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ABSTRACT

Spoof speech can be used to try and fool speaker verification
systems that determine the identity of the speaker based on
voice characteristics. This paper compares popular learnable
front-ends on this task. We categorize the front-ends by defin-
ing two generic architectures and then analyze the filtering
stages of both types in terms of learning constraints. We pro-
pose replacing fixed filterbanks with a learnable layer that can
better adapt to anti-spoofing tasks. The proposed FastAudio
front-end is then tested with two popular back-ends to measure
the performance on the Logical Access track of the ASVspoof
2019 dataset. The FastAudio front-end achieves a relative
improvement of 29.7% when compared with fixed front-ends,
outperforming all other learnable front-ends on this task.

Index Terms— Spoof Speech Detection, Automatic
Speaker Verification, Learnable Audio Filterbanks

1. INTRODUCTION

Spoof speech detection identifies attempts to fool a speaker
verification system, including Text-To-Speech (TTS), Voice
Conversion (VC), and Replay Attacks. In spoof speech de-
tection, audio is preprocessed to create a compressed repre-
sentation that is smaller in size, but aims to preserve as many
of the important features as possible before spoof detection
is applied. The component that performs this preprocessing
step is known as the front-end. Front-ends can be either hand-
crafted or learnable, and the process of choosing the proper
handcrafted front-ends is also known as feature selection.

This paper provides three contributions to the study of how
front-ends contribute to spoof speech detection performance.
First, we propose a lightweight learnable front-end called Fas-
tAudio that achieved the lowest min t-DCF in spoof speech
detection compared to other front-ends. Second, we provide
a comparison of feature selections for spoofing countermea-
sures, with a special focus on learnable audio front-ends, and
show how applying shape constraints can make the filterbank
layer perform better while reducing the number of parame-
ters. Third, we describe the architecture that achieved top
performance on the ASVspoof 2019 [1] dataset.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the classification of audio front-ends based
on structure and the background for filter learning; Section 3

discusses different constraint types regarding filterbank learn-
ing; Section 4 describes our experiment setups, including
dataset, metric, and model details; Section 5 analyzes the
result and describes our experiment insights regarding filter
learning for spoof speech detection, and Section 6 presents
concluding remarks.

2. BACKGROUND ON AUDIO FRONT-END

Spoof speech detection is a single-task classification problem,
for which many front-ends have been tested, including Instanta-
neous Frequency (IF), Group Delay (GD), and Mel-frequency
cepstral coefficients (MFCC), etc. The front-ends used in the
classification of speech have been dominated by MFCC and
recently Log Mel FilterBanks (FBanks), both of which are
hand-crafted features that are fixed and not learnable. Con-
stant Q Transform (CQT) [2] is another handcrafted front-end
commonly used for music generation and music note recog-
nition as it can better mimic musical scales. However, prior
research reported CQT was also the best performing front-end
for spoof detection [3].
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Fig. 1. FST based front-end and STFT based front-end

As shown in Figure 1, front-ends can be categorized by
the procedures they perform. There are two key categories:
First-order Scattering Transform (FST) [4] based front-ends
and Short-Time Fourier Transform (STFT) based front-ends.
Unlike STFT which multiplies a filterbank matrix with a spec-
trogram, FST uses a convolutional layer on the raw audio
waveform to approximate the standard filtering process.

While FST-based front-end approaches have made progress,
prior research has shown they lose signal energy, which cor-



responds to information loss, since only the first-order coeffi-
cients of a scattering transform are used [4]. The FST-based
approaches are also time-consuming [5] since convolution
layers with large kernels are computation intensive.

STFT based front-ends remain popular, and FBanks are
still the front-end for the state-of-the-art speaker identification
[6] and speech recognition [7] systems. However, many STFT
based front-ends are fixed and may not adapt well to certain
downstream tasks [8].

Both types of front-ends employ some type of filter-like
manipulations to model the non-linearity of the human ear’s
sensitivity to frequency. The distribution of filter center fre-
quency is referred to as scale. Studies [9] have shown that
the Mel-scale, as shown in Equation 1, can capture human
perception for pitch relatively well.
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To make this manipulation domain adaptable, filters can be
made learnable. As shown in Figure 1, a filterbank can learn
its center frequency c,,, gain g,,, bandwidth b,,, and shape s,,.
The filter properties can be summarized in Equation 2.

wn(f) = gnsn(QL; bn; f) )

3. RESEARCH QUESTIONS REGARDING
LEARNABLE FILTERBANKS

Previous research has explored the feasibility of learnable
filterbanks. For example, nnAudio [10] implemented a set
of unconstrained learnable filterbanks. T. Sainath ez al. [11]
reported limited improvement from unconstrained filterbank
learning. DNN-FBCC [12] explored some constraints over fil-
ters by adopting a mask matrix. Zhang and Wu [13] described
a detailed study on the shape and positiveness constraint’s ef-
fect on the filterbanks. However, no systematic study has been
done on constraining the filterbank shape in the STFT-based
approach used for spoof speech detection.

Type Name Filter/BandWidth | Center Frequency | Gain
Shape | Clamp | Sorted | Clamp
FST | TD-FBanks | Gabor - Yes Yes -
based SincNet Sinc Yes No Yes Fixed”

LEAF Gabor Yes No Yes Fixed

STFT nnAudio - No No No -

based | DNN-FBCC - Yes Yes Yes -
FastAudio | Triang Yes No Yes Fixed

Table 1. Filter Comparison of Learnable Front-end

As shown in Table 1, all current FST-based front-ends put
shape constraints on the band-pass filters. However, STFT
based front-ends, like DNN-FBCC, do not constrain the filter
shape. Instead, a mask is put on the filters so that the bandwidth
is clamped and the filters are sorted by center frequencies. We
therefore designed a learnable front-end, called FastAudio,
specifically focused on answering the following questions:

1. Is a shape constraint necessary for spoof detection, and
which shape constraint has the lowest min t-DCF? 2. Should
the center frequency be sorted for spoof detection? 3. What
do trained filterbanks learn about spoof detection compared
to handcrafted FBanks? These questions are discussed in
subsection 5.3 and 5.4 of Section 5.

4. EXPERIMENT AND DATASET

The ASVspoof 2019 corpus consists of two parts: Logical
Access and Physical Access. Here we focus on the Logical
Access (LA) task. LA contains fake (spoof) speech generated
from various text-to-speech and voice conversion techniques.
The true speech audio files are referred to as Bona fide.

Since there are existing Automatic Speech Verification
(ASV) systems that provide some protection against spoofing
attacks, the goal is to design a system that can best complement
existing ASV systems (the result of the existing ASV system
is provided by the dataset in labels). The system we have
developed is called the Countermeasures (CM). The evaluation
metric is the tandem detection cost function (min t-DCF),
which is designed to best reflect real-world protection effects.

4.1. Dataset

The performance of the FastAudio learnable front-end is eval-
uated on the ASVspoof 2019 LA dataset. The training and
development sets contain data generated from the same algo-
rithms. However, to ensure the spoof detection system can
generalize well to audio of unseen types, the evaluation set also
contains attacks that are generated from different algorithms.

4.2. Metrics

The primary metric for spoof speech detection is the minimum
normalized tandem detection cost function (min t-DCF), as
shown in Equation 3. The min t-DCF measures the overall
protection rate for combined CM and ASV systems, where
B depends on application parameters (priors, costs) and ASV
performance (miss, false alarm, and spoof miss rates), while
Po (s) and PE™(s) are the CM miss and false alarm rates at

miss

threshold s [1].
t — DCFon, = min {BPgl(s) + PR (s)} ()
S
Equal error rate (EER) was used as a secondary metric to
make comparison possible with earlier datasets like ASVSpoof
2017. EER is defined as the value of false acceptance rate and
false rejection rates where they are equal.

4.3. Back-end

Our FastAudio front-end consists of an STFT transform fol-
lowed by a learnable filterbank layer, and finally a log com-
pression layer to mimic the non-linearity of human sensitivity
to loudness. We integrated the front-ends with two of the most
popular back-ends for audio classification: X-vector [14] [15]



and ECAPA-TDNN [16] [15]. The back-end turns the FBank-
variant into a 256-dimensional embedding vector. The vectors
are then fed into a linear classifier.

Xvector ECAPA-TDNN

Layer Output Layer Output

Input (N, T Input N, T)

TDNN X5 (1500, T') | ConviD + ReLU +BN (C, T')

Stats Pool (3000, 1) | SE-Res2Block X 3 3,C, T)

Linear (256, 1) Conv1D + ReLU (1536, T')
Atten Stats Pool + BN (3072, 1)
FC + BN (256, 1)

Table 2. X-vector and ECAPA-TDNN
4.4. Experimental Setup

This model was trained on 2 Nvidia 2080 Ti GPUs for 100
epochs and the batch size was set to 12 (except for TD-
filterbank whose batch size was 4 to stay within memory
limits). We also compared the performance of our front-end
with other STFT-based and FST-based front-ends, both under
learnable and fixed settings.

To make the comparison fair, we kept the hyperparam-
eters across all experiments the same so that the front-end
outputs have the same dimensions. The sampling rate was set
to 16kHz, window length to 25ms, window stride to 10ms,
and the number of filters to 40. All learnable front-ends were
initialized to mimic Mel-FBanks, as previous research [17]
has shown that random initialization has worse performance.
Detailed hyperparameters and data augmentation are available
on our GitHub repository.!

5. RESULTS AND ANALYSIS

5.1. How do learnable front-ends perform on min t-DCF
compared with handcrafted front-ends for spoof speech
detection?

Since recent systematic comparisons of front-ends on spoof
detection were done in 2015 [18], we designed the experiments
so that an updated baseline can be established, including learn-
able front-ends. We choose a combination of FST and STFT
front-ends with both fixed and learnable settings so that the
experiment is comprehensive. We found the FST-based learn-
able front-ends need longer training time than hand-crafted
features in the spoof speech detection task and cannot beat the
performance of CQT, as shown in Table 3.

5.2. Can we design an STFT-based front-end for spoof
speech detection that is learnable and can it beat the per-
formance of CQT?

Since FST-based learnable front-ends failed to beat the perfor-
mance of CQT, we designed a front-end following the tradi-
tional STFT-based approach and limited the number of train-
able parameters. We call this approach FastAudio since it

Uhttps://github.com/magnumresearchgroup/Fastaudio
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Fig. 2. Heatmap of the magnitude of the frequency response
for initialization filters (up) and learned filters (down).

trains faster than FST-based front-ends. We hypothesize that
instead of changing the front-end architecture completely (e.g.,
as in FST-based approaches) we can boost the fixed STFT-
based performance by making the filterbank layer learnable.
We tested FastAudio under three different constraint settings
and the best one achieved 29.7% decrease in min t-DCF com-
pared to FBanks, outperforming CQT (See Table 3).

5.3. Which set of constraints for filterbank learning per-
forms best in spoof speech detection?

We found the existence of shape constraint plays an important
role in improving spoof detection accuracy. However, we did
not find a significant difference in constraining the shape of
the filters to be Gaussian or Triangular. We found that sorting
the filterbanks by center frequency does not improve accuracy,
which confirms the conclusion from [19]. As shown in Fig-
ure 2, the learned filterbank distribution closely follows the
hand-crafted filterbanks in both center frequency and band-
width. The similarity in ¢,, and b,, helps explain the strong
performance of handcrafted features compared to the learnable
front-end, especially compared to the FST-based front-ends.

The visualization of the front-end output is shown in Figure
3. All outputs contain "horizontal lines” that correspond to
certain frequencies, which is a sign of filter selectiveness. We
found that front-end output like LEAF, TD-filterbanks, and
nnAudio changed greatly after training due to the number
of trainable parameters. When the shape of the filters is not
constrained, as shown in nnAudio, the trained front-end shows
signs of over-fitting (many randomly distributed dots) and has
the worst performance. Since the nnAudio has no constraint
for filter shape, the learned filter shape is determined by 201
points, so t may contain sharp peaks and select frequencies of
narrow ranges, thus creating the irregular dots.

5.4. What does FastAudio learn about spoof speech detec-
tion and how can we interpret what it learns?

Formants are the spectral peaks resulted from acoustic res-
onance of the human vocal tract. Since in English vowels
contain more energy than consonants, we expect our learned



ECAPA-TDNN X-vector
Front-end #Params Constraint EER mint-DCF EER min t-DCF MACs Train Time/Epoch
CQT 0 Fixed 1.73 0.05077 3.40 0.09510 0 10:58 min
Fbanks 0 Fixed 2.11 0.06425 2.39 0.06875 0 10:53 min
FastAudio-Tri 80 Shape+Clamp 1.54 0.04514 1.73 0.04909 0.00GMac 13:02 min
FastAudio-Gauss 80 Shape+Clamp 1.63 0.04710 1.67 0.05158 0 12:51 min
FastAudio-Sort 80 Shape+Clamp+Order  1.89 0.05204 1.69 0.05235 0 12:59 min
LEAF 282 Shape+Clamp 2.49 0.06445 3.28 0.07319 0.01GMac 34.45 min
nnAudio 8.04k No 3.63 0.08929 5.56 0.14707 0 13:00 min
TD-filterbanks 31k Shape+Clamp 1.83 0.05284 3.18 0.08427 1.32GMac 22.48 min
Front-end Name Constraint EER min-tDCF Backend Baseline
SincNet RawNet2 Fixed 5.13 0.1175 - -

Table 3. A stage-wise comparison of the different Front-ends’ performance on the ASVspoof 2019 LA dataset
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Fig. 3. Visualization of Learnable Front-ends

filters center frequencies to concentrate around the average
formants of English vowels [20]. We plotted the cumulative
frequency response of the FastAudio in Figure 4. We found 2
peaks in the lower frequency and 1 peak in the high frequency.

The peaks in frequencies around 320Hz~440 Hz and
1120Hz may correspond to the 1st and 2nd formants aver-
aged over all vowels in English [21]. This adaptation to human
speech suggests FastAudio was able to successfully learn what
is important for spoof speech detection tasks. Similar adapta-
tion was also reported in the FST-based front-end for speech
identification tasks [21].
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Fig. 4. Cumulative frequency response of the FastAudio filters

We also found peaks in the high pitch regions near the sam-
pling boundary, which suggests spoof speech may differ from
the real speech in frequencies that are “ignored” by scales used
by handcrafted front-ends like the Mel-scale. High-frequency
energy was deemed less important and subsequently under-
represented in Mel-scales. However, in the spoof detection

task, we suspect that because these high frequencies are “unim-
portant” to human hearing, the spoof speech generator does
not create realistic imitation in high frequencies. Thus, the
representation of high-frequency data may be a good indicator
for spoof speech detection.

Together, these findings indicated that: 1. Learned FastAu-
dio filters are more selective than their initialization. 2. Fas-
tAudio emphasizes frequencies around 1st and 2nd formants,
which may be important for distinguishing between spoof and
bona fide speech. 3. Learned FastAudio filters are more sensi-
tive to high-frequency energy, which may be a salient feature
of spoof detection. 4. Through end-to-end training, FastAudio
can adapt to spoof detection tasks. The front-end success-
fully adapted to the downstream task and was able to learn the
phonetics of human speech.

6. CONCLUDING REMARKS

This paper investigates the performance of learnable front-ends
on spoof detection and proposes an STFT-based audio front-
end called FastAudio. We tested the proposed front-end under
different constraint settings and found FastAudio successfully
adapted to spoof detection. The proposed front-end achieves
top performance on the ASVspoof 2019 dataset, beating the
fixed equivalent by 29.7% and surpassing the performance of
CQT, which was reported as the best hand-crafted feature for
spoof speech detection.
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