

Spread: A Remote Collaboration Architecture for Domain Specific Modeling

Scott Campbell, Jules White, and Douglas C. Schmidt

scott.h.campbell@vanderbilt.edu, {jules,schmidt}@dre.vanderbilt.edu
Vanderbilt University

Abstract

 Domain-Specific Modeling Languages (DSMLs)

are graphical modeling languages designed to mirror

the notations and terminology of a particular target

domain. This paper presents an approach, called

Spread, to create a generalized remote collaboration

framework for DSML modeling. Spread allows meta-

programmable modeling environments to use a com-

mon remoting framework across a diverse set of

DSML languages, despite differences in the terminol-

ogy, structure, and semantics of each language.

1. Introduction
 Domain-Specific Modeling Languages (DSMLs)
[7] are graphical modeling languages that have custo-
mized terminology and semantics for a specific target
domain. For example, in the automobiles domain mul-
tiple DSMLs are commonly used, , including MatLab
Simulink [9] for modeling the continuous and discrete
behavior of a car’s Electronic Control Units (ECUs),
AUTOSAR [6] to describe the functional behavior of
the automobile’s software and its interaction with
ECU functions, and Feature Models [10] to capture
variations in how the ECUs and software components
can be configured.
 A challenging aspect of developing a new DSML
is creating a graphical environment that allows mod-
elers to visualize and manipulate instances of a model-
ing language. Meta-programmable modeling environ-
ments (such as the Eclipse Graphical Modeling
Framework (GMF) [5], the Generic Modeling Envi-
ronment (GME) [8], or the Generic Eclipse Modeling
System (GEMS) [11]) apply model-driven engineering
techniques to create DSML modeling environments.
Developers use meta-programmable modeling envi-
ronments to specify a DSML using a metamodel spe-
cification language—the grammar and semantics of a
language. The meta-programmable environment then
generates the requisite code to implement a visual
modeling environment with the terms, notations, and
constraints of the DSML specified by the metamodel.
 Frequently in large-scale development scenarios,
developers need the ability to collaborate on a single

or group of DSML models. Despite the ability of me-
ta-programmable modeling environments to rapidly
generate DSML modeling environments without re-
quiring manual coding, they have previously been
unable to automatically generate a remote collabora-
tion framework that allows multiple developers to
interact with a set of models simultaneously. Develop-
ers have thus hereto been forced to implement these
complex remote collaboration frameworks from
scratch.
 To address this limitation of meta-programmable
modeling environments, this paper presents a DSML
modeling collaboration architecture, called Spread,
that provides a general remote collaboration frame-
work that can be used across multiple DSMLs. For
each DSML, Spread uses a predicate-logic based re-
moting protocol to manage model updates across
modeling clients. Spread also employs a hierarchical
peer-to-peer based modeling client topology that al-
lows model contents to be distributed selectively
across clients. Each client maintains a separate view of
the model and a total ordering of model updates to
prevent inconsistent states.
 The remainder of this paper is organized as fol-
lows: Section 2 outlines an example from the automo-
tive domain to motivate the need for Spread; Section 3
describes the challenges of building a generalized re-
mote collaboration framework for DSMLs; Section 4
summarizes the Spread architecture; Section 5 com-
pares Spread with related work; and Section 6 presents
concluding remarks.

2. Motivating Example
 As a motivating example for this paper, we use
the collaborative design of an automotive application.
Figure 1 depicts an example modeling scenario for the
development of an automobile. A lead developer is
responsible for the overall architecture of the automo-
bile. Directly beneath the lead developer are two inte-
gration engineers responsible for integrating the parts
provided by third-party software and hardware suppli-
ers into the overall automobile architecture. Finally,
the third-party suppliers receive requirements models
from the integration engineers and fill in the models

with the specifics of the components that they are sup-
plying.

Figure 1: Collaborative Automotive ModelingFigure 1: Collaborative Automotive ModelingFigure 1: Collaborative Automotive ModelingFigure 1: Collaborative Automotive Modeling

3. Challenges of DSML Modeling Collabo-

ration
This section describes four challenges associated with
DSML modeling.

Challenge 1: Selective client views. One challenge
that must be met by a collaborative DSML modeling
solution is how to provide different levels of access to
the model for different users. It is entirely possible
that for some applications it makes sense to have some
users who only need to see part of the model, other
users that need to see other parts of the model, and yet
other users that need to see the entire model. Since
some users only need to see part of the model, it fol-
lows that these users also only need to to update these
same parts of the model; otherwise unexpected
changes and errors could result. Any collaborative
DSML modeling solution should be able to provide
these selective views to individual users, as well as
selective access to only the parts of the model that the
individual user can see.
 Our motivating example from Section 2 shows
this limitation of access clearly. The third-party sup-
pliers each receive the requirements of only the com-
ponents that they are supplying, which they use to fill
the models with their specific components. These
specifics must then be incorporated in the overall
model of the automotive architecture. It must be poss-
ible for the two integration engineers to make any
changes necessary to the specific models provided by
the third-party suppliers, and have those changes ap-
pear on the models of affected suppliers.

Challenge 2: Preventing update duplication with-

out domain semantics. A major challenge to the
prospective collaborative DSML modeling solution is
to define how updates propagate through the topology
of connected models. The simplest solution is to have
every model broadcast an update to every other model
it is connected to whenever it receives one from
another source or generates one on its own. This
could result, however, in a model receiving an update,

implementing it, and passing it on to another model,
only to receive the same update again from another
source, try to implement it again, and pass it on again.
This process could result in an infinite loop of the
same update going around the topology repeatedly,
causing unwanted changes and tying up system re-
sources so that no new updates can be initiated. Any
collaborative DSML modeling solution will have to
devise with a way of detecting and removing these
duplicate updates, at the level of each individual mod-
el.
 Creating a generic remote collaboration frame-
work for DSMLs is challenging because domain
knowledge in a model is used to determine if the mod-
el already has the change specified by the incoming
update. For example, if an update event that creates a
new state arrives at a Statechart model, the infrastruc-
ture needs to find the root state machine, iterate over
its states, and see if the specified state already exists.
If the model is a CAD model of the automobile sus-
pension, however, a completely different series of
checks will be needed to determine if the incoming
change has already been applied to the model.

Challenge 3: Prioritizing updates without domain

semantics. Another challenge that must be handled by
a collaborative DSML modeling solution is what to do
if two updates reach a model at the same time. This
situation is complicated with DSMLs because the
event that takes precedence can vary depending on the
language. In our automotive case study, for example, it
might make sense in some DSMLs for a delete update
to take precedence over a change attribute update be-
cause the change attribute update would not change
whether or not the object required deletion, but this
might not always be the case. Providing a DSML-
independent method of handling update ordering is
complicated.

Challenge 4: Collaboration protocol generality. The
final challenge a collaborative DSML modeling solu-
tion must solve involves being sufficiently generic to
apply to all models. Each DSML has a unique blend
of terminology, notations, and semantics that make it
hard to create a generalized collaboration framework
for each language instance. The solution cannot rely
on the particulars of any one DSML, such as fields
with a certain name or certain types of entities always
being present in the model, but must be independent of
these restraints. In addition, the collaborative solution
must be capable of finding an unknown number of
fields and entities of unknown names that might or
might not exist in any particular DSML. The need for
generality further complicates the previous challenges

Lead Developer

Integration Engineer
1

Integration Engineer
2

Software Provider 1 Software Provider n …

…

Hardware Provider
1

… Hardware Provider
n

…

No communication
between individual
providers

since the solutions cannot depend on any type of field
or entity being present in all models.

4. The Spread DSML Collaboration Archi-

tecture
 The Spread DSML modeling collaborative archi-
tecture provides a peer-to-peer client topology to
achieve truly generic collaborative capabilities. By
choosing a peer-to-peer approach instead of a client-
server approach, Spread makes it easier to provide
unique views and access to all participating peers. In a
client-server system, it is often necessary to standard-
ize all views around the one provided by the server. In
contrast, by eliminating the server, Spread makes it
possible for each peer to maintain its own view.
 Spread uses a message-based architecture built on
message-oriented middleware, meaning that the indi-
vidual peers can exist separately until an update is
disseminated, process the update when it arrives, and
then return to independent operation. In this design
each model is a topic that can be subscribed to by oth-
er models to create the topology. Moreover, models
can subscribe to message topics that come from other
devices, such as sensors. They can also only subscribe
to certain types of messages, which is enough to pro-
vide unique access when necessary. By implementing
a peer-to-peer client topology, Spread easily provides
separate client views and security.
 Spread’s peer-to-peer client topology does have
its drawbacks, however, since it is harder to provide
protection against update duplication and update or-
dering because it is possible for the server to maintain
an authoritative version of the model, while all clients
simply copy the server's model. The client-server ap-
proach avoids the problems of update duplication and
update ordering.
 To avoid update duplication using Spread, each
model checks whether an update will cause any
changes before actually applying it. If the update does
not cause changes, it is simply discarded and the mod-
el remains in its original state. If the update does
cause changes, it is applied to the model and broadcast
to all connected models. Each change will therefore
be applied to each model only once and all other re-
dundant updates will eventually be dropped.
 Spread achieves update ordering by forcing the
peer-to-peer topology into a tree structure, as shown in
Figure 2. This tree structure is used to enforce priority
in the event of an update collision, by determining that
each model has priority over all models beneath it in
the tree. In Figure 2, the clients are numbered in order
of their priority, with 1 being the highest priority and 8
being the lowest. Clients 2 and 3 actually have the
same priority, because they are on the same level in

the tree, but since there is no direct connection be-
tween them, this will not cause problems.

FigureFigureFigureFigure 2: The Peer2: The Peer2: The Peer2: The Peer----totototo----peer Client Topologypeer Client Topologypeer Client Topologypeer Client Topology

 By forcing a tree structure onto the peer-to-peer
client topology, Spread does not lose any generality.
In software design applications, a tree is almost always
the natural topology of the connected users. Typically,
a project manager, technical lead, or other arbitrator
makes the final decision on how to reconcile conflict-
ing design forces. In our automotive example, Figure 1
shows how the client topology is easily placed into a
tree structure, with the lead developer as the root. A
client-server software development approach can also
be forced into a natural tree structure with the server
as the root and the clients as the branches.

Predicate-logic Collaboration Protocol:

 A key distinction between Spread and other mod-
eling collaborative architectures is Spread's generality.
Our initial implementation of Spread is an extension
of the GEMS meta-programmable modeling environ-
ment, so it can work with any DSML generated using
Eclipse Modeling Framework models and GEMS for
visualization. It relies on the basic constructs provided
by GEMS (described in [11]) to apply updates for any
DSML. This approach provides a terminology for
Spread to use that is common across all GEMS
DSMLs, so Spread can provide the collaborative ca-
pabilities necessary for any of these DSMLs. Spread
provides these capabilities using a predicate-logic col-
laboration protocol.
 Update events in Spread are written using the
ordered triple defined by <type of update, id of object
being updated, new value>. The different types of
updates possible are defined by the specific DSML
being used, but there is a small set of update types that
are always implemented for every entity in the DSML.
New updates are always defined using a recognizable
pattern when the code is generated for the DSML, two
users running the same DSML will always have the
same set of types of updates defined. These updates
are resolved using a predicate-logic approach, which
can resolve updates without Spread knowing the exact
nature of the update.
 For example, if some specific DSML has an ob-
ject with an attribute called name, when an update to

Client 1

Client 2 Client 3

Client 4 Client 6 Client 5 Client 7

Client 8

the name of that object is changed, the update
<self_name, id1, New_Name> will be generated. Any
model that receives this update will know that all up-
date types begin with the prefix “self_”, so it will re-
move that and then be left with the attribute to change
(name). It can then call a generic function and pass it
the attribute to change (name) ,the id of the object on
which to perform the change (id1)m and the new value
to change the attribute to (New_Name). Other types of
updates in Spread are handled similarly.
 Since Spread need not know the specifics of any
DSML using it, it can provide the generality necessary
for use by a large number of DSMLs. This generality
stems from the fact that the Spread need not change,
no matter how different or complex two different
models that use it. In this way, Spread solves the chal-
lenge of generality, and therefore all challenges inhe-
rent in building a DSML modeling collaborative archi-
tecture.

5. Related Work
 There have been previous attempts to develop
collaborative modeling techniques for limited do-
mains, but none have been as generic as Spread. Most
attempts have been for educational applications, such
as the ModellingSpace architecture [1]. Modelling-
Space provides an interactive online environment
where students and teachers can cooperate in virtual
science experiments. It provides a set of primitive
building blocks that users can assemble into whichever
experiment they want to perform, and then fully colla-
borate with any other users while performing the expe-
riment. This architecture is limited since it requires a
certain set of primitive building blocks for collabora-
tion to occur. Spread, however, can provide the same
collaborative capabilities as ModellingSpace for a
much larger and more generic group of applications.
 Another example of a collaborative modeling
technique for a specific DSML is the Collaborative
Spiral Process Model [4]. This collaborative process
is specific to one DSML, meaning that it is not as ge-
neric as Spread. A final example of a collaborative
modeling technique for a specific DSML is webSPIFF
[2] [3], which provides a web-based collaborative
modeling platform for Feature Models in CAD sys-
tems similar to Spread, but again not as generic. Both
techniques provide features similar to Spread in their
respective domains, but they do not provide the same
level of generality as Spread.

6. Concluding Remarks
 We have presented the Spread generic DSML
modeling collaborative architecture to address a lack
of such capabilities in the meta-programmable model-
ing environments available today. Spread facilitates

collaboration between any number of users using a
peer-to-peer client topology, with allowances for
unique views and unique access. Spread uses a predi-
cate-logic based collaboration protocol that allows it to
handle generic updates. Its primary advantage over
other modeling collaborative architecture is its gene-
rality, i.e., it can be used with any DSML that can be
modeled using the GEMS modeling environment.

7. References
[1] Avouris, N. and Margaritis, M. and Komis, V. and Saez,
A. and Melendez, R., “ModellingSpace: Interaction Design
and Architecture of a collaborative modelling environment”,
Proc. of 6th CBLIS, 2003, pages 993—1004,

[2] Bidarra, R. and van den Berg, E. and Bronsvoort, W.F.,
"Collaborative modeling with features", 2001 ASME Design
Engineering Technical Conferences, September 9-12, 2001,
Pittsburgh, Pennsylvania, United States

[3] Bidarra, R. and van den Berg, E. and Bronsvoort, W.F.,
"Web-based collaborative feature modeling", Proceedings of
the sixth ACM symposium on Solid modeling and applica-

tions, 2001, pages 319-320

[4] Boehm, B. and Bose, P., "A Collaborative Spiral Soft-
ware Process Model Based on Theory W", Software
Process, 1994. 'Applying the Software Process', Proceed-

ings., Third International Conference on the, Oct 10-11
1994, pages 59-68

[5] Eclipse Consortium, Eclipse Graphical Modeling
Framework (GMF), 2005, available at
<http://www.eclipse.org/gmf>

[6] Heinecke, H. and Bielefeld, J. and Schnelle, K.P. and
Maldener, N. and Fennel, H. and Weis, O. and Weber, T.
and Ruh, J. and Lundh, L. and Sandén, T. and others, "AU-
TOSAR--Current results and preparations for exploitation",
7th EUROFORUM conference: Software in the vehicle, May
3-4 2006, Stuttgart, Germany

[7] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter
Völgyesi, Greg Nordstrom, Jonathan Sprinkle, Gábor Kar-
sai, "Composing Domain-Specific Design Environments,"
Computer, vol. 34, no. 11, Nov., 2001, pages 44-51

[8] Ledeczi, A. and Maroti, M. and Bakay, A. and Karsai, G.
and Garrett, J. and Thomason, C. and Nordstrom, G. and
Sprinkle, J. and Volgyesi, P., "The Generic Modeling Envi-
ronment", Workshop on Intelligent Signal Processing, May,
2001, Budapest, Hungary

[9] MatLab Simulink, available at
<http://www.mathworks.com/products/simulink/>

 [10] Riebisch, M., "Towards a More Precise Definition of
Feature Models", Modeling Variability for Object-Oriented
Product Lines, 2003, pages 64-76

[11] White, J. and Schmidt, D.C. and Mulligan, S., "The
Generic Eclipse Modeling System", Model-Driven Devel-
opment Tool Implementors Forum at TOOLS, June 24, 2007,
Zurich, Switzerland

