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Abstract
A communication subsystem consists of protocol func-

tions and operating system mechanisms that support the
implementation and execution of protocol stacks. To effec-
tively parallelize a communication subsystem, careful con-
sideration must be given to the process architecture used to
structure multiple processing elements. A process architec-
ture binds one or more processing elements with the proto-
col tasks and messages associated with protocol stacks in
a communication subsystem. This paper outlines the two
fundamental types of process architectures (task-based and
message-based) and describes performance experiments
conducted on three representative examples of these two
types of process architectures – Layer Parallelism, which is
a task-based process architecture, and Message-Parallelism
and Connectional Parallelism, which are message-based
process architectures. These experiments measure the im-
pact of the process architecture on connectionless and
connection-oriented protocol stacks (based upon UDP and
TCP) in a shared-memory multi-processor operating sys-
tem. The results from these experiments indicate that the
choice of process architecture significantly affects commu-
nication subsystem performance.

1 Introduction
Advances in VLSI and fiber optic technology are shifting

performance bottlenecks from the underlying networks to
the communication subsystem. A communication subsys-
tem consists of protocol functions (such as connection man-
agement, end-to-end flow control, remote context manage-
ment, segmentation/reassembly, demultiplexing, message
buffering, error protection, session control, and presentation

1This research is supported in part by grants from the University of Cal-
ifornia MICRO program, Hughes Aircraft, Nippon Steel Information and
Communication Systems Inc. (ENICOM), Hitachi Ltd., Hitachi America,
and Tokyo Electric Power Company.

conversions) and operating system mechanisms (such as
process management, asynchronous event invocation, mes-
sage buffering, and layer-to-layer flow control) that support
the implementation and execution of communication proto-
col stacks composed of protocol functions.

Executing protocol functions and OS mechanisms in par-
allel on multi-processor platforms is a promising technique
for increasing protocol processing rates and reducing la-
tency. To significantly increase communication subsystem
performance on shared memory multi-processor platforms,
however, the speed-up obtained from parallelism must out-
weight the context switching and synchronization overhead
associated with parallel processing. A context switch is trig-
gered when an executing process relinquishes its associated
processing element (PE) voluntarily or involuntarily. De-
pending on the underlying OS and hardware platform, per-
forming a context switch may involve dozens to hundreds of
instructions to flush register windows, memory caches, in-
struction pipelines, and translation look-aside buffers. Syn-
chronization overhead arises from locking mechanisms that
serialize access to shared objects (such as messages, mes-
sage queues, protocol connection records, and demultiplex-
ing tables) used when processing protocols in parallel.

A number of process architectures have been proposed
as the basis for parallelizing communication subsystems
[1, 2, 3, 4]. There are two fundamental types of pro-
cess architectures: task-based and message-based. Task-
based process architectures are formed by binding one
or more PEs to units of protocol functionality (such as
presentation layer formatting or transport layer segmenta-
tion/reassembly, acknowledgment processing, end-to-end
flow control, and retransmission timer processing). In a
task-based process architecture, parallelism is achieved by
executing protocol tasks in separate PEs and passing data
messages and control messages between the tasks/PEs. In
contrast, message-based process architectures are formed
by binding the PEs to data messages and control messages
received from applications and network interfaces. In a
message-based process architecture, parallelism is achieved
by escorting multiple data messages and control messages



on separate PEs through a stack of protocol tasks.
Protocol suites (such as the Internet and ISO OSI refer-

ence models) may be implemented using either task-based
or message-based process architectures. However, these
two types of process architectures exhibit significantly dif-
ferent performance characteristics that are affected by the
underlying operating system and hardware platform. For in-
stance, on shared memory multi-processor platforms, task-
based process architectures often result in high data move-
ment and context switching overhead [5]. Likewise, in
a message-passing transputer multi-processor environment,
message-based process architectures typically result in high
levels of synchronization overhead [2].

Existing research has generally selected a single type of
process architecture (either task-based or message-based)
and studied it in isolation. Moreover, since different studies
have been performed on different OS and hardware plat-
forms, using different protocols and implementation tech-
niques, it is difficult to compare the results obtained from
these studies in a controlled manner. This paper describes
results obtained from systematic comparisons of the perfor-
mance impact of task-based and message-based process ar-
chitectures. These results were obtained using an object-
oriented framework that facilitates controlled experiments
with alternative process architectures on shared memory
multi-processor platforms [6]. The framework controls for
a number of key confounding factors (such as protocol func-
tionality, concurrency control schemes, and application traf-
fic characteristics) in order to precisely measure the perfor-
mance impact of different process architectures for paral-
lelizing communication protocol stacks.

This paper is organized as follows: Section 2 outlines the
fundamental types of process architectures and compares
related work accordingly; Section 3 describes the design
and implementation of the protocol stacks and process ar-
chitectures used in the experiments reported in Section 4;
and Section 5 presents concluding remarks.

2 Alternative Process Architectures
Figure 1 (1) illustrates the basic elements that form the

foundation of a process architecture:

• Control messages and data messages – which are sent
and received from one or more applications and net-
work devices

• Protocol processing tasks – which are the units of pro-
tocol functionality that process the control messages
and data messages

• Processing elements (PEs) – which execute protocol
tasks

There are two fundamental types of process architectures
(task-based and message-based) that structure these basic
elements differently. Task-based process architectures bind

one or more PEs to protocol processing tasks. In this ar-
chitecture, tasks are the active elements, whereas messages
processed by the tasks are the passive elements (shown in
Figure 1 (2)). Conversely, message-based process architec-
tures bind the PEs to the control messages and data mes-
sages received from applications and network interfaces. In
this architecture, messages are the active elements and tasks
are the passive elements (shown in Figure 1 (3)).

The remainder of this section briefly examines several
alternative process architectures in each category.
2.1 Task-based Process Architectures

Task-based process architectures associate processes2

with clusters of one or more protocol tasks. Two repre-
sentative examples of task-based process architectures are
the Layer Parallelism and Functional Parallelism process
architectures. The primary difference between these two
process architectures involves the granularity of the proto-
col processing tasks. Layers are more “coarse-grained” than
functions since they cluster multiple protocol tasks together
to form a composite service (such as the end-to-end trans-
port service provided by the OSI transport layer).

Layer Parallelism associates a separate process with each
layer (e.g., the presentation, transport, and network layers)
in a protocol stack. Certain protocol header and data fields
in the outgoing and incoming messages may be processed
in parallel as they flow through a pipeline of protocol stack
layers. Buffering and flow control are generally necessary
since processing activities in each layer may execute at dif-
ferent rates.

Functional Parallelism associates a separate process with
each protocol function (such as header composition, ac-
knowledgement, retransmission, segmentation, reassembly,
and routing). These protocol functions execute in paral-
lel and communicate by passing control messages and data
messages to each other.

In general, implementing pipelined task-based process
architectures is relatively straightforward. Task-based pro-
cess architectures map directly onto conventional lay-
ered communication models using well-structured “pro-
ducer/consumer” designs. Moreover, minimal synchroniza-
tion mechanisms are necessary within a layer or function
since parallel processing is typically serialized at a service
access point (such as the transport layer or application layer
interface). However, as shown in Section 4, task-based pro-
cess architectures are susceptible to high context switch-
ing overhead on shared memory platforms. This problem
is exacerbated when the number of protocol tasks exceeds
the number of PEs, due to the context switching performed
when transferring messages between protocol tasks.

2In this paper, the term “process” is used to refer to a series of instruc-
tions executing within an address space; this address space may be shared
with other processes. Different terminology (such as lightweight processes
[6] or threads [7]) has also been used to denote the same basic concepts.
Our use of the term process is consistent with the definition adopted in [8].
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Figure 1: Basic Process Architecture Components and Interrelationships

2.2 Message-based Process Architectures

Message-based process architectures associate processes
with messages rather than protocol layers or functions. Two
common examples of message-based process architectures
are Connectional Parallelism and Message Parallelism. The
primary difference between these approaches involves the
granularity at which messages are demultiplexed onto pro-
cesses. Connectional Parallelism demultiplexes all mes-
sages bound for the same connection onto the same process,
whereas Message Parallelism demultiplexes messages onto
any available process.

Connectional Parallelism uses a separate process to
handle the messages associated with each open connec-
tion. Within a connection, a series of protocol processing
tasks are invoked sequentially on each message as it flows
through a protocol stack. Outgoing messages generally bor-
row the thread of control from the application process and
use it to escort messages down a protocol stack. For incom-
ing messages, a network interface or packet filter typically
performs demultiplexing operations to determine the correct
process for each message.

Message Parallelism associates a separate process with
every incoming or outgoing message. A process receives a
message from an application or network interface and es-
corts the message through the protocol processing tasks in
the protocol stack. As with Connectional Parallelism, out-
going messages generally borrow the thread of control from
the application that initiated the message transfer.

In general, a large degree of potential parallelism exists
with the message-based process architectures. The degree
of parallelism depends on characteristics that change dy-
namically (such as messages or connections), rather than on
the relatively static characteristics (such as the number of

layers or protocol functions) that are associated with task-
based process architectures. Depending on other communi-
cation subsystem characteristics (such as memory and bus
bandwidth), this dynamism may enable message-based pro-
cess architectures to effectively use a larger number of PEs.

2.3 Related Work
A number of studies have investigated the performance

characteristics of task-based process architectures devel-
oped to run on either message passing or shared memory
platforms. [5] measures the impact of several implementa-
tions of the transport and session layers in the OSI reference
model using an ADA-like rendezvous-style of Layer Paral-
lelism in a nonuniform access shared memory environment.
[9] measures the performance of a Functional Parallelism
process architecture for presentation layer and transport
layer functionality on a shared memory multi-processor.
[10] measures the performance of a de-layered, function-
oriented transport system [11] using Functional Parallelism
on a message passing transputer multi-processor platform.
An earlier study [2] measured the performance of the OSI
transport layer and network layer in a similar transputer en-
vironment. [12] also uses a multi-processor transputer plat-
form to measure the performance of several data-link layer
protocols.

Other studies have investigated message-based process
architectures. All these studies utilize shared memory plat-
forms. [13] measured the performance of the TCP, UDP,
and IP protocols using a Message Parallelism process ar-
chitecture on a uniprocessor platform running the x-kernel.
[1] measures the impact of synchronization on Message Par-
allelism implementations of TCP and UDP transport proto-
cols built within a multi-processor version of the x-kernel.
[8] measures the performance of the Nonet transport pro-
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Figure 2: Components in the ADAPTIVE Service eXecu-
tive Framework

tocol on a multi-processor version of Plan 9 STREAMS
developed using Message Parallelism. [3] measures the
performance of the OSI protocol stack, focusing primar-
ily on the presentation and transport layers using Message
Parallelism. [14] measures the performance of the TCP/IP
protocol stack using Connectional Parallelism in a multi-
processor version of System V STREAMS.

The work presented in this paper extends existing work
by measuring a number of task-based and message-based
process architectures in a controlled environment. Our ex-
periments consider the impact of both synchronization and
context switching overhead. In addition to measuring data
link, network, and transport layer performance, our experi-
ments also investigate presentation layer performance. The
presentation layer is widely considered to be one of the pri-
mary bottlenecks in high-performance communication sub-
systems.

3 Structure of the Experiments
This section describes the object-oriented framework,

communication protocols, and process architectures we de-
veloped and used in the performance experiments reported
in Section 4.
3.1 The ADAPTIVE Service eXecutive Frame-

work
The communication protocols and process architectures

in this study were developed using components provided

by the ADAPTIVE Server eXecutive (ASX) framework
[15]. The ASX framework contains an integrated set of
object-oriented components that facilitate experimentation
with task-based and message-based process architectures on
shared memory multi-processor platforms.

Components in the ASX are responsible for coordinat-
ing one or more Streams. A Stream is an object used
to configure and execute protocol-specific functionality in
the ASX framework run-time environment. As illustrated
in Figure 2, a Stream contains a series of inter-connected
Modules that may be linked together by developers at
installation-time or by applications at run-time. Modules
are objects that developers use to decompose the architec-
ture of a protocol stack into a series of inter-connected,
functionally distinct layers. Each layer implements a clus-
ter of related protocol-specific functions (such as an end-to-
end transport service, a presentation layer formatting ser-
vice, or a real-time PBX signal routing service). Every
Module contains a pair of Queue objects that partition a
layer into its constituent read-side and write-side protocol-
specific processing functionality.

Any layer that performs multiplexing and demultiplex-
ing of message objects between related Streams may be de-
veloped using a Multiplexor object. A Multiplexor
is a C++ template-based container class that provides mech-
anisms to route messages between Modules in a collec-
tion of related Streams. A complete Stream is represented
as an inter-connected series of Module objects that com-
municate by exchanging messages with adjacent objects.
Modules and Multiplexorsmay be joined together in
essentially arbitrary configurations in order to satisfy appli-
cation requirements and enhance component reuse.

The ASX framework employs a number of object-
oriented design techniques (such as design patterns [16]
and hierarchical decomposition) and C++ language fea-
tures (such as inheritance, dynamic binding, and param-
eterized types). These design techniques and language
features enable developers to incorporate protocol-specific
functionality into a Stream without modifying the protocol-
independent framework components. For example, incor-
porating a new level of protocol functionality into a Stream
at installation-time or at run-time involves the following
steps:

1. Inheriting from the Queue interface and selectively
overriding several methods (described below) in the
Queue subclass to implement protocol-specific func-
tionality

2. Allocating a new Module that contains two instances
(one for the read-side and one for the write-side) of the
protocol-specific Queue subclass

3. Inserting the Module into a Stream object at the ap-
propriate level (e.g., the transport layer, network layer,
data-link layer, etc.)
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The ASX framework incorporates concepts from several
other modular communication frameworks including Sys-
tem V STREAMS [17], the x-kernel [13], and the Conduit
[18] (a survey of these and other communication frame-
works appears in [19]). These frameworks all contain fea-
tures that support the flexible configuration of communica-
tion subsystems by inter-connecting building-block proto-
col components. These frameworks encourage the devel-
opment of standard reusable protocol components by de-
coupling protocol-specific processing functionality from the
surrounding framework infrastructure. In addition to sup-
plying building-block protocol and service components, the
ASX framework also extends the existing communication
frameworks by providing additional components that de-
couple protocol functionality from the following configu-
ration decisions:
• The type of locking mechanisms used to synchronize

access to shared objects
• The use of message-based and task-based process ar-

chitectures
• The use of kernel-level vs. user-level execution agents

3.2 Communication Protocols
Two types of protocol stacks are used in the experiments.

One protocol stack is based on the connectionless UDP
transport protocol. The other protocol stack is based on the
connection-oriented TCP transport protocol. The protocol
stacks contain the data-link, network, transport, and pre-
sentation layers. The presentation layer is included in the
experiments since it represents a major bottleneck in high-
performance communication subsystems, due primarily to
the large amount of data movement overhead it often incurs.

Both the connectionless and connection-oriented proto-
col stacks were developed by specializing reusable compo-
nents in the ASX framework via inheritance and parameter-
ized types. Inheritance and parameterized types are used
to hold the protocol functionality constant while systemati-
cally varying the process architecture. Each layer in a proto-
col stack is implemented as a Module whose read-side and
write-side both inherit interfaces and implementations from
the Queue class described in [15]. The necessary synchro-
nization and demultiplexing mechanisms are parameterized
using C++ template arguments that are instantiated based
on the type of process architecture being tested.

Data-link layer processing in each protocol stack is per-
formed by the DLP Module. This Module transforms
network packets received from a network interface into the
canonical message format used internally by the Stream
components.3 The network and transport layer components

3Preliminary tests using the widely-available ttcp benchmarking tool
indicated that the PE, bus, and memory performance of the SunOS multi-
processor platform used in the experiments was capable of processing mes-
sages through the protocol stack at a much faster rate than the 10 Mbps
Ethernet network interface was capable of handling. Therefore, for our

of the protocol stacks are based on the IP, UDP, and TCP
implementation in the BSD 4.3 Reno release. The 4.3 Reno
TCP implementation contains the TCP header prediction
enhancements, as well as the slow start algorithm and con-
gestion avoidance features. The UDP and TCP transport
protocols are configured into the ASX framework via the
UDP and TCP Modules. Network layer processing is per-
formed by the IP Module. This Module performs rout-
ing and segmentation/reassembly of Internet Protocol (IP)
packets.

Presentation layer functionality is implemented in the
XDR Module using marshalling routines produced by the
ONC eXternal Data Representation (XDR) stub generator
(rpcgen). The ONC XDR stub generator automatically
translates a set of type specifications into marshalling rou-
tines. These routines encode/decode implicitly-typed mes-
sages before/after they are exchanged among hosts that may
possess heterogeneous processor byte-orders. The ONC
presentation layer conversion mechanisms consist of a type
specification language (XDR) and a set of library routines
that implement the appropriate encoding and decoding rules
for built-in integral types (e.g., char, short, int, and long)
and real types (e.g., float and double). In addition, these
library routines may be combined to produce marshalling
routines for arbitrary user-defined composite types (such as
record/structures, unions, arrays, and pointers). Messages
exchanged via XDR are implicitly-typed, which improves
marshalling performance at the expense of run-time flexibil-
ity. The XDR functions selected for both the connectionless
and connection-oriented protocol stacks convert incoming
and outgoing messages into and from variable-sized arrays
of structures containing both integral and real values. This
conversion processing involves byte-order conversions, as
well as dynamic memory allocation and deallocation.
3.3 Process Architectures

The remainder of this section outlines the structure of
connectionless and connection-oriented protocol stacks de-
veloped using task-based and message-based process archi-
tectures.

3.3.1 Structure of the Task-based Process Architecture

• Layer Parallelism: Figure 3 illustrates the ASX frame-
work components that implement a Layer Parallelism pro-
cess architecture for the TCP-based connection-oriented
and UDP-based connectionless protocol stacks. Protocol-
specific processing at each protocol layer is performed via
the Queue::svc method. This method is invoked by a
daemon process associated with the Module that imple-
ments the protocol layer (e.g., LP XDR, LP TCP, LP IP,
and LP DLP). These daemon processes cooperate in a pro-
ducer/consumer manner, operating on the header and data
process architecture experiments, the network interface was simulated with
a single-copy pseudo-device driver operating in loop-back mode.
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fields of messages corresponding to their particular proto-
col layer in parallel. Each svc method performs its pro-

tocol functions before passing the message to an adjacent
Module that runs asynchronously in a separate daemon
process. Since daemon processes all share a common ad-
dress space, messages are not copied when passed between
adjacent Modules. However, moving messages between
processes may invalidate per-PE data caches.

The connectionless and connection-oriented Layer Par-
allelism process architecture protocol stacks are designed
in a similar manner. The primary difference is that the ob-
jects in the connectionless transport layer Module imple-
ment the simpler UDP functionality. UDP does not generate
acknowledgements, keep track of round-trip time estimates,
or manage congestion windows, etc.

3.3.2 Structure of the Message-based Process Archi-
tectures

• Connectional Parallelism: The protocol stack depicted
in Figure 4 (1) illustrates an ASX-based implementation of
the Connectional Parallelism process architecture. Each
connection is associated with a separate process that per-
forms the data-link, network, transport, and presentation
layer functionality for that connection. Protocol tasks are
divided into four inter-connected Modules, corresponding
to the data-link, network, transport, and presentation layers
in the ISO OSI communication model. Data-link process-
ing is performed in the CP DLP Module. This Module
uses its read-side svc method to (1) transform network
messages into the canonical internal message format that is
processed by higher-level components in a Stream and (2)

6



demultiplex incoming messages onto the appropriate trans-
port layer connection.4 Once a message has been demulti-
plexed onto a connection, all that connection’s context in-
formation is directly accessible within the address space of
the associated process. This is beneficial since (1) point-
ers to messages may be passed between protocol layers via
simple procedure calls (rather than using more complicated
and costly interprocess communication mechanisms used
for Layer Parallelism process architecture), (2) cache affin-
ity properties may be preserved since messages are pro-
cessed largely within a single PE cache, and (3) minimal
internal locking is required within a connection. There-
fore, a process may operate on its connection’s messages
without incurring additional demultiplexing, synchroniza-
tion, and context switching overhead. The CP IP, CP TCP,
and CP XDR Modules all perform their processing syn-
chronously in their respective put methods.

• Message Parallelism: Figure 4 (2) illustrates a
message-based process architecture for the connection-
oriented protocol stack. When an incoming message ar-
rives, it is handled by the MP DLP::svc method, which
manages a pool of pre-spawned threads. Each message is
associated with a separate thread that escorts the message
synchronously through a series of inter-connected Queues
in a Stream. Each layer of the protocol stack performs
its protocol functions and then makes an upcall to the
next adjacent layer in the protocol stack by invoking the
Queue::put method in that layer. The put method ex-
ecutes the protocol tasks associated with its layer. For in-
stance, the MP TCP::put method utilizes mutual exclu-
sion (mutex) objects that serialize access to per-connection
control blocks as separate messages from the same connec-
tion ascend the protocol stack in parallel.

The connectionless message-based protocol stack is
structured in a similar manner, though it performs the sim-
pler set of UDP functionality. Unlike the MP TCP::put
method, the MP UDP::put method handles each message
concurrently and independently, without explicitly preserv-
ing inter-message ordering. This reduces the number of
synchronization operations required to locate and update
shared resources, which improves performance.

4 Communication Subsystem Performance
Experiment Results

This section describes experiments that measure the per-
formance impact of different combinations of the proto-
col stacks and process architectures described above. The
multi-processor platform and the measurement tools used
in the experiments are also discussed.

4The connection-oriented implementation of Connectional Parallelism
performs “eager demultiplexing” via a packet filter at the data-link layer.

4.1 Multi-processor Platform
All experiments were conducted on an otherwise idle

Sun 690MP SPARCserver, which contains 4 SPARC 40
MHz processing elements (PEs), each capable of per-
forming at 28 MIPs. The memory bandwidth of the
SPARCserver platform was measured at approximately 150
Mbits/sec, which represents an upper limit on protocol pro-
cessing throughput. Protocol processing throughput is also
significantly affected by context switching and synchro-
nization overhead exhibited by the different task-based and
message-based process architectures. The costs of con-
text switching and synchronization overhead in the SPARC-
server platform are described below.

The operating system used for the experiments is release
5.3 of SunOS, which provides a multi-threaded kernel that
allows multiple system calls and device interrupts to execute
in parallel [6]. All the process architectures in these exper-
iments execute protocol tasks in separate unbound threads
multiplexed over 1, 2, 3, or 4 SunOS lightweight processes
(LWPs) within a process. SunOS 5.3 maps each LWP di-
rectly onto a separate kernel thread. Since kernel threads
are the units of PE scheduling and execution in SunOS, this
mapping enables multiple LWPs (each executing protocol
processing tasks in an unbound thread) to run in parallel on
the SPARCserver’s PEs.

Rescheduling and synchronizing a SunOS LWP involves
a kernel-level context switch. The time required to perform
a context switch between two LWPs was measured to be
approximately 30 usecs. During this time, the OS performs
system-related overhead (such as flushing register windows,
instruction and data caches, instruction pipelines, and trans-
lation lookaside buffers) on the PE and therefore does not
process protocol tasks. Measurements also revealed that
it requires approximately 2 usecs to acquire or release a
Mutex object implemented using a SunOS spin-lock. Like-
wise, measurements indicated that approximately 90 usecs
are required to synchronize two LWPs using Condition
objects implemented using SunOS sleep-locks. The larger
amount of overhead for the Condition object operations
compared with the Mutex object operations occurs from
the more complex locking algorithms involved, as well as
the additional context switching incurred by SunOS sleep-
locks.

4.2 Measurement Results
This section presents results obtained by measuring the

data reception portion of the connection-oriented and con-
nectionless protocol stacks implemented using the Layer
Parallelism task-based process architecture and the Connec-
tional Parallelism and Message Parallelism message-based
process architectures. Three types of measurements were
obtained for each combination of process architecture and
protocol stack: total throughput, context switching over-
head, and synchronization overhead.
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Total throughput was measured by holding the protocol
functionality, application traffic patterns, and network inter-
faces constant and systematically varying the process archi-
tecture to determine the resulting performance impact. Each
benchmarking session consisted of transmitting 10,000 4
Kbyte messages through an extended version of the widely
available ttcp protocol benchmarking tool. The original
ttcp tool measures the processing resources and overall
user and system time required to transfer data between a
transmitter process and a receiver process communicating
via TCP or UDP. The flow of data is uni-directional, with
the transmitter flooding the receiver with a user-specified
number of data buffers. Various sender and receiver param-
eters (such as the number of data buffers transmitted and the
size of data buffers and protocol windows) may be selected
at run-time.

The version of ttcp used in our experiments was en-
hanced to allow a user-specified number of communicating
applications to be measured simultaneously. This feature
measured the impact of multiple connections on the per-
formance of process architectures (the connection-oriented
process architecture tests were run using 4 connections).
The ttcp tool was also modified to use the ASX-based
protocol stacks configured according to the process archi-
tectures described in Section 4.2. To measure the impact of
parallelism on throughput, each test was run using 1, 2, 3,
and 4 PEs. Furthermore, each test was performed multiple
times to detect the amount of spurious interference incurred

from other internal OS tasks (the variance between test runs
proved to be insignificant).

Context switching and synchronization measurements
were obtained to help explain differences in the through-
put results. These metrics were obtained from the SunOS
5.3 /proc file system, which records the number of volun-
tary and involuntary context switches incurred by threads in
a process, as well as the amount of time spent waiting to ob-
tain and release locks on Mutex and Condition objects.

Figure 5 illustrates throughput (measured in Mbits/sec)
as a function of the number of PEs for the task-based and
message-based process architectures used to implement the
connection-oriented (CO) and connectionless (CL) protocol
stacks.5 The results in this figure indicate that increasing
the number of PEs improves throughput for all the process
architectures. However, the message-based process archi-
tectures significantly outperformed their task-based coun-
terparts as the number of PEs increased from 1 to 4. For
example, the performance of the connection-oriented task-
based process architecture was only slightly better using 4
PEs (approximately 16 Mbits/sec, or 1.92 milliseconds per-
message processing time) than the message-based process
architecture was using 2 PEs (14 Mbits/sec, or 2.3 millisec-
onds per-message processing time). Moreover, if a larger
number of PEs had been available, it appears likely that the
performance improvement gained from parallel processing
in the task-based process architectures would have leveled
off sooner than the message-based tests due to the higher
rate of growth for context switching and synchronization
shown in Figure 6 and Figure 7.

The Connection Parallelism process architecture exhib-
ited the highest levels of throughput for the connection-
oriented protocol stacks when the number of PEs equaled
the number of connections. The major limitation with Con-
nectional Parallelism, however, is that it only utilizes paral-
lelism to improve aggregate end-system performance since
each individual connection still executes sequentially. In
contrast, Message Parallelism also utilizes multiple PEs ef-
fectively for a single connection.

Figure 6 illustrates the number of involuntary and volun-
tary context switches incurred by the process architectures
measured in this study. An involuntary context switch oc-
curs when the OS kernel preempts a running thread. For ex-
ample, the OS preempts running threads periodically when
their LWP time-slice expires in order to schedule other
threads to execute. A voluntary context switch is trig-
gered when a thread puts itself to sleep until certain re-
sources (such as I/O devices or synchronization locks) be-
come available. For example, when a protocol task attempts
to acquire a resource that may not become available im-
mediately (such as obtaining a message from an empty list

5The Connectional Parallelism process architecture does not support
the connectionless protocol stack.
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Figure 6: Process Architecture Context Switching Overhead
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Figure 7: Process Architecture Locking Overhead

of messages in a Queue), the protocol task puts itself to
sleep by invoking the wait method of a Condition ob-
ject. This action causes the OS kernel to preempt the current
thread and perform a context switch to another thread that
is capable of executing protocol tasks immediately.

As shown in Figure 6, The Layer Parallelism task-based
process architectures exhibited slightly higher levels of in-
voluntary context switching than the message-based process
architectures. This is due mostly to the fact that the Layer
Parallelism tests required more time to process the 10,000
messages and were therefore pre-empted a greater num-
ber of times. Furthermore, the task-based process archi-

tectures also incurred significantly more voluntary context
switches, which accounts for the substantial improvement in
overall throughput exhibited by the message-based process
architectures. The primary reason for the increased con-
text switching is that the locking mechanisms used by the
message-based process architectures utilize adaptive spin-
locks (which rarely trigger a context switch), rather than the
sleep-locks used by task-based process architectures (which
do trigger a context switch). Note that the Connectional
Parallelism process architecture incurred the least amount
of context switching for the connection-oriented protocol
stacks.

Figure 7 indicates the amount of execution time that
the /proc metrics reported as being devoted to wait-
ing to acquire and release locks in the connectionless and
connection-oriented benchmark programs. As with context
switching benchmarks, the message-oriented process archi-
tectures incurred considerably less synchronization over-
head, particularly when 4 PEs were used. As with context
switching, the spin-locks used by message-based process
architecture reduce the amount of time spent synchronizing,
in comparison with the sleep-locks used by the task-based
process architectures.

5 Concluding Remarks
Despite an increase in the availability of operating sys-

tem and hardware platforms that support networking and
parallel processing, developing communication subsystems
that effectively utilize parallel processing remains a com-
plex and challenging task. A key aspect of communication
subsystem performance involves the type of process archi-
tecture selected to structure parallel processing of protocol
tasks. Measurement results reported in this paper indicate
that task-based process architectures incur much higher lev-
els of context switching and synchronization overhead on a
shared memory platform, which significantly reduces per-
formance. Conversely, the message-based process archi-
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tectures (particularly Connectional Parallelism) incur much
less context switching and synchronization, and therefore
exhibit higher performance.

The ASX framework contributed to these performance
experiments by helping to decouple the protocol-specific
functionality from the underlying of process architecture.
This decoupling increased reuse and simplified develop-
ment, configuration, and experimentation with parallel pro-
tocol stacks. Components in the ASX framework are freely
available via anonymous ftp from ics.uci.edu in the
file gnu/C++ wrappers.tar.Z. This distribution con-
tains complete source code, documentation, and example
test drivers for the C++ components. Components in the
ASX framework have been ported to both UNIX and Win-
dows NT. The ASX framework is currently being used in a
number of commercial products including the AT&T Q.port
ATM signaling software product, the Ericsson EOS family
of PBX monitoring applications, and the network manage-
ment portion of the Motorola Iridium mobile communica-
tions system.
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