
Improving Domain-specific Language Reuse through
Software Product-line Configuration Techniques

Jules White, James H. Hill, Sumant Tambe, Aniruddha Gokhale, and Douglas C. Schmidt
Vanderbilt University
Nashville, TN, USA

{jules, hillj, sutambe, gokhale, schmidt}@dre.vanderbilt.edu

Jeff Gray
University of Alabama at Birmingham

Birmingham, AL, USA
gray@cis.uab.edu

Abstract

It is time consuming to develop a domain-specific lan-
guage (DSL) or a composition of DSLs to model a system
concern, such as deploying and configuring software com-
ponents to meet real-time scheduling constraints. Ideally,
developers should be able to reuse DSLs and DSL compo-
sitions across projects to amortize development effort. It
can be hard to reuse DSLs, however, since they are often
designed to precisely describe a single domain or concern.
This paper presents an approach that uses techniques from
software product-lines (SPLs) to improve the reusability of a
DSL, DSL composition, and/or supporting tool. We present
a case study of four DSLs we have developed to evaluate the
need for—and benefits of—applying SPL reuse techniques
to DSLs.

Keywords. feature models, domain-specific languages,
reuse

1 Introduction

Emerging trends and challenges.Complex software
systems, such as traffic management systems and shipboard
computing environments, possess both functional concerns
(e.g., execution correctness)and quality-of-service (QoS)
concerns (e.g., performance, reliability, and fault-tolerence)
that must be realized and managed throughout the soft-
ware lifecycle. Domain-specific languages (DSLs) [7] have
emerged as a powerful mechanism for making these diverse
concern sets easier to capture and reason about. For each
system concern, a DSL can be designed to precisely capture
key domain-level information related to the concern, while

shielding developers and users from implementation-level
details of the technical solution space.

To create a DSL, developers must perform a careful anal-
ysis of the domain to design the language and produce the
supporting tooling infrastructure, for editing, compiling,
running, and/or analyzing instances of the language. Not
only are these DSL development activities complex, but de-
velopers may need to evolve a DSL over time to find the
right abstractions and each evolution can impact the tooling
infrastructure significantly. As a result, DSL-based devel-
opment processes can incur relatively high overhead with
respect to overall project time and effort [7]. One way to
ameliorate this overhead is to amortize DSL development
costs across projects.

For example, reusing existing DSL tooling infrastructure
across development projects can help reduce the overall cost
of these projects. A new development project, however,
may have a unique set of concerns to model that do not
precisely match the requirements for which existing DSLs
were designed. A key question facing developers, therefore,
is how to adapt an existing DSL or set of DSLs (i.e., a DSL
composition) to a set of requirements.

Reusing DSLs can be hard, however, since they are often
designed to focus on specific system concerns. While the
narrow scope of a DSL provides much of its power, it can
also (overly) couple the DSL to a particular set of require-
ments, making it hard to reuse for a new set of requirements.
What is needed, therefore, is a technique for systematically
reusing DSLs and DSL compositions to simplify their adap-
tation to new requirements.

Solution approach→ Applying software product-line
configuration techniques to DSLs.Software product-lines
(SPLs) [4] are a systematic reuse technique that supports (1)



building a family of software products such that variability
can be customized for specific requirement sets, (2) captur-
ing how individual points of variability affect each other,
and (3) configuring product variants that meet a range of
requirements and satisfy constraints governing variability
point configuration. SPLs are used in domains where soft-
ware development costs are high, safety and performance
are critical, and redeveloping software from scratch is eco-
nomically infeasible. SPLs have successfully been em-
ployed in domains such as avionics mission computing, au-
tomotive systems, and medical imaging systems.

This article provides two contributions towards improv-
ing reusability and decreasing language reuse errors for
DSLs and DSL compositions. First, we show that a single
DSL can have built-in variability and codified configuration
rules to enable its refinement for multiple domains. Second,
we show how SPL techniques can be used to codify the us-
age rules for a DSL composition’s constituent DSLs, the
concerns covered by the DSLs, and the variations in DSL
usage. By codifying these DSL composition concepts, de-
velopers are provided with a map of how to correctly mod-
ify and reuse DSLs and DSL compositions across projects.

Our SPL-based reuse techniques for DSLs is built upon
the following prior work on SPLs and DSLs:

• Feature Models, which codify the points of variabil-
ity in a software product and the rules governing the set-
tings for each point of variability [6]. A feature model is a
tree-based structure where each node in the tree represents
a point of variability or unit of functionality in the prod-
uct. The root of the tree represents the most generalized
concept in the product and successively deeper levels of the
tree indicate refinement of the software. The parent-child
relationships indicate configuration constraints that must be
satisifed when choosing values for points of variability.

To adapt an SPL to a new set of requirements, developers
create avariant, which is defined by a subset of the features
from the feature model. An important property of an SPL
is that the validity of a variant can be checked to ensure that
the feature selection adheres to the feature model rules. The
feature model documents reuse rules that facilitate the adap-
tation of the software for new requirement sets and provides
a basis for checking reuse correctness.

Kang et al. [6] and Beuceh et al. [3] have successfully ap-
plied feature modules to manage SPL variability in a num-
ber of domains. Feature models provide a solid foundation
for improving reusability by codifying reuse rules. More-
over, a number of techniques have been developed to for-
mally analyze feature models and identify configuration er-
rors, identify constraint inconsistencies, and automate fea-
ture selection.

• DSL refinement, which is the adaptation of a DSL for
a new set of requirements. A DSL is defined by ameta-
model, which is a specification of the DSL’s key concepts

and syntax. Voelter [8] has investigated the use of model
transformations for refining an architectural DSL. His tech-
nique describes the variability in an architectural DSL using
a feature model. To refine the architectural DSL, developers
select a set of architectural modeling features that shouldbe
present in the refined language. Based on the feature selec-
tion for the new domain, model transformations automati-
cally add/remove the corresponding metamodel elements.

Although this prior work provides a good starting point
for addressing DSL reusability challenges, there are a num-
ber of limitations. First, SPL techniques have been ex-
tensively studied in the context of software but not in the
context of DSL design. New methodologies are therefore
needed to codify how SPL techniques can be used to man-
age DSL refinement and DSL composition adaptation. Al-
though some researchers have applied SPL techniques to
individual DSLs [8], generalized methodologies for apply-
ing these techniques to arbitrary DSLs have not yet been
extrapolated. Moreover, SPL variability management tech-
niques have not been applied to DSL composition and reuse.
This article provides a general methodology for using fea-
ture models to manage DSL and DSL composition reuse.

2 Case Study: PICML, Scatter, CUTS, and
CQML

The Institute for Software Integrated Systems (ISIS) at
Vanderbilt has developed many DSLs and associated tools
for a wide range of modeling concerns, such as component-
based application design, deployment and configuration of
applications in distributed real-time and embedded (DRE)
systems, and system execution modeling. We still con-
stantly need to develop DSLs for new domains. To show-
case the complexity of reusing DSLs and DSL compositions
for new requirement sets, we provide a case study based on
four related DSLs we developed, shown in Figure 1.

These DSLs have been built atop two different modeling
platforms, the Generic Modeling Environment (GME)1 and
the Generic Eclipse Modeling System (GEMS)2. The first
DSL we describe is PICML, which is a GME DSL for vi-
sually composing CORBA Component Model (CCM) ap-
plications. The second DSL is Scatter, which is a GEMS
DSL for modeling the deployment of software components
to hardware nodes in a distributed system. The third DSL is
CQML, which is a DSL for specifying QoS constraints on
systems. The fourth DSL is CUTS, which is a GME DSL
for analyzing the performance of DRE system architectures.

Significant effort has been expended developing the four
DSLs and their associated tooling. PICML has been devel-
oped over the course of five years and continues to evolve.

1www.isis.vanderbilt.edu/Projects/gme
2www.eclipse.org/gmt/gems



Figure 1. The PICML, Scatter, CUTS, and CQML DSL Family

Scatter and CUTS have also developed over a period of four
years. CQML is the youngest DSL with roughly two years
of development.

The DSLs we chose for our experience report form a
closely related family of DSLs. For example, a CUTS
model of the behavior of DRE system QoS can be built and
used to perform experiments to test the response time of
critical end-to-end request paths through the system. CUTS
models, however, depend on an external model of how the
software should be mapped to hardware nodes. PICML and
Scatter provide facilities for capturing this missing deploy-
ment information.

Scatter focuses on capturing deployment resource and
real-time scheduling constraints and using this information
to automate the decision of how to map software to hard-
ware. PICML focuses on allowing developers to manually
specify software to hardware mappings, but does not cap-
ture resource or scheduling constraints. It can be augmented
with CQML, however, to capture scheduling constraints.

We developed a complex DSL composition from
PICML, CUTS, and Scatter in the context of the Lockheed
Martin NAOMI project [5]. This project is studying the use
of multiple DSLs to model the development of software for
controlling traffic lights in intersections. PICML is used to
model the software components, Scatter is used to derive
suitable deployment topologies, and CUTS is used to per-
form experiments to evaluate the QoS of the traffic software.

After development of NAOMI began, we addressed simi-
lar problems related to modeling deployment topologies and
testing software performance in the context of the Air Force
Research Labs (AFRL) SPRUCE project. In SPRUCE, we
modeled and tested the deployment of software to hard-
ware in avionics systems. Due to the similarity between the
NAOMI and SPRUCE requirements, we wanted to reuse
as much of the original DSL composition as possible. The

remainder of this paper uses PICML, Scatter, CQML, and
CUTS to motivate the need for and complexity of reusing
these DSLs for new requirement sets.

3 Challenges of Domain-specific Language
Reuse

There is an inherent tension between a DSL’s domain
specificity and its reusability. On one hand, the more pre-
cisely a DSL is crafted to match its domain, the easier and
more accurately it can describe a solution. On the other
hand, DSLs and their supporting infrastructure can be ex-
pensive to develop, so reusability is desirable. This section
explores the challenges of maintaining DSL specificity and
accuracy, while simultaneously facilitating reuse.

3.1 Challenge 1: DSL Refinement

Developing a robust DSL that accurately describes do-
main concepts and is intuitive for domain experts can be a
long and iterative process. An initial prototype of the DSL is
developed and then over a period of time the DSL concepts
and notations are refined by modeling existing and new sys-
tems. The DSL refinement process may take months. De-
veloping code generators, constraint checking, model exe-
cution engines, and other dependent tools also requires sig-
nificant time and effort.

Developers often find a group of domains that exhibit
substantial similarities but enough differences to warrant
separate DSLs. For example, PICML was originally devel-
oped to model CCM applications. Over time, however, the
need arose to model Enterprise Java Beans (EJB) applica-
tions, which have many similarities to CCM (e.g., EJB has



similar component and home concepts to CCM), but does
not share event source/sink features.

To reduce DSL development cost, PICML could be
reused for EJB applications. Although this approach is pos-
sible, it would expose EJB developers to certain details,
such as event sources and sinks, that are not relevant to their
target domain. This type of exposure to unnecessary details
would eliminate many benefits of using a DSL.

Another approach to reuse would be to refine the PICML
metamodel for EJB to eliminate irrelevant modeling ele-
ments. For example, PICML provides a modeling element
to represent event sources on components and event sinks
on components that consume the events. The event source
and sink are not directly applicable to EJB. Removing the
event source and sink notations from the PICML metamodel
is non-trivial, however, since PICML has over 700 meta-
model elements. Eliminating the event source and sink
notations requires removing over 30 other metamodel el-
ements,e.g., there are over 15 elements related to speci-
fying properties of event channels that are not needed if
event sources and sinks are removed. Determining how
to adapt languages like PICML for a new domain is hard.
Section 4.1 describes how we address this challenge by us-
ing feature models to codify semantic constraints between
metamodel elements.

3.2 Challenge 2: Multi-DSL Composition

DSLs are often tightly aligned with a single narrow
slice of system concerns. Multiple DSLs may therefore be
needed to capture the important concerns relevant to a sys-
tem’s requirements. When developing a multi-DSL devel-
opment process, developers must ensure that they provide
adequate coverage of concerns through the DSLs. For ex-
ample, developers must ensure that the DSL composition
properly captures the real-time scheduling, deployment, and
performance concerns of the NAOMI traffic light system
outlined in Section 2. This system could potentially use a
number of different DSLs to capture the information related
to the capabilities of the system’s hardware nodes.

For example, developers could use Scatter to model each
piece of hardware, the real-time scheduling constraints on
components, and the resources, such as RAM, available on
each node. Developers could also instead opt to model the
nodes through PICML. If developers need to ensure that the
nodes have sufficient resources to host the provided com-
ponents, the Scatter DSL is more applicable. Choosing
PICML would not adequately cover the resource allocation
concern. If real-time scheduling constraints were needed,
either Scatter or a combination of PICML and CQML could
be used.

In the traffic light system, there are roughly a dozen con-
cerns related just to the deployment of software components

to hardware. For example, developers need to capture infor-
mation related to component replication for fault-tolerance,
node resource constraints, component real-time scheduling
requirements, and cost information for budgeting. Crafting
a DSL composition to properly cover a large set of concerns
is not easy.

Variability in the DSLs themselves further complicates
the design of a DSL composition. For example, PICML can
be refined for EJB by removing event and deployment in-
formation. Removing the deployment modeling capabilities
from PICML to handle EJB, however, leaves CUTS without
needed deployment information to generate experiments.
Developers must therefore not only ensure that a DSL com-
position provides proper concern coverage, but also that the
precise refinement of the DSLs being used provides the re-
quired concern coverage and adheres to any composition
constraints [2]. Managing this variability and adding this
consideration into the adaptation of existing DSL compo-
sitions to new requirements is hard. Section 4.2 describes
how we address this challenge by capturing DSL composi-
tion configuration rules in feature models.

3.3 Challenge 3: Tooling Reuse

Refining a DSL or adapting a DSL composition can have
a direct affect on the supporting tool infrastructure. Elimi-
nating elements of a DSL requires also updating any editors
or compilers of the DSL to reflect that the removed elements
are no longer legal entities. Moreover, any code generators
that depend on the removed elements will also need refac-
toring.

For example, Scatter can be refined to remove real-time
scheduling constraints from its metamodel so that it can be
used for EJB. Once Scatter’s metamodel is refined, the Java
implementations of its graphical editor and deployment
solvers must also be modified to remove the references to
the eliminated DSL elements. Scatter’s deployment solver
and graphical editor contain approximately 48,000 lines of
code that must be searched to find any references to unnec-
essary elements. Without a clear model of how the elimina-
tion of real-time scheduling concepts affect the editor and
solvers, it is hard to refine Scatter’s supporting tool infras-
tructure. Section 4.3 describes how we address this chal-
lenge by using code generation and metaconfiguration to
refactor existing tooling.

Figure 2 shows a simplified feature model of the meta-
model elements related to the PICML event elements dis-
cussed in Section 3.1.



Figure 2. PICML Feature Model Snippet for Event Elements

4 Applying SPL Configuration Techniques to
DSL-based Development

DSLs and their associated development processes are of-
ten tightly-coupled to a single set of requirements or con-
cerns. Although DSLs are domain-specific, they do possess
points of variability. For example, PICML can have meta-
model elements removed as long as developers know how to
perform the modifications properly. Moreover, if develop-
ers know why a DSL composition has a particular structure
and how the structure can legally be modified, the composi-
tion can be adapted to new types of concerns. The missing
ingredient that produces the reuse challenges summarized
in Section 3 is that there is often no model of the variabil-
ity in DSL refinement, composition, and tools. This section
shows how SPL techniques can be used to fill in this gap
and increase DSL, DSL composition, and DSL tool chain
reusability.

4.1 Managing DSL Refinement via Feature Mod-
els

A key problem outlined in Section 3.1 is that develop-
ers do not know the rules for modifying a DSL’s metamodel
to ensure that a semantically valid DSL refinement is pro-
duced. An approach to solving this problem is to build a
configurable DSL and use a feature model to document (1)
how concepts map to metamodel elements and (2) the se-
mantic dependencies between metamodel elements. The
feature model describes why specific elements exist, which
elements are semantically related, the semantic constraints
for adding/removing elements, and the rules for determin-
ing what is a valid metamodel refinement. Each refinement
of the DSL’s metamodel is mapped to a feature selection
that can be checked for semantic validity.

The metamodel is constructed in stages, capturing the

most general concepts at the top levels and gradually refin-
ing more specific concepts until actual metamodel elements
are reached at the leaves. For example, the general con-
ceptPICML Component Architecture is refined to
the more specific concepts ofComponent Interfaces
andEvents. The leaves beneathEvents capture con-
cepts in terms of actual metamodel elements, such as
InEventPort andOutEventPort.

Developers can use this feature model of PICML to build
semantically correct refinements of the DSL. For example,
if developers want to remove the concept of events to re-
fine for EJB, they can find theEvents feature and then
remove all the metamodel elements that appear as leaves
beneath theEvents feature. Moreover, if a more pre-
cise refinement is desired, developers could keep the con-
cept of events—possibly to model EJB’s Java Messaging
Service (JMS)—but remove the CCM-specific concept of
event channels. The feature model precisely captures how
to modify the 700 elements in the PICML metamodel to re-
fine concept coverage.

4.2 DSL Family Configuration with Feature Mod-
els

The challenge outlined in Section 3.2 described how de-
velopers often do not know why a particular set of DSLs
were composed and how the composition covered a set of
concepts. For example, it is not clear how using PICML
to describe deployment capabilities differs in concern cov-
erage from using Scatter. Moreover, when a DSL compo-
sition must be modified to cover a new concern (such as
the SPRUCE aeronautics domain) developers do not have a
roadmap of the interactions between DSLs, which makes it
hard to determine which features can be added or removed.

To address this issue, feature models can be used to cod-
ify (1) what concerns are covered by each member of a DSL



Figure 3. A Feature Model for the PICML/CUTS/Scatter/CQML D SL Family

composition, (2) what dependencies or exclusions exist be-
tween DSLs, and (3) how DSL refinements affect concern
coverage. Figure 3 presents a feature model of the DSL
composition covering PICML, Scatter, CUTS, and CQML.
The DSL composition is represented as the root feature
in this figure. Beneath the root feature are features pro-
viding a general categorization (e.g., Deployment and
Performance) of the DSLs involved in the composition.
Beneath the categorization features are the actual DSL con-
cepts that can be used to capture the concern. For example,
eitherScatter Deployment orPICML Deployment
can capture deployment information. At the leaves be-
neath the DSL concepts are modeling capabilities provided
by the DSL. For example, Scatter providesAutomated
Deployment, but PICML does not.

The feature model tells developers not only what DSLs
can be used and their capabilities, but also specifies how
refinements of DSLs affect each other. For example, if
PICML is refined to remove thePICML Deployment
concepts, Scatter and PICML can be used together. If de-
velopers want to evaluate how different wide area network
(WAN) properties affect performance, they need to use a
refinement of CUTS that includeCUTS Emulab and a re-
finement of PICML that includesWAN concepts.

4.3 Tool Reuse

Section 3.3 summarized the challenges related to refac-
toring existing tool infrastructure when DSL refinement or
DSL compositions change. SPL reuse techniques can be
directly applied to this challenge. SPLs rely on a modular
software architecture where feature configuration changes
can be mapped to changes in the software configuration.

Building modular tool infrastructure is a complex task
that can be guided by existing SPL techniques. Develop-
ers do incur an upfront cost to build modularity into tool
infrastructure. At Vanderbilt, we have found the follow-
ing techniques can help lessen the cost of implementing this
modularity:

• Tool refactoring via code generation. This approach
to building modularity into tools applies model-driven engi-
neering techniques to develop editors for DSLs. Developers
can therefore leverage the metamodel and feature model of
the DSL to generate the code required to implement key
tooling. Using code generation can significantly lessen the
development burden of tool refactoring.

For example, Scatter is built on top of the GEMS mod-
eling platform. When elements of the Scatter metamodel
change, we use GEMS code generators to regenerate the
underlying graphical editors for Eclipse and automate the
refactoring. Figure 4 shows an example refinement of the
Scatter DSL to remove the optional network concepts from
the metamodel and the impact on a snippet of the underly-
ing code. Performing the refactoring via code generation
leads to the removal of approximately 4,700 lines of code
when the network concepts are removed.

• Metaconfigurable tools. This is another technique
that can lessen the impact of DSL and DSL composition
changes on tooling [1]. These tools use a configuration file
based on the metamodel of the DSL to automatically adjust
themselves to metamodel changes. Rather than regenerat-
ing code to handle refactoring, the software is reconfigured
for the new metamodel.

For example, GME is a metaconfigurable modeling tool
that can dynamically reconfigure itself to display a graphi-
cal editor for different DSLs. When the PICML metamodel



Figure 4. Feature Refinements in Scatter Changing Scatter Ed itor Code

is refined to remove event-related elements, a new meta-
model configuration file is generated that tells GME how
to configure itself to visualize the refined DSL. GEMS also
takes this approach for specific parts of the graphical pre-
sentation of DSLs by using a stylesheet (based on the meta-
model) to reconfigure the rendering of DSL elements.

4.4 Technique Analysis

Applying SPL reuse techniques to DSLs, DSL composi-
tions, and tools incurs an initial overhead. A feature model
must be built for each DSL and DSL composition following
the processes outlined in Sections 4.1 and 4.2. Moreover,
building metaconfigurable tools or code generators for tools
takes time.

The payoff of applying these SPL techniques is when a
DSL is used more than once. Since DSLs and tools are
built with the intention of being reused multiple times, in
many cases the extra effort to apply SPL techniques pay off.
For example, the ability to regenerate the graphical editor
infrastructure when the metamodel changes provides sub-
stantial savings in DSL tool refactoring effort for PICML,
Scatter, CQML, and CUTS.

Some types of DSL tooling remain hard to modularize
and reuse. For example, code generators and constraints are
not often easily amenable to change. Our future work will
investigate how to improve the reusability of code genera-
tors and constraints.

DSL reuse complexity metrics. From our experience
adapting our DSLs and tools to new domains, we have dis-

tilled the following analysis of the number of refactoring
steps as a function of the size of the metamodel and tool
code base. Using standard ad-hoc DSL reuse, we observed:

1. O(n) steps to analyze each DSL metamodel element
for applicability to the new domain

2. O(n) steps to delete unneeded DSL elements

3. O(n2) steps to analyze each deleted DSL element with
each remaining element for dependencies violated by
the deletion

4. O(n) steps to delete any DSL elements that have un-
met dependencies

5. O(c) steps, wherec is total lines of code, to refactor
tooling

This yields a total initial refinement complexity of:

O(n + n + n
2 + n + c) = O(n + n

2 + c)

Further refinements for new domains also incur this full
complexity.

With the feature model DSL refinement process, we ob-
served:

1. O(n) steps to analyze each DSL metamodel and create
a corresponding feature

2. O(n2) steps to compare each DSL metamodel element
against other elements to find interactions that must be
added as constraints to the feature model



3. O(n) steps to select DSL features for the new domain

4. O(n) remove any DSL metamodel elements corre-
sponding to unselected features

5. O(c) steps, wherec is total lines of code, to refactor
tooling if code generation and metaconfiguration are
not used

This analysis yields a total initial refinement complexity
of:

O(n + n + n
2 + n) = O(n + n

2)

Further refinements for new domains, however, do not incur
this full complexity. Future domains only require:

O(n + n + c) = O(n + c)

to select new features, refine the metamodel, and refactor
tooling. If code generation or metaconfiguration are used to
update tools, the manual code refactoring is eliminated:

O(n + n) = O(n)

For a single metamodel reuse through refinement, the
feature model does not provide any complexity savings.
When the metamodel is reused multiple times, however, a
significant savings of:

O(n) vs. O(n + n
2 + c)

or
O(n + c) vs. O(n + n

2 + c)

is achieved.

5 Concluding Remarks

This article motivated the need for improving DSL
reusability and has shown how SPL reuse techniques can be
applied to DSL refinement and DSL composition adaptation
to improve reusability. In particular, we have shown how
feature modeling techniques can be used to document the
semantic rules for modifying metamodels and DSL compo-
sitions. From our work applying SPL reuse techniques to
DSLs, we have learned the following lessons:

• Semantic constraintscan be enforced during DSL re-
finement by providing developers with a feature model
of a DSL’s metamodel.

• Code generator modularization is not easy to
acheive with current SPL techniques. In future work,
we plan to investigate how the reusability/modularity
of code generators can be improved.

• Applying model-driven engineering techniques to
DSLs greatly improves the speed at which new DSLs
can be developed and existing DSLs can be refactored.

GEMS is a sub-project of Eclipse and is available from
www.eclipse.org/gmt/gems. Scatter is an open-
source DSL available fromwww.sf.net/projects/
gems. PICML and CQML are also open-source DSLs
available fromwww.dre.vanderbilt.edu/cosmic.
Finally, CUTS is an open-source tool available fromwww.
dre.vanderbilt.edu/CUTS.

References

[1] Ákos Lédeczi,Árpád Bakay, M. Maróti, P. Völgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
domain-specific design environments.Computer,
34(11):44–51, 2001.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement.IEEE Transactions on Software
Engineering, 30(6):355–371, 2004.

[3] D. Beuche, H. Papajewski, and W. Schrder-Preikschat.
Variability management with feature models.Science of
Computer Programming, 53(3):333–352, 2004.

[4] P. Clements and L. Northrop.Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, 2002.

[5] T. Denton, E. Jones, S. Srinivasan, K. Owens, and
R. Buskens. NAOMI-An Experimental Platform for
Multi-modeling. InProceedings of MODELS, pages
143–157, Toulouse, France, October 2008.

[6] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented project
line engineering.IEEE Software, 19(4):58–65, 2002.

[7] M. Mernik, J. Heering, and A. M. Sloane. When and how to
develop domain-specific languages.ACM Computing
Surveys, 37(4):316–344, 2005.

[8] M. Voelter. A family of languages for architecture
description. InProceedings of the OOPSLA Workshop on
Domain-Specific Modeling, pages 86–93, October 2008.

6 About the Authors

Dr. Jules White is a Sr. Research Scientist at Vander-
bilt University’s Institute for Software Integrated Systems.
He received his BA in Computer Science from Brown Uni-
versity, his MS in Computer Science from Vanderbilt Uni-
versity, and his Ph.D. in Computer Science from Vander-
bilt University. Dr. White’s research focuses on applying
a combination of model-driven engineering and constraint-
based optimization techniques to the deployment and con-
figuration of complex software systems. Dr. White is the
project leader for the Generic Eclipse Modeling System
(GEMS), an Eclipse Foundation project.

James H. Hill is a PhD candidate in the Department of
Electrical Engineering and Computer Science at Vanderbilt
University. James’s research focuses on using model-driven
engineering techniques to assist with locating design-time
flaws related to quality-of-service (QoS) for component-
based distributed real-time and embedded systems earlier
in the software development lifecycle as opposed to inte-
gration time. James’ research in this area has lead to the



creation of an tool called the Component Workload Emula-
tor (CoWorkEr) Utilization Test Suite (CUTS), which is an
architecture-, language-, and platform-independent open-
source system execution modeling tool for component-
based systems.

Dr. Jeff Gray is an Associate Professor in the Com-
puter and Information Sciences Department at the Univer-
sity of Alabama at Birmingham, where he co-directs re-
search in the SoftCom Laboratory. His research interests
include model-driven engineering, aspect orientation, code
clones, and generative programming. Jeff received a PhD in
computer science from Vanderbilt University and both the
BS and MS in computer science from West Virginia Uni-
versity. He is a member of the ACM and a Senior Member
of the IEEE. Contact him at gray@cis.uab.edu.

Sumant Tambe is a PhD candidate of Electrical En-
gineering and Computer Science program at Vanderbilt
University. His current research interests include model-
driven engineering, its applications to the development of
distributed real-time and embedded systems using QoS-
enabled middleware, and improving productivity of model-
driven development process.

Dr. Douglas C. Schmidt is a Professor of Computer
Science and Associate Chair of the Computer Science and
Engineering program at Vanderbilt University. He has pub-
lished 9 books and over 400 papers that cover a range of top-
ics, including patterns, optimization techniques, and empir-
ical analyses of software frameworks and domain-specific
modeling environments that facilitate the development of
distributed real-time and embedded (DRE) middleware and
applications. Dr. Schmidt has over fifteen years of ex-
perience leading the development of ACE, TAO, CIAO,
and CoSMIC, which are open-source middleware frame-
works and model-driven tools that implement patterns and
product-line architectures for high-performance DRE sys-
tems.

Dr. Aniruddha S. Gokhale is an Assistant Professor
of Computer Science and Engineering in the Dept. of Elec-
trical Engineering and Computer Science at Vanderbilt Uni-
versity, Nashville, TN, USA. He received his BE (Computer
Eng) from Pune University in 1989; MS (Computer Sci-
ence) from Arizona State University, Tempe, AZ in 1992;
and D.Sc (Computer Science) from Washington University,
St. Louis, MO in 1998. Prior to joining Vanderbilt, he was
a Member of Technical Staff at Bell Labs, Lucent Tech-
nologies in New Jersey. Dr.Gokhale is a member of IEEE
and ACM. Dr. Gokhale’s research combines model-driven
engineering and middleware for distributed, real-time and
embedded systems.


