
Towards Real-Time Adaptive QoS Management in
Middleware for Embedded Computing Systems

Christopher D. Gill and David L. Levine Douglas C. Schmidt
fcdgill,levineg@cs.wustl.edu schmidt@uci.edu

Department of Computer Science Department of Electrical and Computer Engineering

Washington University University of California, Irvine
St. Louis, MO 63130, USA Irvine, CA 92697, USA

1 Introduction

Meeting the quality of service (QoS) requirements of
distributed real-time mission-critical embedded systems is
hard [1]. These systems impose timing constraints on both crit-
ical and non-critical operations, across distributed endsystems
and networks. Likewise, these systems often require embedded
processor and network resources, so that both time and space
utilization are constrained. Many of these systems also must
respond to rapidly changing environmental conditions,e.g., by
adapting their timing constraints at run-time.

Supporting the needs of these types of systems requires
quality of service (QoS) management that (1) is adaptive to
changing constraints, (2) performs such adaptation in real-
time, (3) integrates distinct canonical QoS management func-
tions, and (4) operates at an appropriate architectural level for
end-to-end QoS management in distributed real-time mission-
critical embedded systems. Moreover, solutions that apply
across commercial-off-the-shelf (COTS) and proprietary het-
erogeneous networks and endsystems are likely to offer greater
applicability in practice.

2 Solution Approach

This research offers a middleware-based solution in which
lower-level QoS management services are leveraged where
possible, or are provided in middleware when necessary. This
solution also complements and provides services to higher-
level COTS and custom middleware QoS management tech-
niques from the broader research community [2, 3, 4].

The primary contributions of our research are focused on
Kokyu1, which is an open-source integrated middleware frame-
work that supports adaptive distributed admission control
strategies and mechanisms for end-to-end QoS management in
real-time embedded middleware. The Kokyu project also pro-
vides a foundation for ongoing efforts to identify and document
design patterns [5] for integrated real-time adaptive QoS man-
agement in the context of distributed real-time mission-critical
embedded system middleware and applications.

2.1 End-to-End Admission Control

Distributed real-time mission-critical embedded system re-
quirements pose new challenges for resource allocation. For

1Kokyu is a Japanese word meaning literally “breath”, but also implying
timing and coordination.

adaptive rate reconfiguration, remote dependencies require an
end-to-end admission control protocol to ensure that (1) appro-
priate adaptation is performed on each endsystem to maintain
the end-to-end timing constraints and (2) sufficient resources
are feasibly reserved on each endsystem. Thus, it is essential to
identify and develop policies and mechanisms for end-to-end
real-time admission control that address these challenges.

For example, consider a sensor processing application with
sampling operations and processing operations on different
endsystems [6]. Depending on the environment and applica-
tion state, sensor sampling operations may run at any one of a
set of rates. Whenever the sampling portion of the application
is ready to adapt by changing the rate at which it samples the
sensor input, the following two activities must occur:

Reserving local resources: Any increase in the rate of ex-
ecution of an operation must be validated for scheduling fea-
sibility on its local endsystem. For example, if an operation
doubles its rate of execution, it will use twice as much CPU
time.

Adaptation handshaking: Remote dependencies may also
complicate distributed adaptation. For example, sampling at a
higher rate than can be processed may be of no benefit. If so,
the admission control protocol may need to negotiate the same
rate for both sampling and processing operations, and ensure
the operations can be scheduled feasibly at that rate on their
respective endsystems.

2.2 Integrated Middleware Framework

Historically, embedded real-time applications have often cou-
pled QoS management and application logic, and provided tim-
ing assurances by relying on static architectures, such as cyclic
executives. Unfortunately, these solutions can be brittle when
requirements change, particularly when changes occur at run-
time. Moreover, such coupling can expose application devel-
opers to accidental complexities, and thus increase the risk of
insidious errors.

Encapsulating QoS management mechanisms within the
Kokyu middleware framework and allowing flexible configura-
tion of policies shields application developers from error-prone
QoS management details, and provides flexibility in meeting
diverse end-to-end QoS requirements. Canonical QoS man-
agement mechanisms encapsulated by our framework include
(1) QoS service configuration, (2) admission control, (3) QoS
exception propagation, (4) QoS exception handling, (5) pacing,
(6) shaping, and (7) classification.

1

Integrating mechanisms within the Kokyu framework offers
improved adaptive real-time performance. For example, con-
sider two mechanisms: (1)classifyingoperations for dispatch
priority assignment, and (2) rate selection for adaptiveadmis-
sion control(described in Section 2.1). If the possible rates of
all operations are known at admission control time, priority as-
signment can be performed at the same time as rate selection,
as illustrated in the following figure:

SSOORRTTEEDD

AADDMMIISSSSIIOONN

CCOONNTTRROOLL

AARRRRAAYY

 SSOORRTTEEDD

 PPRRIIOORRIITTYY

AASSSSIIGGNNMMEENNTT

 AARRRRAAYY

RRTT__II NNFFOOSS

DDEE--NNOORRMMAAIILLZZEEDD

 TTUUPPLLEESS

AADDMMIISSSSIIOONN

CCOONNTTRROOLL

SSOORRTT

PPRRIIOORRIITTYY

AASSSSIIGGNNMMEENNTT

SSOORRTT

PPRRIIOORRIITTYY

AASSSSIIGGNNMMEENNTT

SSTTRRAATTEEGGYY

AADDMMIISSSSIIOONN

CCOONNTTRROOLL

SSTTRRAATTEEGGYY

SSOORRTTIINNGG

AALLGGOORRIITTHHMM

SSTTRRAATTEEGGYY

We integrate classification and rate selection in Kokyu as fol-
lows:

Operation Characteristics: We store information about op-
eration characteristics,e.g., period, criticality, and worst-case,
average, and best-case execution times, in aRT_Info de-
scriptor. The application, or a higher level management layer,
stores the values for the characteristics of each operation in its
RT_Info descriptor.

Denormalized Tuples: In adaptive systems, multiple possi-
ble values may be specified for some operation characteristics.
The Kokyu framework must select a value for each such char-
acteristic. Priority assignment may need to be performed as
well because priority assignment may depend on value selec-
tion (e.g., RMS [7] depends on selected rates).

To reduce the computational complexity of admission con-
trol, it is useful to perform both selection of values for oper-
ation characteristics and priority assignment in the same pass.
This can be done by (1) de-normalizing theRT_Infos and the
sets of possible values into a sequence of tuples, (2) sorting the
tuples according to both the priority assignment and admission

control policies, and (3) performing value selection and priority
assignment on the sorted sequence.

Composing Strategies: By using astablesorting technique,
or by composing admission control and priority assignment
comparisons, the constraints of both policies can be met, as-
suming they are not contradictory. Moreover, it may be pos-
sible to apply increasingly efficient sorting algorithms depend-
ing on the information known about the operations at admis-
sion control time. For example, if all the rates are known in
advance, it may be possible to apply anO(n) algorithm,e.g.,
radix sort. Otherwise, anO(nlg2n) comparison sort,e.g., heap
sort, is needed.

3 Concluding Remarks

Our end-to-end adaptive QoS management approach is being
incorporated into the Kokyu framework. Kokyu is being de-
veloped to extend and enhance the context of the ACE [8] and
TAO [4] open-source COTS middleware frameworks. Kokyu
offers flexibility for extension, configuration, and integration
of either COTS or custom policies and mechanisms, to meet
stringent distributed real-time mission-critical embedded sys-
tem requirements. This in turn will provide application devel-
opers with a high-level foundation for rapid system develop-
ment across heterogeneous networks and endsystems.

References
[1] C. D. Gill, F. Kuhns, D. L. Levine, D. C. Schmidt, B. S. Doerr, R. E.

Schantz, and A. K. Atlas, “Applying Adaptive Real-time Middleware to
Address Grand Challenges of COTS-based Mission-Critical Real-Time
Systems,” inProceedings of the 1st IEEE International Workshop on Real-
Time Mission-Critical Systems: Grand Challenge Problems, Nov. 1999.

[2] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

[3] J. Huang and R. Jha and W. Heimerdinger and M. Muhammad and S.
Lauzac and B. Kannikeswaran and K. Schwan and W. Zhao and R. Bet-
tati, “RT-ARM: A Real-Time Adaptive Resource Management System for
Distributed Mission-Critical Applications,” inWorkshop on Middleware
for Distributed Real-Time Systems, RTSS-97, (San Francisco, California),
IEEE, 1997.

[4] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,”Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[5] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-Oriented
Software Architecture: Patterns for Concurrency and Distributed Objects,
Volume 2. New York, NY: Wiley & Sons, 2000.

[6] B. S. Doerr, T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt, “Adaptive
Scheduling for Real-time, Embedded Information Systems,” inProceed-
ings of the 18th IEEE/AIAA Digital Avionics Systems Conference (DASC),
Oct. 1999.

[7] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment,”JACM, vol. 20, pp. 46–61, January 1973.

[8] D. C. Schmidt, “An Architectural Overview of the ACE Framework: A
Case-study of Successful Cross-platform Systems Software Reuse,”;lo-
gin:, Nov. 1998.

2

