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Abstract— Several adaptation approaches, such as policy-basedthe environment and can be optimized to ensure efficient
and reinforcement learning, have been devised to ensure end performance. The complexity of developing and maintaining
to-end quality-of-service (QoS) for enterprise distribued sys- policy-based approaches for enterprise DRE systems can be

tems in dynamic operating environments. Not all approaches X - .
are applicable for distributed real-time and embedded (DRB unacceptably high, however, since developers must determi

systems, however, which have stringent accuracy, timeliss, Which policies are applicable for certain environmentagar
and development complexity requirements. Supervised madahe erties. Moreover, developers must manage how the policies
learning techniques, such as artificial neural networks (ANNs), interact to provide needed adjustments.

are a promising approach to address time complexity concemof Machine learning techniques support algorithms that allow

adaptive enterprise DRE systems. Likewise, ANNs address ¢h - . LS .
development complexity of adaptive DRE systems by ensuring SYSI€MS to adjust behavior based on empirical dagg,inputs

that adaptations are appropriate for the operating environment. ~ from the environment. These techniques can be used to suppor
This paper empirically evaluates the accuracy and timelines of autonomic adaptation by learning appropriate adjustments
the ANN machine learning technique for environments on whib  to various operating environments. Unlike policy-based ap
it has been trained. Our results show ANNs are highly accura 55 5ches, however, machine learning techniques autcaigtic
in determining correct adaptations and provide predictable time . . .
complexity, e.g., with response times less than G.seconds. reCOQn'Z_e comp_le_x sets of e_nv'ronment properties and make
appropriate decisions accordingly.
|. INTRODUCTION Conventional machine learning techniques, such as deci-

Emerging trends and challenges.Enterprise distributed sion trees and reinforcement learning, have been used to
real-time and embedded (DRE) systems manage resourcesautess autonomic adaptation for non-DRE systems [3].€Thes
data that are vital to the ongoing objectives of organizetiotechniques are not well-suited for enterprise DRE systems,
or projects. Examples include shipboard computing envirohowever, since they do not provide bounded times when
ments, air traffic management systems, and recovery opedatermining adjustments [4]. Some techniques, such as re-
tions in the aftermath of regional or national disasterseseh inforcement learning [6], explore the solution space uatil
enterprise DRE systems often adjust the way they operaigpropriate solution is found, regardless of the elapsed.ti
depending on their external environment. For example cheaOther technigues, such as decision trees, have time complex
and rescue missions as part of disaster recovery opera@nsities that are dependent upon the specific data and cannot be
adjust the image resolution used to detect and track susvivdetermineda priori. Moreover, decision trees may contain
depending on the resources availal#eg( computing power, branches that are much longer than others, which can make
network bandwidth) [5]. the determination of appropriate adaptations unpredietab

Many enterprise DRE systems autonomically (1) monitan undesirable quality in DRE systems.
their environment and (2) modify their modes as the envi- Solution approach — Overfitted machine learning to
ronment changes since manual adjustment is too slow aguide QoS-enabled middleware adaptationMachine learn-
error prone. For example, a shift in network reliability caing uses guidance from past known environments to handle
prompt quality-of-service (QoS)-enabled middlewarehsas new and unknown environments. This generality sacrifices
the OMG Data Distribution Service (DDSMiw. omgwi ki . some accuracy, however, that would otherwise be provided
or g/ dds) , to change mechanisms (such as the transport uged known environments. Machine learning techniques that
to deliver data) since some transports provide betterhiéitia are specialized for the environments they have seen—and on
than others in some environments. Likewise, cloud comgutimhich they have been trained—are said to dwerfitted[2],
applications where elastically allocated resourceg,(CPU which reduces development complexity and makes the accu-
speeds and memory) cannot be characterized accuratelyacy comparable to policy-based approaches.
priori may need to adjust to available resources (such as usinghis paper describes an overfitted machine learning ap-
compression algorithms optimized for given CPU power argtoach we tailored to reduce the complexity of developing
memory) at system startup. If adjustments take too long thatonomically adaptive enterprise DRE systems. In pdaicu
mission(s) the system implements could be jeopardized. we are tuning arartificial neural network(ANN) [7] (which

One way to adapt enterprise DRE systems autonomicailtya technique modeled on the interaction of neurons in the
involves the use gbolicy-basedpproaches [1] that externalizehuman brain) to retain as much information about specific
and codify logic to determine the behavior of managed sysnavironment configurations and adjustments as posség (
tems. Policy-based approaches provide deterministioresp greatly increasing the number of connections between input
times to perform appropriate adjustments given changesednvironment characteristics and output adjustments ajlpic



used in an ANN). OurADAptive Middleware And Network determination accurately into implementation artifactsg(
Transports(ADAMANT) work presented in this paper inte- source code). The manual management of mapping between
grates the ANN machine learning technique with the DD&nvironment and protocol is tedious and error-prone, which
QoS-enabled middleware to ensure accurate, timely, and prereases development complexity.

dictable adaptation to operating environment changedh s - . . .
as an increase in the data sending rate or number of d taChaIIenge 2: Timely Adaptation to Dynamic Environments

receivers. Due to the dynamic environment inherent in enterprise DRE
systems, application operations (such as image compressio
Il. MOTIVATING EXAMPLE - SEARCH AND RESCUE(SAR)  to reduce network traffic or disseminating data with both
OPERATIONS FORDISASTERRECOVERY timeliness and reliability properties) must adjust in a ed

To motivate the need for overfitting machine learningmely—ideally constant time—manner as the environment
techniques, this section describes the challenges ammbci@hanges_ Operations that cannot adjust quickly and in a
with search and rescue (SAR) operations. SAR operatioghsunded amount of time will fail to perform adequately when
are part of disaster recovery enterprise DRE systems Whigources change.g, if resources are lost or withdrawn—
manage relief efforts in the aftermath of a disaster, sugh demand for information increases—operations must be
as a hurricane, earthquake, or tornado. SAR operations hg#nfigured to accommodate these changes with appropriate
locate and extract survivors in a large metropolitan aréer afresponsiveness to maintain a minimum level of service. If
a regional catastrophe. SAR operations use unmanned ag@aburces increase or demand decreases, operations should
vehicles (UAVs), existing operational monitoring infrastture  adjust as quickly as possible to provide higher fidelity oreno

(e.g, building or traffic light mounted cameras intended fogxpansive coverage. Manual modification is often too slod an
security or traffic monitoring), and (temporary) datacesite error-prone to maintain QoS.

receive, process, and transmit event stream data from Isenso
and monitors to emergency vehicles that can be dispatchedtoChallenge 3: Accurate Adaptation to Dynamic Environ-
areas where survivors are identified. ments

Figure 1 shows an example SAR scenario where infraredApplication operations in enterprise DRE systems must
scans along with GPS coordinates are provided by UAVs ah@ able to adjust to changes in the environment accurately.
video feeds are provided by existing infrastructure camerd\S changes in enterprise DRE systems oceug,(increases
These infrared scans and video feeds are then sent tdnahetworking capability, requests for data from additiona
datacenter, where they are processed by fusion applisatiion senders and receivers, etc.), the system should take ageant
detect survivors. Once a survivor is detected the appﬁnatiOf additional resources or provide access to additionah dat
can develop a three dimensional view and highly accurdoducers and consumers while maintaining or increasing

position information so that rescue operations can commen@0S. For a given environment configuration, the enterprise
DRE system must accurately implement adjustments that are

appropriate to the operating environment.

M e
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to increase accuracy in determining appropriate adjudsnen
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Infrastructure camera providing video stream victims such as adjustments to transport protocols to support QoS in
dynamic environments. This approach enables enterpride DR
Fig. 1. Search and Rescue Motivating Example systems to autonomically adjust to their environments.évior

c S over, we leverage techniques that provide the time comiylexi
IIl. KEY CHALLENGES OF ENTERPRISEDRE SYSTEMS assurance needed for enterprise DRE systems.

Below we summarize key challenges that arise when devel-our overfiting approach tunes an ANN to retain a high

oping a_lutonom|c en_terpnse_ DRE systems, such as the S’éggree of information about specific environment configura-
motivating example in Section Il. tions and adjustment®.g, increasing the number dfidden
A. Challenge 1: Reduction of Development Complexity =~ nodesused in an ANN. Hidden nodes are the computational
Developing autonomic behavior can incur high complexcomponents that provide connections between the relevant
ity due to the number and type of relevant environmentptoperties of the operating environmerg., CPU speed,
conditions. For example, the number of data receivers caatwork reliability) with the adjustments needed for those
affect the optimal transport protocols and parameterrggti environments. As the ANN learns, it strengthens or weakens
used since some protocols provide adequate QoS for a sntladl connections between inputs, hidden nodes, and outputs
number of receivers whereas other protocols provide ade- provide appropriate adjustments. Increasing the number
qguate QoS for a larger number of receivers. Codifying thigf hidden nodes increases the level of detail that the ANN
knowledge requires developers to manually (1) determire thmaintains. Our approach resolves the challenges presanted
appropriate protocol for a given environment and (2) map thBection Il as follows:



e Overfitted machine learning techniques address Challersyad average latency as the QoS properties of interest. Based
1 in Section llI-A by decreasing the development complexityur experiments, the corresponding output would be the NAK-
involved with codifying adjustments for multiple configu-based multicast protocol with a 1 ms retransmission timeout
rations of operating environments. Policy-based appresch ) ) )
for autonomic adaptation place the complexity burden d Evaluating the Development Complexity of Policy-based
application developers, who must manually maintain ojregat APProaches
environment configurations, appropriate adjustments esed Policy-based approaches support a straightforward way to
and the mapping between the configurations and the dtgtermine optimal transport protocols for a given opegatin
justments. Moreover, developers must accurately codify trenvironment. These approaches can direct the system to alte
mapping in their implementations. Overfitted machine leayn its behavior after certain operating conditions are cheéced
techniques relieve developers of this burden since theyagmn met. Figure 2 shows an example where the application checks
the complexity via training to react appropriately, suchtas for the following environment properties applicable to the
appropriate transport protocol and parameter settingsnas experimental data we collected relevant to SAR operations:

Operating enVironment Changes' if (network_loss_percent == 1 &% num_receivers < 5
e Machine learning techniques that utilize a static number &8 sending rate <= 25tz &% CPU_speed == 3CHz
. . R R &% RAM == 2GB &% net_bw == 1Gb
of equations for learning address Challenge 2 in Section Il 8 005 _impl - Opensplice
B by providing predictable time complexities for determigi B ot ORI
I i 1 | } else if (network_loss_percent == 3
appropriate adjustments._ In particular, we apply oyed‘ltte e et mun_receivers < 10
ANNSs to QoS-enabled middleware to support enterprise DRE 88 sending_rate > 58Hz && CPU_speed == 856MHz
systems by incorporating the appropriate transport poba:- 58 008 tmp o openpos
justments according to feedback provided while the tealiq 88 metric == relisbility and_jitter) {
. . . . . transport_framework-»use (transport2);
is trained. When an ANN is used in an enterprise DRE system, } else if .-
the time to determine an appropriate adjustment is bounged b Fig. 2. Policy-based Example
the constant number of equations involved. (1) percentage loss in the networile(, network _loss_percent),

e Overfitting the machine learning technique address¢®) number of data receiverse., num_receivers), (3) the rate
Challenge 3 in Section IlI-C by increasing the techniqueisf publishing datai(e., sending_rate), (4) the CPU processing
accuracy. Our approach increases the accuracy of detegnirgpeed i(e., CPU_speed), (5) the random-access memory avail-
appropriate adjustments for specific operating envirorimenmble {.e., RAM), (6) the network bandwidth provided.€.,
by increasing the number of hidden nodes that connect thet_bw), (7) the DDS implementation useéde{ DDS_impl),
operating environment properties, such as CPU speed amdl (8) the QoS properties of interese{ metric).
network bandwidth, with the appropriate adjustments, a&ch  Policy-based approaches can be optimized since the bound-
transport protocols to support QoS. Specifically, ovenfiftan ed number of (1) conditions that are checked and (2) the
ANN provides accuracy equal to policy-based approaches.behaviors used to direct the system are explicitly idemutifie

V. EXPERIMENTAL RESULTS For example, a switch statement or nested if statements in

The section presents the results of experiments we ce@nprogramming language can be used to implement policy-
ducted using an ANN to determine development complekased approaches, as shown in Figure 2. In general, policy-
ity, timeliness, and accuracy in selecting an appropriaiased approaches can provide bounded times in searching for
ADAMANT configuration given a particular operating envi-an adaptation solution and therefore address the bouns&dne
ronment. The experimental input data used to train the AN&aluation criterion of Challenge 2 in Section I1I-B for @da
include ADAMANT with multiple properties of the operatingtation approachese(g, switch statements can be optimized
environment varied .9, CPU speed, network bandwidthfor predictable performance). Policy-based approachss al
DDS implementation, percent data loss in the network),@loare highly accurate for known solutions since developenrs ca
with multiple properties of the application being varieslg, codify the exact behavior needed for a known environment,
number of receivers, sending rate of the data), as would thereby addressing Challenge 3 in Section IlI-C.
expected with SAR operations. Accidental complexity increases, however, when the condi-

We collected 394 inputs from previous experiments whetidns and responses for policy-based approaches are nthnage
an input consists of data values that determine a particulaanually. Of the 8 properties shown in Figure 2, 6 properties
operating environment(g, CPU speed, network bandwidth,can take an infinite range of potential values which cause an
number of data receivers, sending rate). We also providigdinite number of combinations to be checked. Moreover, if
the expected output to the ANNg, the transport protocol the policies need to be modified the chance of introducing
that provided the best QoS with respect to data reliabilitgn error increases with the number of properties considered
average latency, angltter (i.e., standard deviation of the along with the number of ranges of values for each property.
latency of network packets). An example of one of the 3%olicy-based approaches thus do not address the accidental
inputs is the following: 3 data receivers, 1% network losglevelopment complexity criterion for adaptation appreagh
25Hz data sending rate, 3GHz CPU, 1Gb network, using tighereas ANNs manage this complexity automatically as part
OpenSplice DDS implementation, and specifying reliapilitof its learning.



B. Evaluating the Accuracy of ANNs

Our first step to using an ANN was to train it on the 394
inputs described in Section V. We used tRast Artificial
Neural Network{FANN) library (I eeni ssen. dk/ f ann) as
our ANN implementation due to its configurability, documen-
tation, ease of use, and open-source availability. FANNreff
extensive configurability for the neural network includitige
number of hidden nodes that connect the inputs with the
output.

We ran training experiments with the ANN using different

numbers of hidden nodes to determine the most accurate ANN.

For a given number of hidden nodes we trained the ANN 10
different times. The weights of the ANN determine how strong
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connections are between nodes. The weights are randomly =

initialized and these initial values have an effect on hovll we
and how quickly the ANN learns.
Figure 3 shows the accuracies for the ANN configured with

6, 12, 24, and 36 hidden nodes over 10 training runs. Figure 3
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also shows the effect of random initial weights on the acoyra
of the ANN since the accuracy can vary across training ru

Accuracy was determined by querying the ANN with the da@hi

on which it was trained.

with all hidden node configurations. The ANN with 24 hidde
nodes provided the best accuracy across all the training ru
even compared to using 36 hidden nodes—100% accura
all but 2 times out of 10. We are therefore using the ANN
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Fig. 5. Standard deviation for ANN response times fseconds)

ANN for each of the 394 inputs. The figures show that the
ANN provides timely and consistent responses. As expected,
the response times using more hidden nodes are slower than
response times with fewer hidden nodes. The increase in
latency is less than linear, howevexd, response times using

12 hidden nodes are less than twice that using 6 hidden nodes)

VI. CONCLUDING REMARKS

The empirical results in this paper show how overfitted
ANNSs help address the development complexity, timeliness,
and accuracy of adaptive enterprise DRE systems. For ex-

ple, we used the FANN library to accurately determine
ch protocol to use to support the desired QoS in a given

L operating environment. We are also researching more gener-
A 100% accurate classification was generated at least o%% g 9 9

ed machine learning to handle adaptation in unknown en-

Q/ironments, as described wiwv. dr e. vander bi | t. edu/
~thof f ert/ ADAMANT.
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