the challenging problem of determin-
ing how to efficiently provision servers to run the ser-

vices. Conventional approaches to server provisioning,

such as worst-case capacity planning, over-engineer com-

puting platforms to ensure quality-of-service (QoS) re-
quirements are met during peak load conditions. Due to

the significant excess capacity built into the computing

platform, however, a significant amount of computing

resources are idle under non-peak load conditions. With

mobile cyber-physical applications, processing load may
change dramatically during the day as users become

stationary or go to sleep.

For example, WreckWatch’s peak loads are during

rush hour traffic periods when more cars are on the
road and more accidents occur. At night or when users

have finished their morning commutes to work, the sup-

porting Internet service is substantially less loaded. Un-
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planned for occurrences, such as professional sporting

events or bad weather, may also cause spikes in the pro-

cessing load of the Internet service that are far above

the average. This wide variation in processing load makes

it hard for developers to provision infrastructure that
can provide the critical low latency response time needed

by a cyber-physical system, but that also does not re-

quire costly overprovisioning.

As power consumption becomes an increasingly im-

portant issue, service providers will not be able to over-

provision as easily due to regulation and higher power

costs. In 2003, it was estimated that data centers con-
sumed 22Twh of power [22]. Power consumption and

cooling are only expected to become more important

and expensive for data centers in coming years [4].

Emerging solution → Cloud computing and

resource auto-scaling. Cloud computing is a new

paradigm that uses virtualization [5] to allow the dy-

namic provisioning of OS images in a data center. De-
velopers have traditionally needed to purchase individ-

ual hardware platforms for each OS image. With cloud

computing, virtual OS images are co-located on the

same hardware, allowing more efficient use of hard-

ware. These flexible OS image allocation techniques can
deploy Internet services into production environments

much faster and often reduce initial deployment cost.

Manually configured cloud computing environments,
however, are often inefficient platforms for Internet ser-

vices that support mobile cyber-physical applications.

For example, data processing loads to support mobile

cyber-physical applications have periods of increased
workload that are not always foreseen and fluctuate sig-

nificantly. Additional OS images must be deployed in

the cloud to handle these periods of increased activity.

When the workload subsides, however, the additional

OS images sit idle, wasting valuable resources, such as
power, and leads to higher costs.

Recently, computing clouds such Amazon’s Elas-
tic Compute Cloud (EC2) have introduced automated

cloud scaling [33]. EC2 uses auto-scaling to respond to

fluctuations in the computational needs of the Internet

service utilizing the cloud. For example, if a traffic ac-

cident occurs, WreckWatch’s Internet service could see
drastically increased loads. Figure 3.2 shows how au-

tomated cloud scaling allow on-demand deployment of

additional computational resources to handle increased

workloads. The type of OS image and resources de-
ployed can also be tailored for particular application

needs.

For example, if a supporting Internet service re-
quires substantially increased processing power—but

only marginally increased memory availability—then

an OS instance with precisely the needed resources can

Fig. 5 Cloud Computing Can Dynamically Scale Resource Al-
location to Meet Load

be provisioned. After the workload returns to the nor-

mal state, the additional resources are released. As a

result, the size of the cloud remains appropriate for the
current workload, regardless of unforeseen fluctuations,

thereby helping to minimize power consumption and

operational cost.

3.3 Challenge: Addressing Platform Variations

Context. Unlike the desktop and server operating sys-

tem market, it is unlikely that one smartphone oper-

ating system vendor will dominate. Gartner estimates
that Windows Mobile, Blackberry OS, iPhone OS, and

Google Android will each have roughly ≈13% of the

market in 2012. Symbian is expected to have the largest

share of the market with ≈30%. Developers will there-

fore need to develop and maintain cyber-physical appli-
cations that are targeted for multiple mobile Internet

device operating systems and versions.

For example, multiple versions of Google Android

were released during the development of WreckWatch.

Our development efforts initially targeted Android 1.0
and HTC’s G1, which was the only Android hardware

available at the time. Since the initial implementation

was finished, Android has released Android 1.5 and An-

droid 2.0. Moreover, there are now five different An-
droid devices by Motorola and HTC. Moreover, we have

begun the process of determining how to reimplement

WreckWatch on the iPhone.

Open problems. As shown in Figure 3.3, there is

significant complexity involved in managing the vari-
ability of cyber-physical software and determining the

appropriate software configuration for a given mobile

platform. For example, on Android, WreckWatch can
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Fig. 6 Complexities of Targeting Multiple Platforms

run as a background service in parallel with other ap-

plications. In contrast, WreckWatch cannot run concur-

rently with other applications on the current version

of the iPhone and must be redesigned as a modal ap-

plication. Each additional variation in platform design
increases the development complexity.

Even within a single OS platform there can be varia-

tions across versions and devices that add development
complexity. For example, the latest 2.0 release of An-

droid provides a Bluetooth API that can be used by

a cyber-physical application to communicate with ex-

ternal sensors, whereas prior versions did not. The 3.0

release of iPhone added the ability to have notifications
asynchronously delivered to applications that were not

running. This notification API makes notifying Wreck-

Watch client users of new accidents easier than on prior

versions of the iPhone OS.

Moreover, although mobile Internet devices have sign-

ficant processing capabilities, certain resources (such as

battery power) are still limited. It is therefore essential

to optimize the configuration of a mobile cyber-physical
application for each individual capability set of a type of

device. Adding this resource optimization consideration

into the configuration problem makes it even harder

to manage and develop multiple software versions. The
optimization process must also ensure that any non-

functional constraints on memory consumption or other

resources are met by the cyber-physical software’s con-

figuration.

Emerging solution → Mobile cyber-physical

application software product-lines. Software product-

lines (SPL) [6] are a promising approach for dealing

with the complexity of managing a mobile cyber-physical

application targeted for multiple mobile Internet device

platforms. An SPL is a software platform designed with

points of variability so it can be rapidly reconfigured for

different requirement sets. A critical component of an
SPL is a model of the points of variability and the rules

governing their configuration.

A common approach to modeling SPL variability is
called feature modeling [16]. A feature model uses a unit

of abstraction, called a feature, which may represent an

increment of product functionality or point of variabil-

ity. A feature model uses a tree-like structure to specify

the constraints on configuration.

A configurable mobile sensor software platform can

be created using SPL principles [36]. The SPL’s fea-

ture model provides a roadmap that explicitly captures

the complex rules needed to reconfigure the software
for multiple target OS, middleware, and hardware sets.

This model helps prevent developers from making hard-

to-diagnose configuration mistakes and decreases devel-

opment time for new platforms [36].

A key attribute of SPL feature models is that they

can be transformed into mathematical representations,

such as constraint satisfaction problems [3] or satisfia-

bility problems (SAT) [21]. Once in one of these mathe-
matical formats, optimized software configurations can

be derived that minimize cost, power, or other critical

properties [36]. This type of configuration optimization

allows developers to produce precisely crafted cyber-
physical software configurations for each target plat-

form that would be hard to discover manually.

New techniques for optimizing SPL configuration

using constraint and SAT solvers can produce good re-
sults for deriving highly optimized software designs [3,

21] that can improve battery life and reduce cost for

mobile cyber-physical application software. Moreover,

in some research endeavors, these SPL optimization
techniques have been shown to produce good results

for dynamic mobile software configuration at runtime,

which could help to rapidly setup highly optimized mo-

bile cyber-physical software deployments.

In some situations, such as when resource constraints

on memory or power are added, deriving SPL soft-

ware configurations using CSP or SAT techniques can

be time consuming. Some current approaches for this
use heuristic methods, such as Filtered Cartesian Flat-

tening [35], to derive configurations and drastically re-

duce solving time. These types of heuristic techniques

can be used to aid developers when the complexity

of the cyber-physical system’s resource or other non-
functional constraints cannot be tackled by existing CSP

or SAT techniques.
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Fig. 7 WreckWatch Integration with Heterogeneous External
Sensor Network

3.4 Challenge: Integrating External Sensors

Context. With the emergence of pervasive and ubiq-
uitous computing, everyday objects and activities will

contain embedded sensing, computing, and communica-

tion capabilities. These smart devices will increasingly

interact in networks to jointly perform computational

tasks. Conventional device networks dedicated to a sin-
gle application will have to open up, connect, and in-

teroperate with each other to allow multiple and new

applications to use their services. Devices may even be

required to discover each other dynamically and inter-
act in an ad hoc fashion. The integration of mobile In-

ternet devices with conventional sensor networks is one

example for these network-of-networks scenarios.

For example, Figure 7 shows how WreckWatch can

dynamically connect to a sensor network embedded in

the road or road-side units to deliver detailed informa-

tion on the road condition that led to the accident. It
can further establish an ad hoc communication link to

sensors attached to passengers to collect and integrate

health data that would allow for remote assessment of

the required medical aid.

Open problems. Most embedded devices have a

custom-made software and hardware platform that is

designed for a specific purpose. Mobile Internet devices
are made to stay online while on the move. These de-

vices are equipped with sufficient memory, processing,

and communication units to check emails, browse the

Web, and make phone calls.

Conventional sensor platforms are low-cost devices

deployed in a high density to monitor environmental

phenomena or to track objects. Compared to mobile
Internet devices, conventional sensor platforms are far

more restricted in terms of their storage and process-

ing capabilities, communication range, and power sup-

ply. Moreover, the operating system for conventional

sensor platforms differs considerably from mobile In-

ternet devices since conventional sensor platforms can

be recharged less often and controlling energy consump-

tion is a major concern.

The different device and network capabilities result

in incompatibility issues that make a seamless inte-
gration between cyber-physical applications and exter-

nal sensor networks a significant research challenge. In-

compatible communication links prevent today’s mobile

Internet devices from exchanging IP-based messages

with conventional sensor platforms via a low-power ra-
dio connection. Incompatibility followed from device

heterogeneity is traditionally overcome by proprietary

communication interfaces and gateway concepts.

Proprietary interfaces complicate the development

of new applications, however, because they require in-

depth knowledge of technical details [9]. Moreover, pro-

prietary interfaces cannot be reused when new devices
with different features are added. Application-level gate-

ways have been introduced to compensate for the lack

of a common language understood by all devices and

also to translate between the different message formats.

Moreover, communication via such an application-layer
gateway introduces an additional level of indirection

which bears extra configuration cost and hampers sys-

tem evolution [34][25].

Emerging solution → A service-oriented de-

vice architecture (SODA) [7] based on mature In-

ternet technology is a promising integration approach

for heterogeneous sensor networks. Physical devices in
a SODA can be modeled as a service that hides device-

specific implementation details behind well-defined, open

or standardized interfaces. A service consumer may ac-

cess and control a wide range of physical devices via

their service interfaces without being affected by the di-
versity of the underlying device-specific hardware, firm-

ware, and software.

There are two benefits of device-centric service-orient-

ed architectures when integrating external sensor. First,

services abstract from technical details and provide ready-

made building blocks that can be quickly combined to

build new applications [26]. Second, when physical de-
vices become available corresponding services can be

announced through which other devices can find out

about their capabilities [2].

Web services realize a service-oriented architecture

and have been successfully deployed as an integration

media for business systems and distributed applications.

They comprise a number of standards to define the de-
scription, registry, and communication of services. Web

services are poorly suited for embedded devices, how-

ever, since they are too resource-intensive. The Device
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Profile for Web Services (DPWS) [8] helps address this

drawback by defining a minimal set of implementa-

tion constraints to enable secure Web service messag-

ing, discovery, description, and eventing on resource-

constrained devices. For example, the DPWS restricts
the size and complexity of messages, provides an asyn-

chronous publish-subscribe mechanism, and allows for

dynamic service discovery.

These features make DPWS an ideal candidate on
which to base a solution for the seamless integration be-

tween mobile Internet devices and conventional sensor

networks. For instance, a service on the mobile Internet

device can dynamically send a message into a wireless

sensor network to discover available sensor platforms
and services they provide. The mobile Internet device

can then invoke all service that match its requirements

and aggregate the returned data with local sensor read-

ings. The use of XML as message exchange format and
the transmission via the Internet Protocol allow for

a communication independent from any device-specific

low-level interfaces.

Additional R&D is needed to enhance DPWS since

it does not fully address the constraints of conventional
wireless sensor networks. In particular, DPWS uses UDP-

/IP and TCP/IP for transmission, which is not natively

supported in low-power IEEE 802.15.4 based radio net-

works. IP support in wireless sensor networks is a pre-
requisite for using DPWS and the 6LoWPAN working

group explores encapsulation and compression mecha-

nisms to receive and send IP packets over IEEE 802.15.4

based networks.

Since DPWS uses XML as message exchange format
allowing for a standardized data exchange its verbosity

may require several radio packets to transmit a single

message. Design choices are being explored to minimize

the cost of providing structured data and functionality
description, such as compression and tag compacting

techniques [14] and HTTP-based service bindings [25].

In addition, Moritz et al. [24] propose adaptations and

enhancements to limit the number of exchanged DPWS

message for service discovery and meta data exchange.
Models such as these will improve the integration ca-

pabilities of heterogeneous sensor networks.

4 Emerging R&D Opportunities and

Challenges

The R&D challenges and solutions in Section 3 were

based on our WreckWatch application described in Sec-

tion 2. We are also creating other mobile cyber-physical
applications and supporting Internet services that are

in earlier stages of development. This section describes

the R&D challenges that have emerged in our ongoing

Fig. 8 An Augmented Reality Teaching Platform

work on these applications, but are not yet as well for-

mulated as the challenges and solutions presented in

Section 3.

4.1 Augmented Reality

Augmented reality (AR) is an emerging new area for

mobile cyber-physical systems and supporting Internet

services [12]. Previously, the ability to combine virtual

information with real world images was restricted to ex-

pensive instrumentation, such as heads up displays for
flight avionics or luxury automobiles. Recent advances

in the area of augmented reality allow the creation of

portable versions of these interfaces using smartphones.

Mobile cyber-physical AR systems use GPS receivers,

accelerometers, and compasses precisely capture the ori-

entation and actions of smartphone users and deduce
what the user is looking at. Virtual geotagged informa-

tion is then obtained, typically from an Internet ser-

vice, and overlaid across a smartphone’s camera dis-

play. Overlaying information on the display allows the
camera preview to serve as a looking glass that blends

virtual and real world imagery.

We are developing an AR system for creating Aug-

mented Reality Teaching Spaces (ARTS) in collabora-

tion with educators in the Humanities. The goal of this

project is to produce an AR platform that allows teach-
ers to use an Internet service to publish geotagged infor-

mation that students can see overlaid across real-world

imagery in a smartphone camera display. Figure 4.1

shows how this platform will be used to fuse assign-
ment information with real imagery from the Vander-

bilt campus. For example, biology, anatomy, geology, or

archeology instructors could mark up demonstrations
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with information that students can access in the labo-

ratory or the field. English classes could remediate lit-

erary works in virtual worlds that could be affected by

real world actions.

Already, new research challenges are being uncov-
ered in our development of AR projects. Interpreting

what the user is looking at based on compass and GPS

data requires very precise estimations and fast fetch-

ing of large geotagged datasets. Many existing cyber-
physical applications use custom hardware with high

accuracy sensors. We are finding that commodity smart-

phones have significant jitter in their sensor readings,

requiring the use of complex data filtering.

Additional R&D is therefore needed to investigate
strategies for handling the lower accuracy of commodity

sensors. Fetching geotagged datasets from an Internet

service fast enough to provide real-time AR is challeng-

ing with varying cellular connectivity and bandwidth.
We see the need to develop approaches for exposing

more physical heading information, such as location and

speed, to the supporting Internet services to more intel-

ligently deduce what data to send to the mobile cyber-

physical system.

4.2 Interaction with Social Networks.

Social networking platforms, such as Facebook and Twit-

ter, provide Internet services that can be used by mo-
bile cyber-physical applications to glean key social data

about users. Moreover, the latest mobile Internet de-

vice middleware platforms, such as the Palm Pre’s Web

OS, offer libraries that simplify access to these social
networking services. This type of social data can im-

prove cyber-physical applications in various ways, such

as WreckWatch’s ability to notify friends and family

when accidents occur.

Clearly, interacting with a user’s social network of-
fers significant possibilities for mobile cyber-physical

applications. At the same time, however, care must

be taken to ensure that any automated interactions

with the social network do not harm user reputations
or cause emotional damage to friends and family. As

shown in Figure 4.2, for example, in WreckWatch, there

is the potential for accident false positives to be de-

tected and notifications sent to emergency contacts.

WreckWatch takes great care to try and minimize the
chance that inccorrect accident reports are sent out but

cannot guarantee that mistakes will not be made.

Verification has been used to ensure physical safety

properties, such as that a plane will not crash due to
an unforeseen software state. Likewise, it is becoming

important to investigate how verification can be used in

the context of notifications to social networks. Although

Fig. 9 Accident False Positive Dissemination to Social Network

sending a notification of a non-existent accident from

WreckWatch to a user’s emergency contacts is not phys-

ically catastrophic, it is certainly damaging. Additional

R&D is therefore needed to investigate techniques for

verifying correct interactions with social networks when
the messages that are being sent have significant poten-

tial for producing a negative emotional impact.

4.3 Patient Diagnosis

Typical cyber-physical application for health care use

expensive proprietary hardware that it is not feasible
for a patient to take home. Mobile cyber-physical sys-

tems that can monitor patient health using onboard

sensors or connected external sensors can be produced

and delivered to patients much more affordably. More-

over, these mobile cyber-physical health systems can
use standard IP networking to send data back to Inter-

net services that aggregate information for doctors.

In current work, we are investigating the use of
smartphone accelerometers and networked Bluetooth

accelerometers to provide continual real-time monitor-

ing of the symptoms of Parkinson’s disease. As shown

in Figure 4.3, the mobile cyber-physical system that we

are developing will collect tremor characteristics from
patients and then relay this information to an Internet

service. Doctors will then use this service to see trends

in symptoms over the course of a day and adjust med-

ication dosages more precisely.

Collecting data from onboard smartphone sensors

is relatively easy for a mobile cyber-physical applica-

tion. In the case of our Parkinson’s monitoring appli-

cation or other applications that use multiple external
sensors networked through USB, Bluetooth, or other

means, processing and disseminating data in real-time

becomes much more challenging. Developers of cyber-
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Fig. 10 Mobile Cyber-physical System for Real-time Monitoring
of Parkinson’s Disease Symptoms

physical application must determine appropriate archi-

tectures that can buffer data when cellular connections
are unavailable yet not overrun device memory.

It is possible to perform some onboard processing

on the phone to reduce the amount of data that must
be transmitted from the phone to the Internet service

or buffered, but these approaches require carefully bal-

ancing processing load, data accuracy, and timeliness of

results. Additional R&D is therefore needed to develop

the software patterns and architectures to manage large
streams of external sensor data that must be processed

on by a mobile cyber-physical application and then sent

to a supporting Internet service.

5 Concluding Remarks

As mobile Internet devices continue to proliferate, the

benefits of using them as the foundation for novel new

cyber-physical applications is growing. Many types of
cyber-physical applications are easier to implement on

top of mobile Internet devices compared with conven-

tional large deployments of customized hardware and

software. Achieving this vision of building complex mo-

bile cyber-physical applications that leverage support-
ing Internet services requires solutions to key R&D chal-

lenges, including optimizing power consumption and

devising software architectures that leverage the increased

power of these devices.

Our work developing mobile cyber-physical applica-

tions in the context of WreckWatch and related projects

yielded the following lessons:

1. Platform variations make it hard to run cyber-

physical applications on a variety of devices.

By using SPL optimization techniques, however, cyber-

physical software variations that provide better power

consumption, cost, or other critical properties can

be derived to overcome this challenge.

2. Using cloud computing and auto-scaling to

dynamically allocate computation resources

to Internet services that support mobile cyber-

physical systems is an efficient methodology

for maintaining system performance. Applying

auto-scaling techniques also provides reductions in

system cost and power consumption in comparison
to statically provisioned hardware setups.

3. It is hard to integrate mobile Internet devices

with conventional sensor networks. Solving the

incompatibility issues caused by device heterogene-

ity with a service-oriented device architecture is a
promising direction to increase the integration ca-

pabilities of heterogeneous sensor platforms.

4. Individual mobile devices are prone to unex-

pected unavailability. Fluctuating environmental
conditions, geographical areas of limited coverage,

and a battery exhaustion can cause mobile devices

to become unavailable unexpectedly, making addi-

tional R&D into handling failures important.

Mobile cyber-physical applications supported by In-

ternet services for data aggregation and processing offer

an exciting new paradigm for distributed computing.
The computational potential of utilizing such devices

will continue to increase as devices become cheaper,

more widely available, and more powerful. Our goal in

this paper was to present the R&D challenges we found
most pressing throughout the development of our mo-

bile cyber-physical applications. There are clearly other

challenges that are faced when developing mobile cyber-

physical applications and supporting Internet services
that we could not cover in this paper. We look forward

to working with others in the R&D community to iden-

tify and resolve these challenges.
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