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ABSTRACT
Courses in computer science (CS) often assess student program-
ming assignments manually, with the intent of providing in-depth
feedback to each student regarding correctness, style, efficiency, and
other quality attributes. As class sizes increase, however, it is hard
to provide detailed feedback consistently, especially when multiple
assessors are required to handle a larger number of assignment sub-
missions. Large language models (LLMs), such as ChatGPT, offer a
promising alternative to help automate this process in a consistent,
scalable, and minimally-biased manner.

This paper explores ChatGPT-4’s scalablility and accuracy in
assessing programming assignments based on predefined rubrics
in the context of a case study we conducted in an upper-level un-
dergraduate and graduate CS course at Vanderbilt University. In
this case study, we employed a method that compared assessments
generated by ChatGPT-4 against human graders to measure the
accuracy, precision, and recall associated with identifying program-
ming mistakes. Our results show that when ChatGPT-4 is used
properly (e.g., with appropriate prompt engineering and feature
selection) it can improve objectivity and grading efficiency, thereby
acting as a complementary tool to human graders for advanced
computer science graduate and undergraduate students.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools; •
Applied computing→ Computer-assisted instruction.
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1 INTRODUCTION
Conversational large language models (LLMs), such as ChatGPT-
4 [13], have proven effective in a range of domains, including code
generation and analysis [25]. LLMs are particularly promising in
domains where humans and AI tools collaborate to more rapidly
and reliably solve software problems [5, 24]. These advances have
enabled the application of LLMs in educational domains, partic-
ularly in disciplines that benefit from automated and/or assisted
analysis of textual or programming content [14, 19, 20].

Motivating the need for more effective and scalable CS
program assessment tools. In the context of computer science
(CS) education, assessing programming assignments is a task that
traditionally requires a considerable expenditure of time and ef-
fort from instructors and/or graders. Moreover, the quality of the
grading process is often susceptible to human error and subjectiv-
ity [15], particularly as class size grows. To mitigate such errors and
accelerate the grading process, this paper explores the application
of ChatGPT-4 to perform more objective and efficient analysis and
assessment of student programs. This approach is increasing rele-
vant as enrollments in CS classes increase, which often necessitates
the use of multiple graders whose inconsistencies (known as the
“inter-rater reliability problem”) can pose substantial challenges for
fair and reliable grading [7, 15].

To copewith the impact of scale in large CS classes, programming
assignments are often assessed via automated graders, which are
similar to unit and/or integration test suites. While automated
graders are useful in helping to assess functional correctness, they
offer limited aid in judging programming style, efficiency, and other
quality attributes [4, 6, 15]. Moreover, automated test suites may
stifle student creativity by mandating overly restrictive structures
to fit within the "Procrustean Bed" of auto-graders.

In the case of coding style, many instructors adopt “linters” to
identify stylistic mistakes [10]. However, these tools are limited in
their ability to capture certain elements of coding style, such as doc-
umentation completeness or holistic readability. In contrast, LLMs,
such as ChatGPT-4 or Claude, offer a more flexible qualitative grad-
ing solution that can evaluate functionality, coding style, efficiency,
and other quality attributes in a largely automated fashion.

More generally, the integration of generative AI tools into CS
pedagogical practices can pave the way for more personalized and
adaptive learning experiences through bespoke feedback that con-
ventional unit and integration tests cannot provide [2, 4, 6, 15].
This paper thus presents the results of a case study conducted in an
upper-level undergraduate and graduate course at Vanderbilt Uni-
versity entitled "Parallel Functional Programming in Java".1 This

1All course material is available at www.dre.vanderbilt.edu/∼schmidt/cs253 in
open-source form.
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case study explores how the application of LLMs in grading and pro-
gramming assignment assessment through a semi-automated grad-
ing methodology using ChatGPT-4 can supplement and enhance
conventional automated graders and traditional manual grading.

Solution approach→TheGreAIter LLM-based auto-grading
tool. We rely on prompt engineering techniques [24] to converse
effectively with ChatGPT-4. A prompt is a set of instructions pro-
vided to an LLM that programs the LLM by customizing it and/or
enhancing or refining its capabilities, which can influence behav-
ior of and interactions with LLMs [25]. Prompt engineering is the
means by which LLMs are programmed via prompts, guided by
experience [23, 26] on applying LLMs effectively. We applied these
techniques to develop an LLM-based auto-grading tool (known
as "GreAIter") that assists human graders in locating faults and
generating accurate and meaningful feedback for students.

Our case study implemented GreAIter using ChatGPT-4 and
applied it to evaluate programming assignments in the "Parallel
Functional Programming in Java" course. We defined rubrics using
a structured JSON format with specific grading criteria to commu-
nicate the grading methodology to ChatGPT-4. For each criterion
contained in the rubric, ChatGPT-4 was instructed to

(1) Output the code from each student submission that is rele-
vant to that criterion and a grade of “correct” or “incorrect”
and then

(2) Compile a summary of all mistakes made by the student and
outputs suggested feedback for the student based on their
submission and the mistakes therein.

The results of this assessment was reviewed by human graders to
produce the student’s final grade, thereby yielding an efficient, accu-
rate, and minimally-biased grade due to the collaboration between
humans and the GreAIter generative AI tool.

Evaluation approach and research contributions. To evalu-
ate our approach, we assessed ChatGPT-4’s performance in grading
programming assignments and compared this performance to that
of human graders. We conducted this comparison by examining
ChatGPT’s accuracy and efficiency in evaluating student submis-
sions given a rubric compared to a human grader. We investigated
the false positive and false negative rate through precision and
recall to determine ChatGPT-4’s shortcomings as a grader and ana-
lyzed how it can be used in a semi-automated approach. We further
examined the objectivity of results to assess ChatGPT-4’s potential
in reducing subjective bias in grading by comparing results from
multiple grading attempts given the same submission.

This paper provides the following contributions to research on
AI-assisted programming assignment evaluation:

• It provides empirical evidence regarding the utility of ChatGPT-
4 as a tool for assistance in assessing programming assign-
ments for advanced computer science topics, i.e., parallel
functional programming.

• It offers insights into the extent to which LLMs like ChatGPT-
4 can be relied upon for accurate assessment in educational
settings, potentially setting the stage for broader adoption
and further technological development.

Paper organization. The remainder of this paper is organized
as follows: Section 2 describes the methodology of our work, en-
compassing the design of our GreAIter auto-grading tool and the

prompting strategies we used to achieve our results; Section 3 ex-
plains the experiment we designed to assess the performance of our
methodology in grading programming assignments in the "Parallel
Functional Programming in Java" course; Section 4 evaluates the
results of our GreAIter grading tool using ChatGPT-4; Section 5 ex-
plores the limitations and threats to validity of our work, Section 6
compares our research with related work on AI-assisted program-
ming assignment evaluation; and Section 7 presents concluding
remarks and future work.

2 METHODOLOGY
This section describes the methodology of our study, focusing on
the design of our LLM-based GreAIter auto-grading tool and the
prompt engineering strategies we applied to achieve our results.

2.1 Overview of GreAIter and our AI-assisted
Grading Process

Figure 1 depicts the steps involved in our grading process using
GreAIter. We begin with the student submission (1) and the rubric

(1)
Student Submission

(2)
Subtractive Rubric




0
1
0
...




(5)
Binary Grade For
Each Rubric Item

(3)
Intermediate
Analysis

(4)
Human Grader

Figure 1: GreAIter’s AI-Assisted Grading Process.

being input (2) into ChatGPT-4. This LLM then conducts an inter-
mediate analysis (3), consisting of a detailed evaluation for each
criterion in the rubric. ChatGPT-4 then summarizes its assessment
and a human grader reviews the output (4), verifying and adjusting
ChatGPT-4’s evaluations as needed. The final output from the hu-
man grader (5) consists of a binary grade for each criterion in the
rubric, indicating the performance of the student’s programming
assignment submission against each criterion.

GreAIter provides a bridge between theoretical generative AI
capabilities and practical educational applications. This tool enables
instructors to use LLMs effectively to improve grader efficiency
and objectivity by providing an automated system that interprets
student submissions against a predefined rubric and produces an
objective assessment mirroring human graders’ processes. GreAIter
leverages rubric-based evaluation, where each criterion is clearly
defined via a structured format. This format provides ChatGPT-
4 with the parameters needed to assess student submissions and
ensure consistency across multiple evaluations, thereby addressing
the inter-rater reliability problem [7].

While GreAIter contains no elements that are specific to any
particular programming assignment, we recommend certain steps



Applying Large Language Models to Enhance the Assessment
of Parallel Functional Programming Assignments LLM4Code ’24, April 20, 2024, Lisbon, Portugal

for integrating it into a class.2 In particular, a reliable and structured
rubric is necessary for effective results. ChatGPT-4 has been shown
by others [27] as an adequate prompt engineer on the level of
humans, and we leverage this capability to generate rubrics that
GreAIter uses to prompt ChatGPT-4. In particular, ChatGPT-4 can
generate a usable rubric given a (1) list of potential mistakes, (2) an
“answer key” (i.e., the desired assignment solution), and (3) the JSON
structure shown in Figure 2.We follow this approach to generate the
rubrics for our experiments, with researchers verifying each rubric
criterion that ChatGPT-4 outputs to ensure quality of description
and correct and incorrect examples.

Our initial round of experiments indicated that ChatGPT-4 was
prone to generating code for the incorrect example in a rubric
criterion that is different than real mistakes students may make.
For example, we might want ChatGPT-4 to ensure that students
use Java method references rather than lambda expressions where
possible for stylistic reasons. Here, the desired solution might look
something like, ".map(this::someFunction)", while ChatGPT-4 might
generate something like ".map(item -> )" instead of "map(item -
> someFunction(item))", which is semantically equivalent to the
correct answer. We therefore provided examples of incorrect code
in prompts to generate these rubrics and verified the incorrect
example to ensure it exhibited realistic mistaken behavior.

2.2 Prompt Engineering and Human-AI
Collaboration

While GreAIter is capable of operating in a fully autonomous mode,
we applied a semi-autonomousmethod due to limitations associated
with current LLM technologies, including ChatGPT-4 [3, 23–25].
Despite its advanced capabilities, ChatGPT-4 can generate errors
(commonly referred to as "hallucinations"), where it confidently
asserts inaccurate or nonsensical information [3]. This tendency
is problematic for educational assessments, where the stakes of
incorrect evaluations are high, as they may significantly impact a
student’s learning trajectory and academic record.

Given a programming assignment and rubric, GreAIter gener-
ated feedback for human graders to review. As a final sanity check,
human graders then checked the relevant segment(s) of student
code identified by GreAIter to manually verifying the issues it
flagged were indeed mistakes (rather than false positives). Hu-
man graders thus scored each student appropriately and reviewed
GreAIter’s feedback before returning results to students via GRADE
files pushed to their GitLab repositories.

By integrating a human-in-the-loop approach, we introduced a
crucial verification step. Human graders review the AI-generated
assessments, ensuring the reliability of the final output. This safe-
guard is not merely a corrective measure, it also reinforces the edu-
cational value of the grading process. A human grader’s oversight
ensures that feedback is pedagogically appropriate and contextually
relevant to each student’s learning needs.

Our semi-automated approach also aligns with ethical guidelines,
promoting responsible AI by mitigating risks associated with unver-
ified autonomous AI operation in high-stakes application domains
like primary and secondary education. Our approach respects the
sophistication of the AI while prudently managing its limitations

2GreAIter is available to instructors of CS programming courses on request.

and balancing the efficiency of automation without foregoing the
expertise of human educators. The result is a hybrid model that
aims for high-quality, scalable assessment mechanisms that both
educators and students can reply upon.

At the heart of GreAIter’s functionality is prompt engineering,
i.e.. the intentional design of prompts that guide LLMs in performing
their tasks. For our GreAIter process, prompts are carefully crafted
to elicit specific behaviors from ChatGPT-4, enabling it to under-
stand and apply the grading rubrics accurately. Due to ChatGPT-4’s
familiarity with JSON, we found that formatting the rubric using
JSON (as shown in Figure 2) is an effective prompting strategy to

Figure 2: Example JSON to Provide a Rubric to ChatGPT-4.

ensure ChatGPT-4 accurately parses the information in the rubric.
We therefore define our rubric as a JSON array where each element
contains an object representing a rubric criterion. Each rubric cri-
terion contains entries for the criterion’s title, description, and a
correct and incorrect example.

We used the following prompt to instruct ChatGPT-4 on the use
of this rubric:

You are a grader for the parallel functional program-
ming course taught in Java. I will give you a JSON
rubric and student Java code. For each item in the
rubric, you will first output the function in the stu-
dent’s code that is relevant to that item and then you
will output a score of "correct" or "incorrect". Alter-
native answers to the correct code are permissible if
they have the same functionality and do not apply
poor style conventions.

This prompt was followed by the rubric and the student’s code. A
subsequent request instructed ChatGPT-4 to compile a comprehen-
sive summary of errors or misalignments with the rubric’s expecta-
tions, along with suggested feedback for the student based on their
specific mistakes. This prompt forced ChatGPT-4 to consider each
individual criterion in the rubric, and then used a chain-of-thought3
prompting strategy by asking the LLM to output the relevant code
before making a judgement about its correctness. These strategies
3Chain-of-thought prompting [23] instructs an LLM to explain its “thought process”
before giving an answer to improve answer quality.
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helped to minimize ChatGPT’s tendency to hallucinate errors, skip
rubric criteria, and/or consider irrelevant parts of student code.

Based on our experience with the GreAIter case study, including
both correct and incorrect examples in the rubric is crucial for
several reasons. First, it enables a "few-shot learning"4 method that
provides context and clarifies edge cases and potentially ambiguous
instructions. Second, these examples aid ChatGPT-4 in providing
specific feedback to students by comparing their solutions to the
desired solution.
2.3 Assessment Process and Ethical

Considerations
Our GreAIter-based assessment process began with ChatGPT-4
receiving each student’s code and the associated rubric through
our prompts, as shown by step (1) in Figure 1. ChatGPT-4 then
systematically evaluated the code, criterion-by-criterion, referenc-
ing specific code segments as evidence for its assessments. Our
prompts were designed to ensure that ChatGPT-4’s evaluation was
not merely keyword-based but contextually rooted in the logic and
syntax that the rubric required.

Upon completion of the assessment for each criterion, ChatGPT-
4 aggregated individual assessments into a final summary. This
summary conveyed areas where the student excelled, as well as
areas that require further improvement. In addition, this summary
provided a foundational tool for human graders to either validate
the results of GreAIter’s grading process or to provide additional
insights where necessary.

To maintain the integrity of the assessment, we also included a
review mechanism where the outputs generated by GreAIter were
cross-examined by human graders. This dual-layered approach not
only fine-tuned the assessment process but also established a com-
prehensive feedback system that benefited the students’ learning
experience. Our goal was to harness the computational precision
and scalability of ChatGPT-4 while retaining the nuanced judg-
ment of humans, striving for an equilibrium that augments the
grading process within Vanderbilt University and other educational
environments.

3 EXPERIMENT DESIGN AND EVALUATION
To evaluate our methodology described in Section 2, we designed
an experiment to empirically determine how well ChatGPT-4 per-
formed in its assessment of student parallel functional program-
ming assignments. The objective of this experiment was to assess
the performance of a ChatGPT-4-based automated code assessor
against human graders in terms of accuracy, efficiency, and objec-
tivity. The experimental setup described in this section measured
the efficacy of GreAIter by comparing its assessment outcomes to
those of experienced human graders.

Assignments and student submissions for this experiment were
obtained from our parallel functional programming course at Van-
derbilt University, which consisted of 26 undergraduate and gradu-
ate students in the fall semester of 2023. We considered results from
three assignments given to this class cohort and used final student
grades on the assignments as the "ground-truth" human-graded
4Few-shot learning involves training an AI model from only a few examples, which
typically allows the model to perform better than it would in a 0-shot approach [22],
which has proven effective for LLMs [12].

benchmark. To eliminate inter-rater bias, one graduate teaching
assistant (TA) grader with five years of experience with Java and
two years of experience with Java parallel functional programming
initially graded all submissions. These grades were then reviewed
by the course instructor to ensure accuracy.

The TA grader was given the same rubrics as GreAIter, though
these rubrics were formatted as plain text instead of JSON for
readability. We recognized that a single TA grader reviewed by a
single instructor might exhibit potential bias, so we investigated
each inaccuracy carefully to determine the cause of potential flaws.5

Our experiment considered the following three research ques-
tions:
RQ1: Performance Can GreAIter perform correctly by identify-

ing mistakes in student program submissions?
RQ2: Efficiency What is the reduction in the amount of manual

grading that must be done when using GreAIter compared
to traditional manual grading?

RQ3: Consistency How consistent is our LLM grading method-
ology across multiple grading attempts of the same program-
ming assignments?

Section 4 below discusses our recommendations for integrating
our GreAIter grading methodology as a semi-automated grader in
CS classes. For this experiment, however, we evaluated GreAIter’s
performance in isolation to provide evidence for our recommen-
dation. While GreAIter could be used to fully automate grading,
we use our experiments to determine GreAIter’s failure modes to
evaluate its efficacy and determine how an AI-assisted grader can
verify results.

3.1 RQ1: Performance
Building upon the experimental design described above, we used
three performance metrics to evaluate GreAIter rigorously. First,
we used GreAIter’s accuracy, which we quantified as the percentage
of student mistakes correctly identified by GreAIter in alignment
with the consensus grades established by the TA grader and in-
structor. High accuracy results would validate GreAIter as a reliable
evaluator of code quality and correctness, thereby motivating its
integration into the grading process to reduce the grading load on
instructors while maintaining high assessment standards.

Second, we used GreAIter’s precision, which we quantified as
ChatGPT-4’s tendency to incorrectly mark a correct code segment
as erroneous. This metric is crucial because high precision indicates
GreAIter rarely marks correct code as erroneous, preventing undue
penalties on students and reducing the need for human oversight.
High precision indicates GreAIter’s meticulousness, ensuring its
feedback is constructive and based on actual student errors, thereby
maintaining student trust in this assessment process. While poor
precision would impact ChatGPT-4’s ability to operate in isolation,
it could be mitigated with additional TA grader intervention as part
of the overall GreAIter assessment process.

Third, we use recall, which we qualitifed as GreAIter’s ability
to identify all incorrect code present. A high recall rate indicates
GreAIter can effectively detect most—if not all—errors in student

5We assumed that a three-way agreement between the TA grader, the instructor, and
GreAIter is most likely accurate, so we do not investigate cases where such a consensus
is reached.
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submissions, which is critical because identifying candidate mis-
takes demonstrates ChatGPT-4’s ability to assist human graders.
In contrast, a low recall rate would require human oversight to
a degree that GreAIter would not substantially accelerate the as-
sessment process, particularly at scale as CS class sizes increase. If
GreAIter exhibited high recall its utility in providing comprehen-
sive and thorough feedback necessary for educational purposes is
enhanced, i.e., it can consistently identify mistakes (which can then
be verified quickly by human graders).

Table 1: Confusion Matrix of LLM-Produced Grades.

AI Grader Results Compared to Human Graders
True False

+ 2.61% 1.79%

− 95.60% 0%

A summary of intermediate statistics is shown in Table 1, which
depicts positives (+) and negatives (−) found by GreAIter and shows
promising statistics with a potential failure mode being present in
false positives, to which GreAIter is prone. The accuracy of GreAIter
was benchmarked against the grades determined by the TA grader
and validated by the course instructor, which yielded the following
results:

• True Positives (TP): 2.61% - The percentage of instances
where GreAIter correctly identified errors that were also
recognized by the TA grader.

• True Negatives (TN): 95.60% - The percentage of instances
where GreAIter correctly identified correct code segments,
aligning with the TA grader’s assessments.

• Overall Accuracy: 98.21% - The proportion of correct as-
sessments made out of all grading decisions.

The precision and recall of GreAIter reflected its ability to min-
imize false positives and false negatives, both crucial aspects of
ensuring fair and constructive feedback:

• False Positives: 1.79% - The percentage of instances where
GreAIter marked correct code segments as erroneous.

• False Negatives: 0% - The percentage of instances where
GreAIter marked erroneous code segments as correct.

• Precision: 59.30% - GreAIter’s ability to correctly identify
student mistakes without over-penalizing correct aspects of
their submissions.

• Recall: 100% - The comprehensiveness of GreAIter in detect-
ing errors present in the student submissions.

The results of applying our semi-automated GreAIter tool re-
vealed a nuanced performance profile across the metrics presented
above. Our high overall accuracy rate indicates that GreAIter aligned
well with the TA grader performance in the vast majority of cases.
This finding suggests a strong foundational reliability of ChatGPT-4
in evaluating parallel functional programming assignments.

Interestingly, the seemingly low true positive rate of 2.61% indi-
cates we had somewhat skewed data, with considerably more true
negatives than true positives. This result is not unexpected since
student grades on programming assignments in this course tend to
average over 90%. However, it does render our true positive rate
somewhat meaningless.

A precision of 59.30% implies that when GreAIter identifies an
error, it is correct just over half of the time, indicating a tendency
towards false positives, where GreAIter incorrectly marks code as
erroneous. While GreAIter is thorough, therefore, it may be overly
critical or prone to hallucination, i.e., by perceiving errors that are
not there. More optimistically, GreAIter exhibited perfect recall in
this trial, meaning it never missed a mistake made by a student.

Overall, these results suggest that while GreAIter shows promise
in terms of high accuracy and recall, its should bemanaged carefully
due to its propensity for false positives. The strong recall indicates
that GreAIter can serve as an effective initial filter in identifying
potential errors in student submissions. However, the precision
underscores the necessity of human oversight to confirm Chat-
GPT’s findings and to provide the final judgment on the student’s
work, which substantiates our focus on a semi-automated grading
approach.

3.2 RQ2: Efficiency
To address the second research question, we focused on evaluat-
ing the efficiency of our LLM-based grading system compared to
traditional manual grading methods. In this context, we defined
efficiency by (1) the time investment required for grading, (2) the
number of rubric criteria a grader must assess, and (3) the volume
of code that must be reviewed for each submission.

3.2.1 Time Investment. Based on our experience applying GreAIter
throughout the fall semester of 2023, we found that the semi-
automated process for grading was notably faster than manual
grading. In particular, we observed that our grader’s runtime aver-
age roughly one minute per student submission due to the request
latency of the OpenAI API. However, GreAIter could simultane-
ously assess all submissions for a given assignment, so it could run
as a background process while the TA grader reviewed the results.
The runtime of GreAIter thus had a negligible effect on overall
grading efficiency.

The time needed to grade each submission is a critical measure of
efficiency. We tracked the duration it took for a human grader and
our semi-automated GreAIter approach to complete the grading
process for all student submissions in a given assignment. Our
observations indicated that GreAIter substantially reduced the time
required per submission. In particular, the average time taken by
GreAIter to assess all submissions for a single assignment was
roughly 45 minutes, or 1.73 minutes per student submission.

In contrast, the TA grader spent an average of just under 4 hours
to grade all submissions for an assignment, or 9.23 minutes per
submission. We therefore found that our approach reduced overall
grading time by approximately 81.2%, which highlights the potential
of GreAIter to enhance grading efficiency in educational settings.
This increased efficiency would be even more apparent in much
larger CS classes that required multiple TA graders, and would also
address the inter-rater reliability problems that would likely arise
with multiple TA graders.

3.2.2 Number of Rubric Criteria. Another dimension of efficiency
we investigated was the number of rubric criteria that a grader must
check. In the traditional manual method, a TA grader must assess
each criterion for every submission. In contrast, GreAIter’s ability
to quickly identify correct code segments reduced the number of
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criteria requiring detailed review.We quantified the average number
of rubric criteria the TA grader had to assess in-depth for each
submission compared to those GreAIter those flagged for further
review. Our findings showed that GreAIter required attention to
roughly 1.1 rubric criteria per student submission on average, which
was substantially less than the average of 25 criteria for the TA
grader. Overall, this constituted a substantial decrease of 95.6%.

3.2.3 Volume of Code. Finally, we evaluated efficiency in terms of
the total number of lines of code a grader needed to check to grade
a submission. GreAIter’s ability to precisely target relevant code
segments for each rubric criterion reduced the overall volume of
code that needs in-depth review. This property of GreAIter resulted
from its ability to find the relevant method to each rubric criterion
within student code. GreAIter thus only needed to check methods
that ChatGPT-4 highlighted as relevant to a rubric criterion that a
student missed.

We compared the average number of lines of code reviewed per
submission by GreAIter and the TA grader. GreAIter reviewed an
average of 28 lines of code per student submission. In contrast, the
TA grader reviewed an average of 409 lines of code, constituting a
93.2% decrease in volume.

The results from our experiments indicate a substantial improve-
ment in grading efficiency when using ChatGPT-4 as the LLM
for the GreAIter process. The reduction in time per-submission—
coupled with fewer rubric criteria requiring in-depth review and
a lower volume of code to scrutinize—significantly reduced our
manual grading workload. This efficiency does not come at the cost
of grading quality since GreAIter still adhered to the grading stan-
dards we established. By freeing up time and resources, moreover,
we could focus more on providing quality feedback, engaging in
interactive teaching, and developing better course content, thereby
enriching overall student educational experience.

3.3 RQ3: Consistency
To assess the reliability of GreAIter, we implemented a repeatabil-
ity test, which provided a crucial measure of our grader’s consis-
tency over time. In this context, consistency refers to the ability of
GreAIter to produce the same results when presented with the same
inputs under similar conditions. This ability is vital for its potential
deployment in educational settings and ensures our tool’s accuracy
results are not the result of a chance response from ChatGPT-4.

The primary metric for success in the repeatability test is the
consistency rate, i.e., the percentage of identified mistakes that re-
main unchanged across multiple grading attempts by GreAIter. A
high consistency rate indicates that GreAIter is stable and reliable
in both its grading and feedback and exhibits minimal inter-rater
reliability bias, which is essential for any (semi-)automated grading
tool used in academia.

The consistency rate we observed was 78%, which was the ratio
of rubric criteria for which GreAIter gave the same result to the
same student submission over two grading attempts. However,
all identified disagreements were false positives, i.e., in one trial
GreAIter hallucinated a problem while it did not hallucinate or
hallucinated a different problem in the other trial. This finding
highlights the stability of GreAIter and the minimization of grader
bias.

This consistency rate informs us about the repeatability of GreAIter’s
performance. Although this rate is not perfect, it is substantial and
indicates that GreAIter can reliably reproduce its grading decisions
across multiple iterations. The inconsistencies we observed were
due to false positives, reinforcing our earlier observation regard-
ing GreAIter’s tendency to over-diagnosis errors. The nature of
GreAIter’s inconsistencies are thus consistent with our previous
findings that underscore the necessity of human oversight to con-
firm GreAIter’s findings and to provide the final judgment on the
student programming submissions.

This semi-autonomous "augmented intelligence" approach (i.e.,
where GreAIter provides a first pass and humans verify) offers
a balanced solution, combining the thoroughness and speed of
LLMs like ChatGPT-4 with the discernment and expertise of human
graders. This hybrid strategy helped us streamline the grading
process, reduce the workload for instructors and TAs, and maintain
the integrity and fairness expected of academic evaluations.

4 ANALYSIS OF RESULTS
This section analyzes the results of our semi-automated GreAIter
tool, focusing on the implications of its performance metrics, its
potential role and integration within educational settings, and con-
siderations for its future application. A summary of our experimen-
tal results using the TA grader as the ground truth is presented in
Table 2.

Table 2: Summary of Results.

Performance Accuracy Precision Recall
98.21% 59.30% 100%

Effort Reduction Time Rubric Criteria Code Volume
81.2% 95.6% 93.2%

Consistency Consistency Rate
78%

Performance metrics and efficiency gains. GreAIter’s high
overall accuracy (98.21%) and recall (100%) indicate its potential as
a useful tool and process in programming assignment assessment
and grading. Its effectiveness in correctly identifying correct code
submissions significantly reduced TA grader workload by filtering
out submissions that likely required no further review. However,
the precision of 59.30% raises concerns regarding its number of false
positives. This result reflects the current limitations of ChatGPT-4,
which, while sophisticated, can still misinterpret complex instruc-
tions or code nuances, leading to the incorrect identification of
errors.

This outcome led us to applying a semi-automated grading and
feedback approach, which leverages GreAIter to find candidate
mistakes in student code for subsequent TA grader review. Since
GreAIter outputs the relevant code for each mistake, TA graders can
quickly validate candidates. This semi-automated process can ac-
celerate the grading process and reduce TA grader effort, as shown
by our efficiency study in Section 3.2, while maintaining human
intervention to mitigate student distrust of AI-based systems.

Repeatability and semi-automation. The repeatability rate
of 78% suggests that while GreAIter is generally reliable, there are
some variations in its grading across iterations. This variability
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is particularly problematic in the context of CS courses, where
consistency in grading programming assignments is paramount to
fairness and credibility of the assessment process. However, because
the disagreement between trials stems entirely from false positives,
we can use GreAIter to focus TA grader attention on reducing bias
and improving grading efficiency by decreasing grading time by up
to 81.2%.

These results also indicate that GreAIter can contribute effec-
tively to the grading process, primarily through initial assessments
and identification of clear-cut cases of correct code. Its high accu-
racy in these instances could enable instructors to allocate more
time to providing in-depth feedback where it is most needed, po-
tentially enhancing the educational experience for students. Nev-
ertheless, GreAIter’s propensity for false positives necessitates a
semi-automated approach where human graders perform a sec-
ondary review of its grading decisions. This approach leverages the
strengths of GreAIter in rapidly processing and evaluating submis-
sions while mitigating its weaknesses through human oversight.

5 LIMITATIONS AND THREATS TO VALIDITY
This section explores the limitations of the GreAIter AI-assisted
grader described in Section 2 and the threats to validity of our
experiments described in Section 3.

Generalizability across languages and paradigms. Although
our study is extensive, it is not without limitations. In particular,
we developed and evaluated GreAIter within a single course (par-
allel functional programming) and programming language (Java),
which may limit the generalizability of our findings. For example,
Java programming, and more specifically, the parallel functional
programming paradigm, has some unique challenges and patterns
that may not be representative of other programming languages or
paradigms.

Subjectivity in ground truth and precision concerns. We
compared GreAIter’s performance to that of a single TA grader and
course instructor, which may introduce a degree of subjectivity
into the “ground truth” against which GreAIter’s performance was
measured. Although the TA grader was quite experienced—and all
grades were reviewed for accuracy—different graders may have
different thresholds for correctness and error severity, potentially
influencing the benchmarks used for AI evaluation. It may therefore
be prudent to verify our results with multiple graders and courses,
along with a comparison to human inter-grader reliability.

The false positives reported in GreAIter’s outcomes reflect an-
other limitation. While its recall was perfect (indicating it missed
no errors) its precision was much lower, suggesting GreAIter some-
times identified errors to zealously. While this over-detection erred
on the side of caution, it led to unnecessary reviews by human
graders, diminishing the efficiency gains from using GreAIter.

Consistency and repeatability concerns. Another potential
threat to the validity of the study is our reliance on the OpenAI
API’s latency, which may affect the grading speed results. Like-
wise, the consistency measure assumes that ChatGPT-based LLMs
will not learn or adapt over time, which may not hold true as its
underlying models are continuously updated and improved upon.
However, the importance of this metric is in verifying the consis-
tency of grades within a single cohort for a single assignment, and
updates to the base model should not be variable within a single

assignment. Furthermore, the repeatability test, while designed to
be rigorous, was confined to two trials. More extensive testing over
additional trials could provide a deeper understanding of GreAIter’s
consistency and reliability.

Despite these limitations and threats to validity, our study pro-
vides valuable insights into the capabilities and limitations of using
ChatGPT-4 for assessing programming assignments. The high ac-
curacy and recall offer evidence of GreAIter’s potential utility in
CS courses, and its consistency rate, is promising, though imper-
fect. The careful design of our study, the systematic approach to
data collection and analysis, and the critical evaluation of results
all contribute to the robustness of our findings. These limitations
provide a clear framework for understanding the context within
which the findings are applicable.

6 RELATEDWORK
LLMs and AI-assisted education are a active areas of research that
we build upon by applying prompt engineering techniques to LLMs
to facilitate automated assessments of student programming assign-
ments. This section compares our research with related work in
the fields of prompt engineering and AI-assisted education.

Several studies have made use of prompt engineering to im-
prove the performance of LLMs, from simple prompt strategies [1]
to more complex ones [24, 26]. Wei et al. [23] have investigated
“chain-of-thought” prompting, which is an approach we apply in
our work. Yao et al. have improved on this work by including action
plan generation and external source lookup [26]. White et al.[24]
developed prompt patterns, analogous with software patterns, that
can improve and structure LLM outputs and they have followed
this with a study on prompt patterns for improving code quality in
particular [25]. Common failure modes for LLMs have been identi-
fied as well, necessitating the development of improvements and
mitigations [3].

Suggestions for future use of LLMs guide our study as well. We
strive to follow guidelines put forth by van Dis et al. [21], particu-
larly suggestions to “embrace the benefits of AI” and “hold on to
human verification”. We leverage insights from this and other re-
lated work to develop a novel programming assignment assessment
methodology to speed up grading and mitigate inter-grader bias.

Other researchers have explored applications of AI in education
specifically. Most similar to our work is a study on automated
grading of short answer questions using LLMs [19], which also
found that an AI grader necessitates human oversight, though it is
still helpful for maximizing grading efficiency. LLMs were applied
for short answer grading as a followup [18] to a study on the same
task using fine-tuned transformer models, which outperformed
other automated attempts but did not achieve sufficient accuracy
for full integration. Several studies [2, 9, 16, 20] have speculated
on the benefits and pitfalls of LLMs and AI in education to guide
future research, such as our study.

Detection of AI-generated submissions for education [14], gen-
eration of programming exercises and code explanations [17], and
assistance in medical education using LLMs [11] have also been
studied. This related work showcases the potential of LLMs for
education, which helped guide our study. Finally, there is a long
tradition of automated grading of programming assignments using
test suites and linting for correctness and style [6, 8, 15]. We build
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on this related work by using ChatGPT-4 to overcome limitations in
qualitative assessment, thereby enabling automated assessment of
efficient implementations, adequate documentation, and a broader
range of stylistic issues.

Our study builds upon the rich and growing body of research
in the realms of prompt engineering, AI-assisted education, and
automated grading systems. We acknowledge the various methods
and applications explored in these fields, ranging from improving
LLM outputs through intricate prompt designs to leveraging AI for
educational purposes. Our approach contributes to this evolving
landscape by applying sophisticated prompt engineering techniques
to GPT-4 for the specific task of assessing programming assign-
ments. This novel application not only addresses the challenges of
efficient and minimally-biased grading but also encapsulates the
potential of AI in enhancing the educational experience.

7 CONCLUDING REMARKS
This paper presented the results of our study that applied ChatGPT-
4 to create GreAIter, which is an AI-assisted tool that helps automate
key portions of the grading process for programming assignments
in an advanced parallel functional programming course offered
in Java. Our findings codify the potential and current limitations
of AI-assisted grading systems and yielded the following lessons
learned:

• ChatGPT-4 has the capacity to accurately identify cor-
rect code submissions.We demonstrate that GreAIter could
achieve a high accuracy rate (98.21%) and perfect recall. These
results suggest that LLMs can play an important role in as-
sisting with grading tasks, particularly in filtering out rubric
criteria that are likely correct for a given submission, thereby
reducing human grader workload. Ironically, when ChatGPT-
4 did not accurately identify correct code submissions, we
interacted with it and got it to explain how we could craft
future prompts to elicit more accurate results from it. The abil-
ity to engage in such a "Socratic dialogue" with an LLM like
ChatGPT-4 was quite refreshing compared with traditional
means of refining queries with conventional static analysis
tools.

• The need for human oversight remains critical. The
precision of 59.3%, marked by a substantial rate of false posi-
tives, points to the limitations of the current state of LLMs in
understanding and evaluating complex programming tasks.
Therefore, despite GreAIter’s impressive recall rate (indicat-
ing no missed errors) human oversight remains necessary
due to ChatGPT-4’s tendency to over-flag student code seg-
ments as erroneous. By integrating insights from previous
work with GreAIter, we extend the capabilities of LLMs in
educational contexts and set the stage for future research
in AI-assisted education. The synergy of LLMs and human
expertise demonstrated in this study showcases the poten-
tial of LLMs in enhancing educational methodologies and
outcomes.

• Due to ChatGPT-4’s limitations, we stress the benefits
of a semi-automated grading approach. A key lesson
learned through our study is the importance of human-AI
collaboration, which is commonly known as "augmented in-
telligence" rather than conventional "artificial intelligence".

While GreAIter is powerful, it is not yet capable of replac-
ing human judgment in tasks that require nuanced under-
standing. The semi-automated approach advocated by our
research—where ChatGPT-4 performed an initial assessment
and humans provide final verification and feedback—strikes
a balance that leverages the strengths of both. We found this
semi-automated approach reduced grading workloads, consti-
tuting a 93.2% decrease in code volume to review and an 81.2%
decrease in grading time. We also found GreAIter yielded a
consistency rate of 78%, thereby indicating that while LLMs
can exhibit consistent, relatively unbiased tendencies, their
performance can vary, and thus should be regularly checked
for consistency and accuracy.

• GreAIter can be integrated into actual classroom set-
tings to improve grader efficiency and reliability.Through
careful planning and systematic analysis of the accuracy, pre-
cision, recall, efficiency, and repeatability metrics covered in
this paper, we showed that GreAIter improves traditional TA
grading. We validated the feasibility of integrating GreAIter
into an actual classroom setting, optimizing the grading pro-
cess in terms of both efficiency and scalability.While GreAIter
demonstrates a high degree of accuracy, its current limita-
tions underscore the need for a semi-automated approach
that combines the speed and consistency of LLMs with the
critical thinking and expertise of human graders. As LLMs
evolve, so too will the strategies for integrating it more effec-
tively to enhance quality and fairness of the grading process
for CS courses.

Overall, our case study shows that the promise of LLMs in educa-
tion extends beyond grading efficiency, i.e., LLMs have the potential
to reshape how feedback is delivered, how learning is assessed, and
how education is ultimately conducted. While LLMs have not yet
reached the point of replacing human graders, they provide an
important resource to aid educators, particularly in disciplines like
CS that are characterized by ever-growing class sizes. In keeping
with previous research [24, 25], we find that collaboration between
human users and AI tools results in rapid and reliable software so-
lutions, and we leverage this collaboration for a more efficient and
effective educational process. As LLMs grow more sophisticated,
we anticipate further research to refine and harness these powerful
tools for the betterment of educational systems.

Looking forward, the integration of LLMs into grading CS pro-
gramming assignments requires consideration of the trade-offs
between efficiency and accuracy. The false positive rate must be
reduced to make tools like GreAIter more autonomous and trust-
worthy. Our future work will focus on fine-tuning LLMs on larger
and more diverse datasets of code submissions and rubrics, po-
tentially improving their understanding and reducing the rate of
false positives. Likewise, we plan to explore the use of ensemble
methods, which combine multiple LLMs and/or AI-assisted graders
to cross-verify results and improve grading consistency. Many false
positives result from the same rubric criteria, so investigations into
prompting strategies for specific rubric criteria is also likely to
improve precision.

The limitations described in Section 5 also offer directions for
future research. For example, our future work will explore a wide
range of courses, broader coverage of programming languages,
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more diverse grading benchmarks, as well as other LLMs beyond
ChatGPT-4. By understanding the specific contexts inwhichGreAIter
performs well, and those in which it does not, we can better tailor
the this type of AI-assisted grader to meet instructor needs. Thus,
while our case study is bound by certain limitations and potential
threats to validity, our methodology and the GreAIter’s overall
solid performance in several key metrics support the validity of
our findings. The study’s design and the presented results provide
a foundation upon which future work can build, contributing to
the evolving field of LLMs in CS education and the development of
more sophisticated, reliable, and efficient AI-assisted graders.
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