
Model-Driven Architectures for Optimizing Mobile Application Performance

Chris Thompson, Jules White, Brian Dougherty, Hamilton Turner, Scott Campbell,
Krzysztof Zienkiewicz, and Douglas C. Schmidt

Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN USA

{jules, briand, schmidt}@dre.vanderbilt.edu & {chris.m.thompson, hamilton.a.turner, scott.h.campbell,
krzysztof.k.zienkiewicz}@vanderbilt.edu

Section 1. Introduction
Emerging trends and challenges. Mobile devices, such as smartphones, mobile internet devices
and web-enabled media players, are becoming pervasive. These devices possess limited re-
sources, which motivates resource optimizations, such as memory footprint minimization and
battery usage minimizations. Mobile application developers must therefore understand the trade-
offs between performance and battery life. In conventional mobile device systems, however, it is
hard to predict the effects of these optimizations until systems have been completely imple-
mented, which makes it hard to test power consumption and performance until late in the soft-
ware lifecycle, e.g., during implementation and testing. Changes made at this point usually result
in far-reaching consequences to the overall design of the system and cost much more compared
to those made during earlier software lifecycle phases, e.g., during architectural design and anal-
ysis.

Conventional techniques for developing mobile device software are not well-suited to identifying
mistakes during earlier phases of the software lifecycle since it is hard to compare the power
consumption of one architectural design vs. another without implementing and testing each de-
vice application. Moreover, for each function an application performs, there are a number of
possible architectural designs for accomplishing the same task, each differing in terms of opera-
tional speed, battery consumption and accuracy. These architectural design decisions can have
significant consequences for overall device performance and other applications contending for
system resources. It is therefore essential that developers of mobile devices understand the im-
plications of every architectural choice on power consumption and performance.

For example, if a mobile application communicates with a server it can do so via several proto-
cols, such as HTTP, HTTPS, or other socket connections. Developers can also elect to have the
application and/or mobile device infrastructure submit data immediately or in a batch at periodic
intervals. Each design option can result in differing power consumption profiles. The combina-
tion of these options results in too many possible variations to implement and test each one with-
in a reasonable budget and production cycle.

Solution approach  Emulation of application behavior through model-driven testing and
auto-generated code. Model-Driven Architectures (MDAs) provide a potential solution to the
challenges described above. MDA relies on system-independent modeling languages, such as
UML or domain-specific modeling languages (DSMLs), to visually represent various aspects of
application and system design. These models can then be used to generate code and analyze per-
formance. By creating a model of candidate solution architectures, instrumented architectural
emulation code can be generated and run on actual mobile devices which enables developers to

quickly emulate a multitude of possible configurations and provides them with actual device per-
formance data without investing the time and effort manually writing application code.

The generated code emulates the modeled architecture by consuming sensor data, computational
cycles, and memory as specified in the model, as well as transmitting/receiving faux data over
the network. Since wireless transmissions consume most of the power on mobile devices [3] and
network interaction is a key performance bottleneck, large-scale power consumption and perfor-
mance trends can be gleaned by executing the emulation code. Moreover, as the real implemen-
tation is built, the actual application logic can be used to replace faux resource consuming code
blocks to refine the accuracy of the model. This model-driven solution has been utilized pre-
viously to eliminate some inherent flaws with serialized phasing in layered systems, specifically
as they apply to system QoS and to identify design flaws early in the software production life-
cycle [9]. Some prior work [8] also employs model-driven analysis to conduct what-if analysis
on potential application architectures.

By utilizing model-driven analysis, mobile software developers can quantitatively evaluate key
performance and power consumption characteristics earlier in the software lifecycle (e.g., at de-
sign time) rather than later (e.g., during and after implementation), thereby significantly reducing
software refactoring costs due to design flaws. Moreover, since emulation code is automatically
generated from the model, developers can quickly understand key performance and power con-
sumption characteristics of potential solution architectures without investing the time and effort
to implement them.

Outline of the Rest of the Proposed Chapter
Section 2: Motivating Example. Managing system resources properly can significantly affect
device performance and battery life. For instance, reducing CPU instructions not only speeds
performance but also reduces the time the process is in a non-idle state; reducing network traffic
also speeds performance and reduces the power supplied to the radio. To demonstrate the impor-
tance of proper resource management and the value of model-based resource analysis, this sec-
tion describes a motivating example of a mobile application, called Wreck Watch.

Wreck Watch runs on Google Android smartphones to detect car accidents by analyzing data
from the device’s GPS receiver and accelerometer and looking for sudden acceleration events
from a high velocity indicative of a collision. Car accident data is then posted to an HTTP server
where it can be retrieved by other devices in the area to help alleviate congestion, notify first res-
ponders, and provide accident photos to an emergency response center. Users of Wreck Watch
can also elect to have certain people contacted in the event of an accident. Figure 1 shows this
behavior of Wreck Watch.

Figure 1: Wreck Watch Behavior

The Wreck Watch application must maintain conservative power consumption. The application
needs to run at all times, will consume a great deal of sensor information to accurately detect
wrecks, and frequently utilizes network connections. If not designed properly, therefore, these
characteristics could result in a substantial decrease in battery life. In the case of Wi-Fi for in-
stance, the radio consumes nearly 70% of device power [2] and in extreme cases can consume
100 times the power of one CPU instruction to transmit one byte of data [3].

The amount of power consumed by the network adapter is generally proportional to the amount
of information transmitted [1]. The framing and overhead associated with each protocol can
therefore significantly affect the power consumption of the network adapter. Prior work [5]
demonstrated that significant power savings could be achieved by modifying the MAC layer to
minimize collisions and maximize time spent in the idle state. This work also recognized that
network operations generally involved only the CPU and transceiver and by reducing client-side
processing, they could substantially reduce power consumed by network transactions. Similarly,
other work [7] demonstrated that such power savings could also be achieved through transport
layer modifications.

Although MAC and transport layer modifications are typically beyond the scope of most soft-
ware projects, especially mobile application development, the data transmitted on the network
can be optimized so it is as lightweight as possible, thereby accomplishing, on a much smaller
scale, some of the same effects. The remainder of this chapter will use the Wreck Watch appli-
cation to showcase key design challenges that developers face when building power-aware appli-
cations for mobile devices.

Section 3: Design and Behavioral Challenges of Mobile Application Development. Despite
the ease with which mobile applications can be developed via advanced SDKs (such as Google
Android and Apple iPhone) developers still face many challenges related to power consumption.
If developers do not fully understand the implications of their designs, they can substantially re-
duce device performance. Battery life represents a major metric used to compare devices and
can be influenced significantly by design decisions. This section describes how designing mo-
bile applications that are cognizant of battery performance presents the following challenges to
developers:

Challenge 1: Accurately predicting battery consumption of arbitrary architectural decisions is
hard. Each instruction executed can result in the consumption of an unknown amount of battery
power. Accurately predicting the power consumed for each line of code is hard given the level
of abstraction present in modern SDKs, as well as the complexity and numerous variations be-
tween physical devices. Moreover, disregarding language commonalities between completely
unrelated devices, mobile platforms, such as Android, are designed to operate on a plethora of
hardware configurations, which may affect the perceived effects of different architectures.

Challenge 2: Trade-offs between performance and battery life are not readily apparent. Al-
though performance and power consumption are generally design tradeoffs, the actual relation-
ship between the two metrics is not readily apparent. For example, when comparing two net-
working protocols, plain HTTP and SOAP, plain HTTP might operate much faster requiring only
10 ms to transmit the data SOAP requires 50 ms to transmit. At the same time, HTTP might
consume .5 mW, while SOAP consumes 1.5 mW. Without the context of actual performance in
a physical device it would be difficult to predict the overhead associated with SOAP. Moreover,
this data may vary from one device to the next.

Challenge 3: Effects of transmission medium on power consumed are largely device, application,
and environment specific. Wireless radios consume a substantial amount of device power relative
to other mobile-device components [6], where the power consumed is directly proportional to the
amount of information transmitted [1]. Each radio also provides differing data rates, as well as
power consumption characteristics. Depending on the application, developers must choose the
connection medium best suited to application requirements, such as medium availability and
transmission rate. The differences between transmission media are generally subtle and may
even depend on environmental factors [10], such as network congestion and signal quality that
are impossible to accurately predict. To reliably and accurately quantify performance, therefore,
testing must be performed in environmentally-accurate situations.

Challenge 4: It is hard to accurately predict the effects of reducing sensor data consumption
rates on power utilization. To provide the most accurate readings and results, device sensors
would be polled as frequently as they sample data. This method consumes the most possible
power, however, by not only requiring that the sensor be enabled constantly, but by also in-
creasing the amount of data the device must process. In turn, reducing the time that the sensor is
active significantly reduces the effectiveness and accuracy of the readings. Determining the exact
amount of power saved by a reduction in polling rate or other sensor accuracy change is difficult.

Challenge 5: Accurately assessing effects of different communication protocols on performance
is impossible without real-world analysis. Each communication protocol has a specific overhead
associated with it that directly affects its overall throughput. The natural choice would be to se-
lect the protocol with the lowest overhead. While this decision yields the highest performance, it
also results in a tightly coupled architecture and substantially increases production time. That
protocol would only be useful for the specific data set for which it was designed, in contrast to a
standardized protocol, such as HTTP. Standardized protocols often support features that are un-
necessary for many mobile applications, however, making the additional data required for HTTP
transactions completely useless. It is challenging to predict how much of a tradeoff in perfor-
mance is required to select the more extensible protocol.

Section 4: Model-based Testing and Performance Analysis. This section addresses the chal-
lenges posited in Section 2 by presenting MDA techniques that can be used to visually model a
prospective system, generate instrumented architectural emulation code for multiple platforms,
simulate normal device usage, and generate performance analysis reports that can be utilized to
streamline architecture optimization. In particular, this section will:

• Demonstrate DSML construction for the Wreck Watch application
• Construct models representing possible configurations of the Wreck Watch application
• Generate instrumented code for multiple mobile device platforms
• Perform performance analysis and optimization based on reports generated by test code

These key elements of model-driven analysis will provide readers with an understanding of the
processes and practices associated with creating a model that can be utilized to perform perfor-
mance analysis. We will present a step-by-step analysis of the modeling process and finally, pro-
vide some cursory analysis of a sample configuration. We will also attempt to highlight potential
points of variability with a special focus on power-intensive operations and performance bottle-
necks.

Section 5: Case Study: Applying MDA to Optimize Wreck Watch Application Power Con-
sumption. This section shows how the MDA techniques presented in Section 4 can be applied to

the Wreck Watch application presented in Section 2. We will show several potential system ar-
chitectures with special attention paid to the points of dissimilarity (such as Wi-Fi versus EDGE
and HTTP versus custom protocols) and potential for performance variation. These models will
be used to generate sample code that we will benchmark on Android devices with a focus on the
methodology rather than the resultant data. This section also highlights the specific advantages
to model-based analysis of model-driven architectures and the speed at which a multitude of con-
figurations can be tested accurately.

Section 6: Concluding Remarks. This section presents lessons learned and concluding remarks.

Relevance to the Book
This chapter outlines some of the benefits and applications of MDAs to mobile application de-
velopment with special attention paid to the role of using modeling in performance analysis and
resources utilization optimization. This chapter will provide readers with a firm understanding
of DSML construction and model-based system analysis for mobile device power consumption
and performance. This chapter will also emphasize the platform-independent view of the OMG
MDA and utilize custom DSMLs to generate platform-specific emulation code.

References

1. Feeney, L. & Nilsson, M., “Investigating the energy consumption of a wireless network in-
terface in an ad hoc networking environment,” IEEE INFOCOM, 2001, 3, 1548-1557

2. Liu, T.; Sadler, C.; Zhang, P. & Martonosi, M., “Implementing software on resource-con-
strained mobile sensors: experiences with impala and zebranet” Proceedings of the 2nd in-
ternational conference on Mobile systems, applications, and services, 2004, 256-269

3. Pering, T.; Agarwal, Y.; Gupta, R. & Want, R., “Coolspots: Reducing the power consump-
tion of wireless mobile devices with multiple radio interfaces,” Proceedings of the Annual
ACM/USENIX International Conference on Mobile Systems, Applications and Services
(MobiSys), 2006

4. Poole, J., “Model-driven architecture: Vision, standards and emerging technologies,” Work-
shop on Metamodeling and Adaptive Object Models, ECOOP, 2001

5. Chen, J.; Sivalingam, K.; Agrawal, P. & Kishore, S., “A comparison of mac protocols for
wireless local networks based on battery power consumption,” IEEE INFOCOM'98. Seven-
teenth Annual Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings, , 1

6. Krashinsky, R. & Balakrishnan, H., “Minimizing energy for wireless web access with
bounded slowdown,” Wireless Networks, Springer, 2005, 11, 135-148

7. Kravets, R. & Krishnan, P., “Application-driven power management for mobile communi-
cation,” Wireless Networks, Springer, 2000, 6, 263-277

8. Paunov, S.; Hill, J.; Schmidt, D.; Baker, S. & Slaby, J., “Domain-specific modeling lan-
guages for configuring and evaluating enterprise DRE system quality of service,” Engi-
neering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on, 2006, 10

9. Hill, J.; Tambe, S. & Gokhale, A., “Model-driven engineering for development-time QoS
validation of component-based software systems,” Proceeding of International Conference
on Engineering of Component Based Systems, 2007

10. Carvalho, M.; Margi, C.; Obraczka, K. & others, “Garcia-Luna-Aceves. Modeling energy
consumption in single-hop IEEE 802.11 ad hoc networks,” Thirteenth International Confe-
rence on Computer Communications and Networks (ICCCN’04, 2004, 367-37

Author Biographies

Chris Thompson is an undergraduate Research Assistant at Vanderbilt University. He is currently pur-
suing a Bachelor of Engineering degree in Computer Engineering. He is currently focusing on mobile
device performance analysis and in the past has worked with constraint-based deployment configuration
and automating hardware and software evolution analysis.

Dr. Jules White is a Research Assistant Professor at Vanderbilt University. He received his BA
in Computer Science from Brown University, his MS in Computer Science from Vanderbilt Uni-
versity, and his Ph.D. in Computer Science from Vanderbilt University. Dr. White’s research fo-
cuses on applying a combination of model-driven engineering and constraint-based optimization
techniques to the deployment and configuration of complex software systems. Dr. White is the
project leader for the Generic Eclipse Modeling System (GEMS), an Eclipse Foundation project.

Brian Dougherty is a Ph.D candidate in Computer Science at Vanderbilt University. Brian's re-
search focuses on hardware/software co-design, heuristic constraint-based deployment algo-
rithms, and design space exploration. He is the co-leader of the ASCENT project, a tool for ana-
lyzing hardware/software co-design solution spaces. Brian is also a developer for the Generic
Eclipse Modeling System (GEMS). He received his B.S. in Computer Science from Centre Col-
lege, Danville, KY in 2007.

Hamilton Turner is a Research Assistant at Vanderbilt University. He has worked with the In-
stitute for Software Integrated System (ISIS) for two years, and currently focuses on Mobile
Computing. He is working on his B.E. in Computer Engineering from Vanderbilt University, and
has previously focused on Unit Testing Non-Functional Properties of Large Scale Computing
Systems.

Scott Campbell is a Graduate Research Assistant at Vanderbilt University. He has worked with
the Institute for Software Integrated System (ISIS) for two years, and currently focuses on Mo-
bile Computing. He received his BS in Computer Science from Vanderbilt University, and has
previously focused on remote collaboration in the Generic Eclipse Modeling System (GEMS).

Krzysztof Zienkiewicz is an Undergraduate Research Assistant at Vanderbilt University. He
works for the Institute for Software Integrated Systems (ISIS), focusing on application develop-
ment on mobile devices. He is currently working on his B.S. in Computer Science and Mathe-
matics from Vanderbilt's School of Engineering and School of Arts and Science respectively.

Dr. Douglas C. Schmidt is a Professor of Computer Science and Associate Chair of the Com-
puter Science and Engineering program at Vanderbilt University. He has published 9 books and
over 400 papers that cover a range of topics, including patterns, optimization techniques, and
empirical analyses of software frameworks and domain-specific modeling environments that fa-
cilitate the development of distributed real-time and embedded (DRE) middleware and applica-
tions. Dr. Schmidt has over fifteen years of experience leading the development of ACE, TAO,
CIAO, and CoSMIC, which are open-source middleware frameworks and model-driven tools
that implement patterns and product-line architectures for high-performance DRE systems.

