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Abstract 

 
 Domain-Specific Modeling Languages (DSMLs) 

are graphical modeling languages designed to mirror 

the notations and terminology of a particular target 

domain. This paper presents an approach, called 

Spread, to create a generalized remote collaboration 

framework for DSML modeling. Spread allows meta-

programmable modeling environments to use a com-

mon remoting framework across a diverse set of 

DSML languages, despite differences in the terminol-

ogy, structure, and semantics of each language.  

 
 
1. Introduction 
 Domain-Specific Modeling Languages (DSMLs) 
[7] are graphical modeling languages that have custo-
mized terminology and semantics for a specific target 
domain. For example, in the automobiles domain mul-
tiple DSMLs are commonly used, , including MatLab 
Simulink [9] for modeling the continuous and discrete 
behavior of a car’s Electronic Control Units (ECUs), 
AUTOSAR [6] to describe the functional behavior of 
the automobile’s software and its interaction with 
ECU functions, and  Feature Models [10] to capture 
variations in how the ECUs and software components 
can be configured. 
 A challenging aspect of developing a new DSML 
is creating a graphical environment that allows mod-
elers to visualize and manipulate instances of a model-
ing language. Meta-programmable modeling environ-
ments (such as the Eclipse Graphical Modeling 
Framework (GMF) [5], the Generic Modeling Envi-
ronment (GME) [8], or the Generic Eclipse Modeling 
System (GEMS) [11]) apply model-driven engineering 
techniques to create DSML modeling environments. 
Developers use meta-programmable modeling envi-
ronments to specify a DSML using a metamodel spe-
cification language—the grammar and semantics of a 
language. The meta-programmable environment then 
generates the requisite code to implement a visual 
modeling environment with the terms, notations, and 
constraints of the DSML specified by the metamodel. 
 Frequently in large-scale development scenarios, 
developers need the ability to collaborate on a single 

or group of DSML models. Despite the ability of me-
ta-programmable modeling environments to rapidly 
generate DSML modeling environments without re-
quiring manual coding, they have previously been 
unable to automatically generate a remote collabora-
tion framework that allows multiple developers to 
interact with a set of models simultaneously. Develop-
ers have thus hereto been forced to implement these 
complex remote collaboration frameworks from 
scratch. 
 To address this limitation of meta-programmable 
modeling environments, this paper presents a DSML 
modeling collaboration architecture, called Spread, 
that provides a general remote collaboration frame-
work that can be used across multiple DSMLs. For 
each DSML, Spread uses a predicate-logic based re-
moting protocol to manage model updates across 
modeling clients. Spread also employs a hierarchical 
peer-to-peer based modeling client topology that al-
lows model contents to be distributed selectively 
across clients. Each client maintains a separate view of 
the model and a total ordering of model updates to 
prevent inconsistent states. 
 The remainder of this paper is organized as fol-
lows: Section 2 outlines an example from the automo-
tive domain to motivate the need for Spread; Section 3 
describes the challenges of building a generalized re-
mote collaboration framework for DSMLs; Section 4 
summarizes the Spread architecture; Section 5 com-
pares Spread with related work; and Section 6 presents 
concluding remarks.  
 
2. Motivating Example 
 As a motivating example for this paper, we use 
the collaborative design of an automotive application. 
Figure 1 depicts an example modeling scenario for the 
development of an automobile. A lead developer is 
responsible for the overall architecture of the automo-
bile. Directly beneath the lead developer are two inte-
gration engineers responsible for integrating the parts 
provided by third-party software and hardware suppli-
ers into the overall automobile architecture. Finally, 
the third-party suppliers receive requirements models 
from the integration engineers and fill in the models 



 

with the specifics of the components that they are sup-
plying. 
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3. Challenges of DSML Modeling Collabo-

ration 
This section describes four challenges associated with 
DSML modeling. 
 
Challenge 1: Selective client views. One challenge 
that must be met by a collaborative DSML modeling 
solution is how to provide different levels of access to 
the model for different users.  It is entirely possible 
that for some applications it makes sense to have some 
users who only need to see part of the model, other 
users that need to see other parts of the model, and yet 
other users that need to see the entire model.  Since 
some users only need to see part of the model, it fol-
lows that these users also only need to to update these 
same parts of the model; otherwise unexpected 
changes and errors could result.  Any collaborative 
DSML modeling solution should be able to provide 
these selective views to individual users, as well as 
selective access to only the parts of the model that the 
individual user can see. 
 Our motivating example from Section 2 shows 
this limitation of access clearly. The third-party sup-
pliers each receive the requirements of only the com-
ponents that they are supplying, which they use to fill 
the models with their specific components.  These 
specifics must then be incorporated in the overall 
model of the automotive architecture. It must be poss-
ible for the two integration engineers to make any 
changes necessary to the specific models provided by 
the third-party suppliers, and have those changes ap-
pear on the models of affected suppliers.   
 
Challenge 2: Preventing update duplication with-

out domain semantics. A major challenge to the 
prospective collaborative DSML modeling solution is 
to define how updates propagate through the topology 
of connected models.  The simplest solution is to have 
every model broadcast an update to every other model 
it is connected to whenever it receives one from 
another source or generates one on its own.  This 
could result, however, in a model receiving an update, 

implementing it, and passing it on to another model, 
only to receive the same update again from another 
source, try to implement it again, and pass it on again.  
This process could result in an infinite loop of the 
same update going around the topology repeatedly, 
causing unwanted changes and tying up system re-
sources so that no new updates can be initiated.  Any 
collaborative DSML modeling solution will have to 
devise with a way of detecting and removing these 
duplicate updates, at the level of each individual mod-
el.  
 Creating a generic remote collaboration frame-
work for DSMLs is challenging because domain 
knowledge in a model is used to determine if the mod-
el already has the change specified by the incoming 
update. For example, if an update event that creates a 
new state arrives at a Statechart model, the infrastruc-
ture needs to find the root state machine, iterate over 
its states, and see if the specified state already exists. 
If the model is a CAD model of the automobile sus-
pension, however, a completely different series of 
checks will be needed to determine if the incoming 
change has already been applied to the model.   
 
Challenge 3: Prioritizing updates without domain 

semantics. Another challenge that must be handled by 
a collaborative DSML modeling solution is what to do 
if two updates reach a model at the same time.  This 
situation is complicated with DSMLs because the 
event that takes precedence can vary depending on the 
language. In our automotive case study, for example, it 
might make sense in some DSMLs for a delete update 
to take precedence over a change attribute update be-
cause the change attribute update would not change 
whether or not the object required deletion, but this 
might not always be the case. Providing a DSML-
independent method of handling update ordering is 
complicated. 
 
Challenge 4: Collaboration protocol generality. The 
final challenge a collaborative DSML modeling solu-
tion must solve involves being sufficiently generic to 
apply to all models.  Each DSML has a unique blend 
of terminology, notations, and semantics that make it 
hard to create a generalized collaboration framework 
for each language instance.  The solution cannot rely 
on the particulars of any one DSML, such as fields 
with a certain name or certain types of entities always 
being present in the model, but must be independent of 
these restraints.  In addition, the collaborative solution 
must be capable of finding an unknown number of 
fields and entities of unknown names that might or 
might not exist in any particular DSML.  The need for 
generality further complicates the previous challenges 
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since the solutions cannot depend on any type of field 
or entity being present in all models.   
 

4. The Spread DSML Collaboration Archi-

tecture 
 The Spread DSML modeling collaborative archi-
tecture provides a peer-to-peer client topology to 
achieve truly generic collaborative capabilities.  By 
choosing a peer-to-peer approach instead of a client-
server approach, Spread makes it easier to provide 
unique views and access to all participating peers.  In a 
client-server system, it is often necessary to standard-
ize all views around the one provided by the server. In 
contrast, by eliminating the server, Spread makes it 
possible for each peer to maintain its own view.  
 Spread uses a message-based architecture built on 
message-oriented middleware, meaning that the indi-
vidual peers can exist separately until an update is 
disseminated, process the update when it arrives, and 
then return to independent operation.   In this design 
each model is a topic that can be subscribed to by oth-
er models to create the topology.  Moreover, models 
can subscribe to message topics that come from other 
devices, such as sensors.  They can also only subscribe 
to certain types of messages, which is enough to pro-
vide unique access when necessary.  By implementing 
a peer-to-peer client topology, Spread easily provides 
separate client views and security. 
 Spread’s peer-to-peer client topology does have 
its drawbacks, however, since it is harder to provide 
protection against update duplication and update or-
dering because it is possible for the server to maintain 
an authoritative version of the model, while all clients 
simply copy the server's model.  The client-server ap-
proach avoids the problems of update duplication and 
update ordering.     
 To avoid update duplication using Spread, each 
model checks whether an update will cause any 
changes before actually applying it.  If the update does 
not cause changes, it is simply discarded and the mod-
el remains in its original state.  If the update does 
cause changes, it is applied to the model and broadcast 
to all connected models.  Each change will therefore 
be applied to each model only once and all other re-
dundant updates will eventually be dropped.   
 Spread achieves update ordering by forcing the 
peer-to-peer topology into a tree structure, as shown in 
Figure 2.  This tree structure is used to enforce priority 
in the event of an update collision, by determining that 
each model has priority over all models beneath it in 
the tree.  In Figure 2, the clients are numbered in order 
of their priority, with 1 being the highest priority and 8 
being the lowest.  Clients 2 and 3 actually have the 
same priority, because they are on the same level in 

the tree, but since there is no direct connection be-
tween them, this will not cause problems. 
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 By forcing a tree structure onto the peer-to-peer 
client topology, Spread does not lose any generality.  
In software design applications, a tree is almost always 
the natural topology of the connected users. Typically, 
a project manager, technical lead, or other arbitrator 
makes the final decision on how to reconcile conflict-
ing design forces. In our automotive example, Figure 1 
shows how the client topology is easily placed into a 
tree structure, with the lead developer as the root.  A 
client-server software development approach can also 
be forced into a natural tree structure with the server 
as the root and the clients as the branches.   

Predicate-logic Collaboration Protocol: 

 A key distinction between Spread and other mod-
eling collaborative architectures is Spread's generality.  
Our initial implementation of Spread is an extension 
of the GEMS meta-programmable modeling environ-
ment, so it can work with any DSML generated using 
Eclipse Modeling Framework models and GEMS for 
visualization.  It relies on the basic constructs provided 
by GEMS (described in [11]) to apply updates for any 
DSML.  This approach provides a terminology for 
Spread to use that is common across all GEMS 
DSMLs, so Spread can provide the collaborative ca-
pabilities necessary for any of these DSMLs.  Spread 
provides these capabilities using a predicate-logic col-
laboration protocol. 
 Update events in Spread are written using the 
ordered triple defined by <type of update, id of object 
being updated, new value>.  The different types of 
updates possible are defined by the specific DSML 
being used, but there is a small set of update types that 
are always implemented for every entity in the DSML.  
New updates are always defined using a recognizable 
pattern when the code is generated for the DSML, two 
users running the same DSML will always have the 
same set of types of updates defined.  These updates 
are resolved using a predicate-logic approach, which 
can resolve updates without Spread knowing the exact 
nature of the update. 
 For example, if some specific DSML has an ob-
ject with an attribute called name, when an update to 
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the name of that object is changed, the update 
<self_name, id1, New_Name> will be generated.  Any 
model that receives this update will know that all up-
date types begin with the prefix “self_”, so it will re-
move that and then be left with the attribute to change 
(name). It can then call a generic function and pass it 
the attribute to change (name) ,the id of the object on 
which to perform the change (id1)m and the new value 
to change the attribute to (New_Name).  Other types of 
updates in Spread are handled similarly. 
 Since Spread need not know the specifics of any 
DSML using it, it can provide the generality necessary 
for use by a large number of DSMLs.  This generality 
stems from the fact that the Spread need not change, 
no matter how different or complex two different 
models that use it.  In this way, Spread solves the chal-
lenge of generality, and therefore all challenges inhe-
rent in building a DSML modeling collaborative archi-
tecture. 
 
5. Related Work 
 There have been previous attempts to develop 
collaborative modeling techniques for limited do-
mains, but none have been as generic as Spread.  Most 
attempts have been for educational applications, such 
as the ModellingSpace architecture [1].  Modelling-
Space provides an interactive online environment 
where students and teachers can cooperate in virtual 
science experiments.  It provides a set of primitive 
building blocks that users can assemble into whichever 
experiment they want to perform, and then fully colla-
borate with any other users while performing the expe-
riment.  This architecture is limited since it requires a 
certain set of primitive building blocks for collabora-
tion to occur.  Spread, however, can provide the same 
collaborative capabilities as ModellingSpace for a 
much larger and more generic group of applications. 
 Another example of a collaborative modeling 
technique for a specific DSML is the Collaborative 
Spiral Process Model [4].  This collaborative process 
is specific to one DSML, meaning that it is not as ge-
neric as Spread.  A final example of a collaborative 
modeling technique for a specific DSML is webSPIFF 
[2] [3], which provides a web-based collaborative 
modeling platform for Feature Models in CAD sys-
tems similar to Spread, but again not as generic.  Both 
techniques provide features similar to Spread in their 
respective domains, but they do not provide the same 
level of generality as Spread. 
  
6. Concluding Remarks 
 We have presented the Spread generic DSML 
modeling collaborative architecture to address a lack 
of such capabilities in the meta-programmable model-
ing environments available today.  Spread facilitates 

collaboration between any number of users using a 
peer-to-peer client topology, with allowances for 
unique views and unique access.  Spread uses a predi-
cate-logic based collaboration protocol that allows it to 
handle generic updates.  Its primary advantage over 
other modeling collaborative architecture is its gene-
rality, i.e., it can be used with any DSML that can be 
modeled using the GEMS modeling environment. 
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