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Abstract—An emerging trend in audio processing is capturing
low-level speech representations from raw waveforms. These
representations have shown promising results on a variety
of tasks, such as speech recognition and speech separation.
Compared to handcrafted features, learning speech features
via backpropagation can potentially provide the model greater
flexibility in how it represents data for different tasks. However,
results from empirical studies show that, in some tasks, such
as spoof speech detection, handcrafted features still currently
outperform learned features. Instead of evaluating handcrafted
features and raw waveforms independently, this paper proposes
an Auxiliary Rawnet model to complement handcrafted features
with features learned from raw waveforms for spoof speech
detection. A key benefit of the approach is that it can improve
accuracy at a relatively low computational cost. The proposed
Auxiliary Rawnet model is tested using the ASVspoof 2019
dataset and pooled EER and min-tDCF are 1.11% and 0.03645
respectively. Results from this dataset indicate that a lightweight
waveform encoder can boost the performance of handcrafted-
features-based encoders for 10 types of spoof attacks, including 3
challenging attacks, in exchange for a small amount of additional
computational work.

Index Terms—Raw waveform, handcrafted features, spoof
speech detection

I. INTRODUCTION

Fixed, handcrafted audio features, such as Mel-filter
banks [1], have shown great performance in capturing strong
audio features in aspects of both auditory and machine learn-
ing [2], [3]. However, since handcrafted features are often
designed based on specific tasks, such as speech recognition,
using these features to solve problems that they were not
designed for may not be optimal. For example, Mel-filter
banks [1] apply triangular filter banks on a Mel-scale to spec-
trograms calculated using short-term Fourier transform (STFT)
to represent the non-linear perception of the human hearing.
The Mel-scale is derived from a set of perception experiments
on humans. As a result, Mel-filter banks are coarse-grained
at high-frequencies since humans are less sensitive to high
frequency sound. This loss of signal energy (information) in
high frequencies may lead to poor performance on tasks that
rely on information in these higher frequencies [3].

Extracting audio features with backpropagation provides
an alternative way to represent raw waveforms by using
deep neural networks to learn task-specific features. Task-
specific features can be learned for many problems, such as
voice recognition [4], [5] or automatic speaker verification
(ASV) [6]. Directly learning features from raw waveforms

grants greater flexibility in handling unknown tasks and, thus,
overcomes some of the challenges of handcrafted features,
which may lose signal energy needed by a specific task.
Previous research indicates that representations learned from
waveforms still have limitations on signal energy loss com-
pared to the original raw signals they were learned from [2].
In the spoof speech detection task, models based on only
raw waveforms perform better in specific spoof attacks, while
shows weaker performance on other attacks compared to
model based on handcrafted data [7], [8].

Instead of relying on raw waveforms independently, a po-
tential option is to design a solution that can take advantage of
both handcrafted and learned features. For example, lost phase
information in handcrafted features can be complemented by
features learned from raw waveforms. However, building an
end-to-end CounterMeasure (CM) systems, containing mul-
tiple encoders to process raw waveforms and hand-crafted
features independently, can result in big challenges in model
size and complexity.

In this paper, we propose the Auxiliary Rawnet (ARNet)
architecture to combine learned features from raw waveforms
with existing handcrafted features, by designing a lightweight
auxiliary encoder. The proposed model was tested on the ASV
Spoof 2019 dataset [9], where the model needs to defend
against speech spoofing attacks from a variety of sources.
The model shows promise in boosting the performance of
handcrafted feature-based networks that warrants further in-
vestigation on additional data sets and tasks.

The key contributions of this paper are as follows:

« We elaborate on the problem of concatenating raw wave-
forms and handcrafted features in the speech field and
propose assumptions to solve this problem efficiently.

e Based on our assumption, we introduce the Auxil-
iary Rawnet architecture that can be used to attach a
lightweight auxiliary encoder to a model that relies on
handcrafted features, so that raw waveform data can
supplement the information in handcrafted features.

o We show results that indicate that, by introducing the
auxiliary raw encoder, model performance is boosted on
the ASV spoof 2019 dataset. A light-weight auxiliary
encoder boosts model performance over 10 of 13 spoof
attacks, including 3 challenging attacks.

o« We describe how our results show the potential of
combining a light-weight waveform encoder with other
encoders, providing an approach to balance the trade-off



between performance and model complexity for models
containing multiple encoders.

The remainder of this paper is organized as follows:
Sectionll discusses prior work in audio signal feature rep-
resentation. SectionIIl explains the problem analyzed in this
paper and describes the Auxiliary Rawnet structure. SectionlV
introduces the experimental dataset and tasks used in this pa-
per. Experimental results are analyzed in SectionV. SectionVI
presents concluding remarks and lessons learned.

II. RELATED WORK

Prior work has shown how the “front-end” of models,
which extract features from raw data, can be improved by
using deep neural networks [2], [3], [5], [10], [11] to directly
learn features from raw signal data. Directly applying standard
CNNs to process raw waveforms [12] has shown promising
results in speech recognition, spoofing detection, and speech
separation. Convolutions on time-domain raw waveforms can
be explained as finite impulse response filter banks [2]. Struc-
tured filters are applied to optimize standard CNNs based
on digital signal processing theory, by initializing the first
convolutional layer, which is believed to be the most important
part, with known filter families [11], [13], [14], so that a
custom filter bank can be designed for a specific task. Filter-
based waveforms networks are emerging as excellent front-
ends for many tasks [3], [7]. However, a theoretical analysis
from Joakim et al. [2] has shown that signal energy loss is
still inevitable for features extracted from raw waveforms by
a CNN. Their results show extracted features can carry up
to 94.5% signal energy compared to the original waveforms.
On the other hand, empirical research also indicates that
handcrafted features are still competitive in specific questions,
such as speech commands [3], spoof speech detection [9], [15],
and instrument classification [3].

In prior work on spoof detection, a deep neural network,
called RawNet2 [7], used raw waveforms to enhance the
performance of CM systems against certain types of spoof
attacks, but at the expense of increased model size and
computational complexity. The prior work showed that models
relying solely on raw waveforms showed weaker performance
on many types of spoof attacks, resulting in worse overall
performance on spoof detection according to the ASV spoof
dataset [7]. It is challenging to create an end-to-end network,
which can take both raw waveforms and hand-crafted features
as input due to the increase in model size that accompanies raw
waveform use. This paper considers the use of raw waveforms
as a supplement to handcrafted features, rather than the main
input, for spoof detection and investigates their potential to
boost performance with little additional computational cost.
To the best of our knowledge, our work is the first study
on the bottleneck structure of hand-crafted features and raw
waveforms in deep learning models for spoof detection. The
paper also presents the first architecture to apply both hand-
crafted features and raw waveforms in an end-to-end model
for spoof detection tasks.

III. AUXILIARY RAWNET

This section elaborates the research problem on combining
raw waveforms and handcrafted features and explains the
structure of the ARNet architecture.

The proposed network architecture applies a light-weight
encoder to process raw waveforms with low computational
cost as learned features, which are combined with existing
speech classification models (Figure 1). To produce disen-
tangled representations from different encoders, a narrow
bottleneck is leveraged in the raw waveforms encoder without
damaging the performance of the handcrafted encoder, as
shown in Figure 2.

A. Problem Formulation

Before introducing the ARNet architecture, we first formal-
ize the problem that it is intended to solve. Denote F, as
features of a raw waveform, and p as a problem to solve.
We assume there is a constructive function f, which can map
Foaor Fopnase and Sy . . into Fy, as described in Equa-
tion 1, where F; is the ideal magnitude information needed
to solve p, Fy, , ... is the ideal phase information needed to
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Empirical studies [3] have shown the ability of handcrafted
features to represent the strongest audio features for a variety
of problems. Based on our assumption, the calculation of
handcrafted features can be denoted as a mapping function g,
which can retrieve approximations of Fj, . or F, . For
example, mel-spectragrams can be described by the following
equation:

F, = f(Fp'nLag7 Pphase?
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When concatenating raw waveform data and handcrafted
features to enhance model performance, our work is essentially
to find a function, h, so that the total loss of g(F,) and h(Fy,)
is smaller than a single g(F’,). In other words, we want to find
representations closer to the ideal solution Fj, . + F)
as describe in Equation 3.

phase?

concat(g(Fy), M(Fw)) = Fp,0o + Fppnaee > 9(Fw)  (3)

However, it is not clear how g(F),) interacts with h(F,,).
Inspired by observations from results regarding g(F,,) and
h(Fy) on various tasks [3], [7], we make the following
assumption about combining learned features and handcrafted
features:

Assumption 1 (A1): If a handcrafted feature, g(F,,) shows
strong results solving problem p, then there exists a h(Fy)
with size less than N in concat(g(Fy), h(Fy)) that will
enhance overall performance. In other words, h(F,,) can be
an auxiliary component of g(Fy,) to improve performance with
a bounded cost.
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B. The Auxiliary RawNet Structure

Based on the assumptions presented in section III-A, we
propose the ARNet architecture. An overview of the ARNet
architecture is shown in Figure 1. E 4, which processes the raw
waveform, has a smaller bottleneck than E; which processes
handcrafted audio features, to make the raw waveforms play
a supplementary role and bound the computational cost (e.g.,

bound N).
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Fig. 2. Overview of the ARawNet Architecture. The model consists of a Main

Encoder(E)s), Auxiliary Encoder(E 4), and Concatenate Encoder(E¢). E 4
has a smaller bottleneck than Ej;.

The Encoders. There are 3 encoders in the ARNet: the
Main Encoder(E)y), Auxiliary Encoder(E4), and Concatenate
Encoder(E¢). Ejs denotes the main encoder, whose inputs
are the original handcrafted features that have shown good
performance in solving the target problem. E 4 is the encoder
used to encode the raw waveforms in a light-weight way to
compress F,, into F,, where F, are the features extracted
by the auxiliary encoder. F, and F,, (hand crafted features
from the main encoder) are then concatenated in channels and
further encoded by F¢.

Figure 1 shows details of the encoders used in our exper-
iments on the ASVspoof 2019 dataset. We select the strided
convolutional layer [5] as the first layer to directly process
the raw waveforms. However, unlike previous raw waveforms

The ARNet Architecture. F/4 contains one strided CNN, 3 continuous max-pooling layers and a GRU. A TDNN-based model is illustrated here as

networks, which include multiple CNN blocks with large
kernels, the strided convolutional layer is only followed by 3
continuous pooling blocks to collapse vectors and remove any
frame variance without further convolution. A GRU is used to
encode frame-level features into utterance-level embeddings
by keeping output vectors from the last time step.

The main encoder keeps layers before the statistical pooling
layer, which will output utterance-level embeddings. Based
on our assumption 1, we chose a narrow bottleneck for F 4.
The dimension of the utterance-level embedding from E4 is
designed to be smaller than the output dimension from FEj;.
In the end, Ec only contains a single Convld to encode
concatenated results from F 4 and E),.

The full architecture and model hyper-parameters are ex-
plained in Table I.

Encoders Blocks
Auxiliary Encoder Conv(3,3,128)
BN&LeakyReLu
MaxPooling
BN&LeakyReLu
GRU(512)
Concatenate Encoder BN
Conv1D(1,1,256)
TABLE I
THE ARCHITECTURE OF AUXILIARY ENCODER AND CONCATENATE
ENCODER.

The Decoder. In our problem, the decoder is a linear
classifier layer that decodes embeddings from E¢ to target
classification.

C. Why does a light-weight encoded raw waveforms augment
handcrafted features?

(1) Compared to the current filter-based architectures as
discussed in Section II, we chose the strided convolutional
receptive field, which is a standard CNN, as the first layer to
process the raw waveforms. The strided convolutional layer
consists of a set of time-domain convolutions, where all pa-
rameters(CNN kernel), are learned from the data. Calculation
of the first CNN layer can be described as the following
Equation [11], where x[n] is raw waveforms, h[n] is the filter
and y[n] is filtered output:

yln] hln —1] €y
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As discussed in Section III-A, concatenating g(F,,) and
h(F,) requires each encoder to have different attention to
features in the raw waveforms so that they can complement
each other. The standard convolutional layer with small kernels
gives the F 4 the least information about the signal processing
mechanisms in g(F,,), and thus potentially grants it the most
flexibility to extract features, which do not overlap with g(F,,).

(2) In contrast to previous waveform-based networks [5],
[7], the CNN blocks used in between the strided convolution
layer and the GRU are completely removed, and only 3
continuous max-pooling layers with batch normalization are
kept to collapse frame-level features step-by-step.

The first convolutional layer is considered the most critical
part in processing raw waveforms. In deep networks it is
also the most vulnerable to problems, such as vanishing
gradients, without initializing filters [11]. However, based on
our assumption 1, only significant frame-level features need to
be kept, indicating networks without deep CNN blocks can be
used for £/4. Max pooling layers are used to collapse vectors
and find significant pattern information that can be visualized
after 3 pooling layers, as shown in Figure 3.

(3) We test our assumption 1 based on the Theorem [16]
from speech conversion problems, that if information bottle-
necks between different encoders are precisely set, the model
will decompose and produce disentangled representations of
input speech signals. In our model, this Theorem can be
described by the following equation:

En(Fu) = 9(Fo), Ea(Fu) = h(Fy) )

Thus, a narrow bottleneck is designed for E 4, which means
the dimension of utterance-level embeddings dim g, is much
smaller than dimg,,.

@) ®) © (@

Fig. 3. Outputs visualization of the strided convolution layer and pooling lay-
ers. Outputs after 3 pooling layers(d) shows signification pattern information.

(4) Output embeddings from E,; and E 4 are concatenated
in the utterance level, where segment-level layers in single en-
coder are removed and are replaced with concatenate encoder
E¢. This is a critical features for the ARawNet, as well as
for our assumption 1, that original bottleneck layers from
Ej and E4 should be replaced with a E~. We concluded the
following hypothesis as we designed the network:

Assumption 2 (A2): Given raw waveform F,, and hand-
crafted features h(F(w)), segment-level layers need to be de-
signed after the concatenating layer to represent disentangled
representations.

IV. EXPERIMENTAL SETUP

A. Experimental Dataset

The ASVspoof 2019 logical access (LA) dataset was de-
veloped to improve research on the growing threat of voice
spoofing attacks on automated speech verification systems [9].
This dataset contains human-recorded audios and spoof audios
generated from 19 sources (AOl - A19), including speech
synthesis, voice conversion, and hybrid algorithms.

50,224 records in the training and development data consist
of spoof attacks generated by A01-A06. Another 71,237 spoof
audio files in the evaluation data are generated by A07-A19,
which are unpredictable spoofing attacks for CounterMeasure
(CM) systems. Detailed statistics of the ASVSpoof 2019 is
shown in Table II.

Subsets #Bonafide | #Spoofed | Spoof Source
Training 2580 22800 A01-A06
Development 2548 22296 A01-A06
Evaluation 7355 63882 A07-A19
TABLE II

STATISTICS OF THE ASV2019

We chose the ASVspoof 2019 LA dataset to validate the
performance of our proposed model since:

o The performance of handcrafted features is limited by the
difference in spoofing sources between the training and
evaluation data. Spoofing types are highly unpredictable
while the performance of CM systems relies on known
spoofing attacks in training data and shows worse perfor-
mance on unknown spoof attacks.

o Current results on the ASVspoof 2019 challenge [7], [9]
indicate that correct handcrafted features still provide the
most competitive results from a single model compared
raw waveforms approaches.

o Waveforms-based network outperforms on specific types
of spoof attacks with worse pooling results compared to
handcrafted feature based networks [7].

B. Evaluation Metrics

Two metrics are used to evaluate the ASVspoof 2019
LA dataset including min -DCF as the primary metric and
EqualError Rate(EER) as a secondary metric, as described
in [9]:

1) min t-DCF: The Tandem Detection Cost Function (t-
DCF) [17] extends the conventional Detection Cost Function
(DCF) in voice verification systems for spoofing attacks. The
t-DCF measures the overall effect of CM systems combined
with existing ASV systems. The CM system acts as a gateway
for the ASV system and this metric measures the overlapping
of the two, a smaller value indicates better protection against
spoofing. min t-DCF can be calculated in Equation 6 [17],
where P57 (s) is the CM miss and Pg™(s) is the false alarm
rates.

t — DCFian

norm

= min {BP(s) + PE(s)) (6)



Spoof Attack [9] EER min-tDCF

Category Acoustic mode CQT+Aux CQT Effect(%) | CQT+Aux CQT Effect(%)
A7 TTS LSTM-RNN 0.28521 0.3667 222 0.00895 | 0.01168 23
A8 TTS AR LSTM-RNN 2.4786 | 1.72823 -43.4 0.07071 | 0.04895 -44
A9 TTS LSTM-RNN 0.08149 0.146 44.1 0.0022 | 0.00424 48
A10 | TTS Attention seq2seq model 0.46516 | 0.79111 41.2 0.01351 | 0.02326 41
All | TTS Attention seq2seq model 0.30218 | 0.77414 60.9 0.00951 | 0.02527 62
Al12 | TTS - 0.24447 0.3667 333 0.00703 | 0.01226 42
A13 | TTS-VC | Moment matching NN 0.12223 | 0.22069 44.6 0.00376 | 0.00702 46
Al4 | TTS-VC | LSTM-RNN 0.12223 | 0.28521 57.1 0.00376 | 0.00874 56
Al15 | TTS-VC | LSTM-RNN 0.30218 0.5127 41 0.00907 | 0.01654 45
Al6 | TTS - 0.24447 | 0.22069 -10.7 0.00768 | 0.00649 -18
Al7 | VC VAE 3.11354 | 2.40391 -29.5 0.09041 | 0.07587 -19
Al18 | VC i-vector/PLDA 0.8726 | 5.28996 83.5 0.02837 | 0.16156 82
Al9 | VC GMM-UBM 1.05935 | 2.09493 494 0.0361 | 0.06432 43

TABLE TIT

MODEL PERFORMANCE BY SPOOF CATEGORY

2) EER: EER indicates the threshold of a CM system
where the false positive and false negative rates are equal each
to other.

C. Hand-crafted feature selection

To validate assumption 1, as well as the performance of
our ARawNet implementation, hand-crafted features need to
be selected carefully in our experiments. According to our
assumption, it is important to ensure that the selected hand-
crafted features show strong results on the target dataset, so
that we can use a lightweight network to enhance the overall
performance without a large increase in network complexity.

To reduce the performance bias of a single hand-crafted
feature in our experiment and choose appropriate features, we
carefully reviewed prior work on the ASVspoof 2019 chal-
lenge and chose the state-of-the-art model as our benchmark,
so that the features we selected have validated performance
on the ASVspoof 2019 dataset. By choosing validated hand-
crafted features with state-of-the-art performance, we can
be more confident in the analysis and exploration of our
assumption on augmentation with raw waveforms.

Specifically, 3 hand-crafted features were selected in our
experiments as described below:

o Mel-Spectrogram. Mel-Spectrogram is a Short-Time
Fourier Transform (STFT) based frontend, which is used
to represent the non-linearity of the human ear’s sensitiv-
ity to different frequencies by applying filters in a mel-
scale, as shown in Equation 7.

f
* 700) ™

o Mel-frequency cepstral coefficients(MFCC). MFCC is
a popular feature for speech recognition, which is a set
of coefficients of the mel-frequency cepstrum. MFCC is
calculated by applying Discrete Cosine Transform (DCT)
to Mel-Spectrograms to decorrelate them.

e Constant Q Transform (CQT). CQT is a feature to
improve downstream tasks, where mel-scale does not
perform well, such as music recognition. The CQT center
frequency calculation is shown in Equation 8 [18].

fr =f02%

m = 2595log; <1
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D. Baseline Setup

Our experiments include one handcrafted feature-based sys-
tem and one raw waveform-based system respectively:

o Res2net Architecture. The Res2net architecture [8] is
the state-of-the-art single system in the ASVspoof 2019
challenge, which tested the performance of 3 handcrafted
features: log power magnitude spectrogram (Spec), linear
frequency cepstral coefficients (LFCC), and constant-Q
transform (CQT).

o RawNet2. The RawNet2 [7] is the first anti-spoofing
model, which only relies on the raw waveforms as input.

V. RESULTS AND ANALYSIS

Table IV shows the experimental results of the ARawNet
on the ASVSpoof 2019 dataset.

Front-end Main Encoder Ey EER min-tDCF  Improve
Spec [8] Res2Net [8] 8.783 0.2237
LFCC [8] 2.869 0.0786
CQT [8] 2.502 0.0743
Raw waveforms [7] Rawnet2 [7] 5.13 0.1175

Mel-Spectrogram XVector v 1.32 0.03894 43%

2.39320 0.06875

Mel-Spectrogram ECAPA-TDNN v 1.39 0.04316 32.8%
2.11 0.06425

CQT XVector v 1.74 0.05194 45.3%
- 3.39875 0.09510

CQT ECAPA-TDNN v 1.11 0.03645 28.2%
. - 1.72667 0.05077

MFCC XVector v 1.39 0.03830 45.1%
. 2.45 0.06981

MEFCC ECAPA-TDNN v 1.33 0.04260 37.7%
. 2.41 0.06838

TABLE TV
RESULTS ON THE ASVSPOOF 2019 DATASET

o Results demonstrate the effectiveness of adding a
light-weight auxiliary encoder to the main encoder.
Three handcrafted features, Mel-spectrogram, CQT [18]
and MFCC, as well as two state-of-the-art models in
the speaker verification problem (XVector [19], [20] and
ECAPA-TDNN [20], [21]) are selected as main encoders
in the ARNet architecture. Without modifying the hyper-
parameters in the main encoder, we add the auxiliary
encoder, as described in Table I, in the network to
evaluate our assumption. Overall, by introducing the



auxiliary encoder, both pooled FER and min — tDCF
are reduced by 50% in all combinations of front-end and
main encoders. Specifically, CQT/ECAPA-TDNN with
auxiliar encoder reaches the best performance on EE R of
1.11% and min — tDCF' of 0.0364, which is reasonable
since single CQT perform best in given benchmark [8].
Performance of the CM system on challenging attacks
(A10, A13, and A18) is boosted when using CQT
as an input feature. Table III explains the category of
different attacks in the evaluation set and breaks down
the performance of our model in a different subset of
spoof attacks. Overall, detection of 10 of 13 spoof attacks
was improved with the lightweight auxiliary model, and
the auxiliary model boosts detection of most attacks gen-
erated from LSTM-based models. Among those attacks,
A10 [22], A13 [23], and A18 [24] are considered as high
risks to ASV systems as well as challenging attacks for
CM systems to detect [9]. As shown in Table III, the
ARawNet largely decreased the EER and the min-tDCF
for A10, A13, and A18. Especially for attack A18, model
performance improves by over 80%, the EER reduced
from 5.29% to 0.87% and min-tDCF reduced from 0.162
to 0.028. However, we also noticed that there are negative
effects of including a light-weight raw waveform encoder
on certain spoof attacks. For example, the Al7 attack,
which is generated by variational autoencoder(VAE) [25],
is hard for CM systems to detect even though it is a minor
threat to the ASV system [9]. Prior works show that a
raw waveform-based network with deep layers shows a
better performance on this type of attack [7]. This result
indicates that we may need to enlarge the network to
enhance model performance on specific types of spoof
attacks.

By introducing the lightweight raw-waveform en-
coder, the model is less sensitive to highly non-
linear information from hand-crafted features. Mel-
spectrograms have become more popular than MFCCs
in recent research, since deep neural networks are less
likely to be weakened by highly correlated input. After
whitening the mel-spectrogram, highly non-linear infor-
mation is removed in MFCCs, which may be useful
for networks. Results in our experiments show that,
without raw waveforms, mel-spectrogram shows better
performance than the MFCC, indicating that highly non-
linear information plays an important role in recognizing
spoof attacks. While results of both features tend to be
similar after introducing the lightweight raw-waveform
encoder. It implies that the auxiliary encoder disentangles
raw waveforms and helps the model complement lost
highly correlated information in MFCCs.

Improper concatenation of the raw waveform encoder
output and hand-crafted encoder output can lead to
worse results. Table V shows the performance compar-
ison of models with different concatenating strategies.
As we discussed in hypothesis 2, in spoof attack tasks,
segment-level layers need to be placed after concate-

nating utterance-level features from different encoders.
Using CQT as features and ECAPA-TDNN as the main
encoder, we adjust the model by concatenating segment-
level features rather than utterance-level features. Results
shows EER increased by 36% with 45% increment on
the trainable parameters.

Features Concatenate EER | min-tDCF | Parameters
CQT Before segment layer | 1.11 0.03645 104 M
After segment layer 1.36 0.04052 7.18 M

TABLE V
MODEL PERFORMANCE WITH DIFFERENT CONCATENATING LAYERS

« ARawNet adds raw waveform information to the
spoof detection tasks with a smaller network size
than prior approaches. Table VI compares the number
of trainable parameters, model complexity, and multiply-
and-accumulates (MACs) in our experiments. Compared
to encoding handcrafted features (Res2Net), directly en-
coding raw waveforms (Rawnet2) increases model size
and complexity by 2400% and 600%. On the other hand,
our auxiliary waveforms encoder only takes up 1.15M
trainable parameters, which is a 19% increase in ECAPA-
TDNN and the model complexity increases from 2.36
GMac to 3.19 GMac. In other words, the performance of
our model increases by 28.2% with increments of 35.1%
MAG:s.

The smaller network size allows us to train the model on
2 Nvidia 2080 Ti GPUs with the batch size set to 24.

Main Encoder | Auxiliary Encoder | Parameters MACs
Rawnet2 2543 M 7.61 GMac
Res2Net - 0.92 M 1.11 GMac
XVector v 581 M 2.71 GMac
XVector - 4.66M 1.88 GMac

ECAPA-TDNN v 718 M 3.19 GMac

ECAPA-TDNN - 6.03M 2.36 GMac

TABLE VI
COMPARISON OF MODEL COMPLEXITY (MACS) OF VARIOUS SPOOF
DETECTION SYSTEMS

VI. CONCLUSION AND FUTURE WORK

This paper discussed the problem of combining learned
and handcrafted features to build deep neural networks
for the spoof voice detection task. Based on our assump-
tion that hand-crafted features and raw waveforms may
complement each other without sacrificing model complex-
ity, we investigated the concatenation of multiple encoders
and proposed ARawNet, which includes both hand-crafted
features and raw waveforms as inputs, while maintain-
ing a relatively small network size. We tested 3 hand-
crafted features (Mel-spectrogram, MFCC, an CQT) and
2 state-of-the-art models (XVector and ECAPA-TDNN) as
the main encoder with our Auxiliary Encoder. Experiment
results show raw waveforms have the ability to comple-
ment CQT for detection of most spoof attacks in the
ASVspoof 2019 dataset, as well as its ability to complement
the highly non-linear information for MFCC features. The
code described here is available in open-source form from:
github.com/magnumresearchgroup/AuxiliaryRawNet.
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