
Flexibility at the Roots of Eclipse
Solving the GUI Dilemma: 

SWTSwing and Eclipse on Swing

Introduction to the 
Generic Eclipse 

Modeling System 
Developing a 

Graphical Modeling 
Tool for Eclipse 

Enabling 
Integration and 
Interoperability 
for Eclipse 
based 
Development
An Introduction 
to the Corona 
Project

Deploying the BIRT 
Viewer to JBoss 
Disseminate Report 
Content to an 
Application Server 

Subversive
The Eclipse 
Plug-In for 
Subversion

Dynamic Wizard Modeling with GMF
Using GMF to Build a Dynamic Wizard 
Framework and a Graphical Editor 



   

Vol.6
January 2007
Table of Contents

FEATURES

Flexibility at the Roots of Eclipse  
Solving the GUI Dilemma: SWTSwing and Eclipse on 

Swing

No trench in the world of Java is deeper then that 

between SWT and Swing or Eclipse and Sun. Unity is 

only found in the knowledge that everybody suff ers 

from this argument. But how to end this almost 

religious battle over the righteous GUI-toolkit? 

How to bang their heads together if they only know 

one point of view—for them or against them! Th e 

sister projects SWTSwing and Eclipse on Swing 

(EOS) achieve this trick. Th ey off er both wranglers 

a conciliative solution, which combines the best of 

both worlds and seemingly has only advantages for 

everybody.
By Dieter Krachtus and Christopher Deckers 

Introduction to the Generic Eclipse 
Modeling System
Developing a Graphical Modeling Tool for Eclipse 

Graphical Model-Driven Engineering (MDE) tools 

have become extremely popular in the development 

of applications for a large number of domains. In 

many cases, however, an organization does not have 

the resources or time available to develop a graphical 

modeling environment from scratch using the Eclipse 

Modeling Framework (EMF), Graphical Editor 

Framework (GEF), or Graphical Modeling Framework 

(GMF). In other situations, the complexity of the domain 

limits the feasibility of using a graphical model to describe 

a domain solution. Th e Generic Eclipse Modeling 

System (GEMS), which is part of the Eclipse Generative 

Modeling Technologies (GMT) project, helps developers 

rapidly create a graphical modeling tool from a visual 

language description or metamodel without any coding 

29

11

Flexibility at the Roots of Eclipse
Solving the GUI Dilemma: 

SWTSwing and Eclipse on Swing

Introduction to the 
Generic Eclipse 

Modeling System 
Developing a 

Graphical Modeling 
Tool for Eclipse 

Enabling 
Integration and 
Interoperability 
for Eclipse 
based 
Development
An Introduction 
to the Corona 
Project

Deploying the BIRT 
Viewer to JBoss 
Disseminate Report 
Content to an 
Application Server 

Subversive
The Eclipse 
Plug-In for 
Subversion

Dynamic Wizard Modeling with GMF
Using GMF to Build a Dynamic Wizard 
Framework and a Graphical Editor 

Associate Member of the Eclipse Foundation

DEPARTMENT
News & Trends
Reporting the latest announcements from 

the community, Tracking new releases of 

developmental tools.

05

FEATURES

Enabling Integration 
and Interoperability 
for Eclipse-based 
Development
An Introduction to the Corona Project
Designing, developing, testing and managing 

business critical applications has become 

increasingly more complex. To manage this 

complexity, projects are typically divided into tasks 

and teams are assigned to execute them. But IT 

managers also need to ensure all these diff erent 

teams and team members collaborate eff ectively as 

if they were a small team all working in the same 

room, in the same offi  ce, and on the same project. 

Th e article explains why Corona is the right tool to 

address this IT business problem.

By Edwin Shumacher

44



20

Vol.4
November 2006
Table of Contents

Eclipse Forum Europe
Date: 23-27 April, 2007
Venue: Rhein-Main-Hallen, 
Wiesbaden, Germany

Eclipse Forum India
Date: 28-31 May, 2007
Location: Indian Institute 
of Science (IISc), 
Bangalore

Eclipse Forum Asia
Date: 26-29 November, 
2007
Location: Singapore

in third-generation languages. GEMS automatically generates 

the requisite EMF, GEF, and GMF code required to implement 

the editor from a metamodel. GEMS also provides extensive 

capabilities for expressing modeling guidance and performing 

optimization. Finally, graphical modeling tools created with 

GEMS automatically support complex capabilities, such as 

remote updating and querying, template creation, styling with 

Cascading Style Sheets (CSS), and model linking. 
By Jules White, Douglas C. Schmidt, Andrey Nechypurenko, 

Egon Wuchner

Dynamic Wizard Modeling with GMF
Using GMF to Build a Dynamic Wizard Framework and a 

Graphical Editor

Developing a graphical editor is generally very complicated and 

requires lot of eff ort. Th ere are few frameworks available for 

writing graphical editors in Java. Th e prominent open source 

frameworks are JHotDraw (which is Swing based) and GEF 

(which is SWT/Jface-based). While they provide sophisticated 

tools for graphical development, the painstaking work of 

modeling the domain and mapping to graphical elements is left  

to the user. Graphical Modeling Framework (GMF) bridges this 

gap nicely. In the article, I will take you through an end-to-end 

demonstration of GMF. To achieve that, fi rst we will create a 

framework for meta-data driven JFace wizards. Next, we will see 

how to use GMF to build a graphical editor for this framework. 
By Rajkumar C Madhuram

PREVIEW

Subversive
Th e Eclipse Plug-In for Subversion
Version control systems play a central role 

in soft ware engineering. In the beginning, 

CVS was the poster child versioning system 

of the open source community. Th en 

Subversion was developed because many 

felt CVS could not keep pace with changing 

technologies and practices. New plugins such 

as Subversive and Subclipse have appeared 

in the Eclipse ecosystem to connect Eclipse 

developers and Subversion. Th e article 

introduces you to Subversive.

By Frank Schröder

35

Deploying the BIRT 
Viewer to JBoss 
Disseminate Report Content to an Application 

Server
With information applications, developing 

content for delivery is only a part of the 

equation. Aft er report designs are complete, the 

infrastructure for deploying the application has 

to be addressed. Th is is equally true for BIRT 

applications. In previous articles, we discussed 

many of the BIRT Designer’s features, but in this 

one we will cover deployment options available 

to the BIRT developer, with an emphasis on 

deploying the Example BIRT Viewer to the JBoss 

Application Server—although the techniques 

discussed in this article should apply to most 

J2EE-compliant application servers.core capability 

required by agile developers.

By Jason Weathersby

38

http://www.eclipsemag.net
http://www.eclipsemag.net


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      4

Editorial

Greets for the year 2007 from all of us here at Eclipse Magazine. 
We have a lot of interesting things lined up for you this year. 
Apart from ensuring that you get round-the clock information 
about Eclipse and the developments in the community 
through this magazine and http://www.eclipsemag.net/, we 
will also be presenting the Eclipse Forum conference at four 
locations in Europe and Asia this year. Th e fi rst conference, 
www.eclipseforumeurope.com, will be held from April 23-
27 in Frankfurt, Germany. Next, we move to India to present 
the conference, www.eclipseforumindia.com, to the Eclipse 
community in the Indian subcontinent, by presenting a three-
day extravaganza in Bangalore, India from May 28-31. We’ll end 
the year with the conferences (jax-asia.com) in Singapore and 
Indonesia from 26-29 November.

Let’s now move on to what’s in store for you this issue. In the Cover 
story, Dieter Krachtus and Christopher Deckers throw light on 
two projects that are attempting to end the almost religious battle 
over the righteous GUI-toolkit. Th e choice of a toolkit is oft en 
based on the taste of the developer, which means there was no 
real choice from the beginning. But what if you had the facility 
to choose between SWT and Swing not just at the beginning of 
the project, but throughout your development phase? How about 
using familiar APIs to develop Eclipse-Plug-ins, RCP-applications 
or a JFace/SWT GUI and still keep the option to switch back and 
forth between SWT and Swing without changes to your code? 
SWTSwing off ers this possibility, and Eclipse on Swing (EOS) is 
proof that it even works for the most complex SWT applications, 
namely Eclipse itself.

Organizations sometimes don’t have the luxury of developing 
a graphical modeling environment from scratch using the 
Eclipse Modeling Framework, Graphical Editor Framework, 
or Graphical Modeling Framework. Jules White, Douglas C. 
Schmidt, Andrey Nechypurenko, and Egon Wuchner explain 
how the Generic Eclipse Modeling System, which is part of the 
Eclipse Generative Modeling Technologies (GMT) project, helps 
developers rapidly create a graphical modeling tool from a visual 
language description or metamodel without any coding in third-
generation languages.

While the Swing-based JHotDraw and the SWT/Jface-based 
GEF provide sophisticated tools for graphical development, 
the painstaking work of modeling the domain and mapping 

New Tidings for the New Year
to graphical elements is left  to the user. Graphical Modeling 
Framework (GMF) bridges this gap nicely. Raj Madhuram’s 
article steps you through the process of creating a dynamic wizard 
framework and a graphical editor using GMF from scratch.

Version control systems play a central role in soft ware engineering. 
Earlier, CVS was the poster child versioning system of the open 
source community. Subversion was developed because many 
felt CVS could not keep pace with changing technologies and 
practices. New plugins such as Subversive and Subclipse have 
appeared in the Eclipse ecosystem to connect Eclipse developers 
and Subversion. In Plug-in Parade, Frank Schröder takes you on 
a journey through Subversive.

Last year, we had a lot of articles focused on BIRT Designer, 
and based on popular demand you will see many more in the 
forthcoming issues this year. Th e article in this issue goes further 
to tackle deployment options available to the BIRT developer. 
Developing content for delivery is only a part of the equation. 
Aft er report designs are complete, the infrastructure for 
deploying the application has to be addressed. Jason Weathersby 
steps you through deploying the Example BIRT Viewer to a JBoss 
Application Server. Th e techniques discussed in this article are 
applicable to most J2EE-compliant application servers.

Designing, developing, testing and managing business critical 
applications has become increasingly more complex. Additionally, 
to ensure applications are developed effi  ciently and delivered 
on time, projects are typically divided into tasks and teams are 
assigned to execute them. At the same time, IT managers also 
need to ensure all these diff erent teams and team members 
collaborate eff ectively as if they were a small team all working in 
the same room, in the same offi  ce, and on the same project. Edwin 
Schumacher explains why Corona is the right tool to address this 
IT business problem.

We hope you enjoy what we have lined up for you this issue. Until 
next month, Happy New Year from the Eclipse Magazine team.

Indu Britto

Editor-in-Chief, Eclipse Magazine

www.eclipseforumeurope.com
www.eclipseforumindia.com
mailto:ibritto@eclipsemag.net
http://www.eclipsemag.net


 E c l i p s e  M a g a z i n e  N o v e m b e r  2 0 0 6
 www.eclipsemag.net      5

News & Trends 

      

Eclipse Challenges Visual Studio.NET

The adoption rate of Eclipse has more 

than doubled in the EMEA region, 

making it the fi rst IDE to challenge Microsoft  

Visual Studio.NET among developers there, 

according to the recently released Evans Data 

EMEA Development Survey. Th e study shows that one in every 

three developers in the region now uses Eclipse and the use of 

the set of plug-ins needed to develop rich-client applications 

(Eclipse RCP subset), is expected to triple within the next two 

years.

 A related survey of the APAC has also shown similar results—

it was found that Eclipse usage in the region has grown by 80 per 

cent in the last six months, and it is now the most popular IDE in 

the region except for Microsoft ’s Visual Studio

 “Th ese results are refl ective of the overall market adoption 

we are seeing for Eclipse adoption globally,“ John Andrews, 

President, Evans Data added. “Th e addition of the Rich Client 

Platform provides the developers a great advantage being able to 

write an application once and it will run on Windows, Mac OS 

and Linux.”

 Other fi ndings from the Winter 2006 survey of almost 400 

developers in the EMEA region:

• Forty-two percent of EMEA developers use XML as a 

component of their development eff orts

• AJAX demonstrates the highest growth rate (more than 12 per 

cent) amongst web service standards, consistent with XML 

expansion

• Java frameworks are considered the most important Java 

feature, although refactoring emphasis more than doubled 

during the period, suggesting added focus on coding effi  ciency 

associated with Java development eff orts

[MORE INFO]

Google Takes its First Steps in the Eclipse 
World
Google has joined the Eclipse Foundation as 

an add-in provider. But that really is old news. 

Google joined the Eclipse Foundation way 

back in October, but they decided not to let 

Announcements the world until now. Th e Eclipse Foundation normally does not 

announce memberships. It is also not uncommon for members 

to either not announce, or delay, the news of their membership. 

Th e news about Google’s membership was made known at the 

Quarterly Eclipse Membership meeting where members are 

given an opportunity to present themselves and speak about 

what they are doing with Eclipse.

 With Google joining Eclipse, the number of large companies 

that aren’t yet part of the Eclipse movement are becoming far 

and few. Mike Lilinkovich, Director of the Eclipse Foundation 

said that, “We are, of course, thrilled that Google decided to join 

the Eclipse Foundation. It was a nice gesture of support for the 

Eclipse community and it is appreciated. But what I am really 

excited about is the way that Google is using Eclipse as the 

development tools platform for the Google Web Toolkit. It is yet 

another demonstration of how Eclipse can be used as the tools 

platform for so many diff erent languages and environments.”

 Google has also open sourced the Google Web Toolkit, which 

is built on Eclipse RCP and JDT technology. GWT 1.3 Release 

Candidate is 100 per cent Open Source, and is released under the 

Apache 2.0 license. “Now that GWT has some serious adoption and 

a lively user community, open-sourcing is the obvious next step to 

help GWT evolve more quickly,” says the project’s Tech Lead, Bruce 

Johnson, in the GWT blog. What is worth noticing though is that 

this decision came just aft er the news of Google joining the Eclipse 

Foundation, as an add-in provider became public.

 So what is new in 1.3 RC1? “Well, nothing, actually. Th e only 

thing that has intentionally changed since GWT 1.2 is the open 

source thing. However, since we did have to tweak a lot of source 

code and the GWT build scripts to make it easy for anyone 

to compile, we want to be conservative and call this a Release 

Candidate anyway. Once we hear enough success stories with 

the 1.3 RC, we’ll call it 1.3 Final then get back to full-speed-ahead 

coding as we drive toward a nice big GWT 1.4.”

[MORE INFO]

Open Source Intellectual Property Compliance 
Solution for Eclipse
For organisations using open source, it is 

critical that a deliberate and methodical process 

for managing intellectual property compliance 

is part of the soft ware development process. 

http://www.eclipsemag.net/ecm/ecmnews/psecom,id,407,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,409,nodeid,2.html


6  E c l i p s e  M a g a z i n e  N o v e m b e r  2 0 0 6
 www.eclipsemag.net      

News & Trends 

Palamida, a provider of soft ware assurance management 

products and audit services, has announced a partnership with 

Innoopract, a provider of Eclipse-based add-on tools, consulting, 

support, training and open source distribution solutions. Th e 

partnership aims to provide organisations seeking to adopt open 

source while respecting intellectual property rights, a combined 

Innoopract/Palamida solution to ensure they are meeting 

compliance requirements.

 Th e aim is to accelerate the adoption of open source in the 

enterprise, with their combined technology and service off erings, 

the companies claim. Palamida and its partners perform soft ware 

code audits using Palamida’s IP Amplifi er technology and the 

compliance library of third-party soft ware, to accurately assess 

the origin of each client’s soft ware code. Th e soft ware code audit 

report is touted to provide the assessment of open source and 

third-party code, pinpointing specifi c high-risk areas of company 

code against due diligence criteria to identify remediation issues. 

Organisations can use the companies’ combined services to be 

fully prepared to extend their Eclipse development environment 

without violating copyright or intellectual property rights.

 “Open source adoption is accelerating at an incredible rate 

this year,” said Susanna Kass, Executive Vice President and COO 

of Palamida. “With Innoopract’s outstanding track record in 

Eclipse project distribution and Ajax development tools, this 

strategic partnership can help enterprise soft ware and system 

vendors, as well as corporate users, achieve soft ware transparency 

and eff ectively and safely embrace the benefi ts of open source 

soft ware development.”

[MORE INFO]

TRANGO Systems Joins The Eclipse 
Foundation
TRANGO Systems has joined the Eclipse 

Foundation as an Add-In Provider. Specializing 

in embedded hardware virtualization, 

TRANGO Systems helps semiconductors and 

devices manufacturers to build up scalable and secure platform. 

By joining Eclipse Foundation TRANGO Systems will contribute 

to the open source IDE growing adoption among embedded 

developers community. Since April 2006, TRANGO Systems 

products are shipped with Eclipse plug-ins for system integration, 

target control, monitoring and virtual-JTAG debugging.

 Th e TRANGO hypervisor allows multiple execution 

environments to run securely side by side on the same processor 

core, which, as a result, enables to securely deploy new services 

and reduce Bill of Material. By off ering a safe environment for 

secure deployment of new services such as DRM or Device 

Management, TRANGO Systems helps operators and content 

providers growing new revenues. Th e TRANGO Hypervisor 

also allows systems to be certifi ed and thus helps compliancy 

with security standards and requirements. 

 “We warmly welcome TRANGO Systems as a member of the 

Eclipse Foundation. As the company is working with worldwide 

leading semiconductors manufacturers, we expect that the 

TRANGO Hypervisor adoption will help strengthening Eclipse 

IDE use within semiconductors and devices industry” stated 

Mike Milinkovich, Executive Director of the Eclipse Foundation. 

Available on ARMv5 and MIPS32 / MIPS64 embedded 

architectures, the TRANGO Hypervisor and its Eclipse tools 

support Linux, Windows CE 5.0, as well as eCos and µC/OS-II.

[MORE INFO]

Terra Opts for Open Source BI
Pentaho, a provider of Business Intelligence 

(BI) capabilities, has announced that 

international nitrogen products producer 

Terra Industries has selected the Pentaho 

BI platform to provide advanced reporting 

and analysis based on data in Terra’s SAP R/3 system. Terra 

selected Pentaho aft er evaluating multiple proprietary and 

open source BI off erings. “We chose Pentaho because it has 

a full range of functionality, exceptional fl exibility, and a low 

total cost of ownership because of its open source business 

model,” said James Keairns, Terra’s Director, Information 

Technology.

 Initially, Terra business users who manage production and 

inventory will use Pentaho Reporting to integrate customer 

demand and production volumes as part of a planned web 

application that will be built using Eclipse IDE. Over the 

longer term, the company also plans to use Pentaho Data 

Integration to extract and integrate operational information 

from SAP R/3, Peoplesoft  HR, Tabware, and other systems 

to provide a centralised view. According to Lance Walter, VP 

of Marketing for Pentaho, this development signifi es a clear 

http://www.eclipsemag.net/ecm/ecmnews/psecom,id,355,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,408,nodeid,2.html


 E c l i p s e  M a g a z i n e  N o v e m b e r  2 0 0 6
 www.eclipsemag.net      7

News & Trends 

application security and Chief Security Strategist for Security 

Innovation.

 EclipseCon 2007 will also host the OSGi Developer 

Conference as a track within the EclipseCon conference. 

Th e OSGi specifi cations underlie the component model used 

within Eclipse and are also used in embedded devices and 

application servers. Th e Eclipse Equinox project is an OSGi 

framework that forms the core technology for Eclipse and 

Eclipse RCP. Attendees of the OSGi Developer Conference will 

have full access to all of the EclipseCon sessions and events.

[MORE INFO]

Intalio Donates BPMN Modeler to Eclipse 
Foundation

Intalio, an Open Source Business Process 

Management System (BPMS) company has 

donated its BPMN process modeler to the 

Eclipse Foundation. Th e technology is now 

available under the Eclipse Public License 

(EPL) and is part of the SOA Tools Platform (STP) project.

 Th is contribution follows Intalio’s donation of its EMF model 

comparator to the Eclipse Foundation earlier this year. Th e STP 

BPMN Modeler is one of three contributions made by Intalio 

to build the fi rst Open Source BPMS. It complements the BPEL 

Engine donated to the Apache Soft ware Foundation and the 

Tempo BPEL4People workfl ow framework hosted on Intalio.

org. All three components form the foundation for Intalio|BPMS, 

the fi rst BPM solution to support a Zero-Code development 

model.

 “While some BPM vendors give their proprietary process 

modeling tool away, but charge for the necessary runtime 

components, we make our entire product available for free and 

give away the source code under Open Source licenses for its most 

critical components,” said Ismael Ghalimi, founder and CEO 

of Intalio. “Furthermore, the building blocks for Intalio|BPMS 

provide the most faithful implementations of relevant industry 

standards for BPM, namely BPMN, BPEL and BPEL4People.” 

“BPMN has become an important factor driving business-

IT alignment,” said Bruce Silver of BPMS Watch, “since it is 

intuitive enough to be used by business analysts, yet rich enough 

to generate powerful service-oriented implementations.”

[MORE INFO]

need in the marketplace for an open source alternative to 

proprietary BI systems, even for large organizations.

[MORE INFO]

IBM Donates Translations for Eclipse 3.2.1
IBM has announced the contribution of 

translations for the Eclipse Project, the Eclipse 

Web Tools Platform (WTP) Project, the 

Eclipse Test and Performance Tools Platform 

(TPTP) Project, the Business Intelligence and 

Reporting Tools (BIRT) Project, the Eclipse Modeling Project, 

the Eclipse Data Tools Platform (DTP) Project and for several 

subprojects of the Eclipse Tools Project for the Callisto releases.

 Th e language packs are distributed as zips, which can be 

installed by downloading the zip fi le and unzipping into an 

Eclipse directory before starting Eclipse. Th ese zips appear on 

each project’s download pages.

 Each NL feature description contains a list of the language 

translations provided by that NL feature. NL features are new 

features that did not exist for the component prior to translation. 

NL features parallel the set of features defi ned by the component 

and contain the NL fragments that in turn contain the translations 

for the component’s plugins.

[MORE INFO]

EclipseCon 2007 Keynotes by Dilbert Creator, 
Robert Lefkowitz, Herbert Thompson

Th e Eclipse Foundation has announced 

the keynote speakers for its fourth annual 

community conference, EclipseCon 

2007. Th e conference brings together the 

Eclipse community to share and learn 

new techniques, ideas and technologies, as well as provide 

information about the latest developments and future plans 

of the Eclipse projects. Th e conference will be held March 

5-8, 2007 at the Santa Clara Convention Center.

 Th e conference will feature 50 in-depth tutorials, 65 long-

talk sessions, 100 short-talk sessions and 16 panels. Th e 

keynote speakers for EclipseCon 2007 will include Scott 

Adams, creator of the comic strip Dilbert; Robert “r0ml” 

Lefk owitz, an enterprise architect and frequent speaker on 

open source soft ware, and Dr. Herbert Th ompson, expert on 

http://www.eclipsemag.net/ecm/ecmnews/psecom,id,402,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,400,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,397,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,399,nodeid,2.html


8  E c l i p s e  M a g a z i n e  N o v e m b e r  2 0 0 6
 www.eclipsemag.net      

News & Trends 

www.jax-award.com


 E c l i p s e  M a g a z i n e  N o v e m b e r  2 0 0 6
 www.eclipsemag.net      9

News & Trends 

Visual Editor for UltraLightClient and Eclipse 
3.2 Available

Black Duck Soft ware, a provider of soft ware 

compliance management solutions, has announced 

the integration of protexIP/development 4.0 

with IBM Rational Application Developer for 

WebSphere 7.0 and Rational Soft ware Architect 

7.0, part of the IBM Rational Soft ware Delivery Platform 7.0, 

desktop products. Th is integration, the company touts, provides 

enterprise developers using the Eclipse development environment 

a fast new way to check code for compliance with hundreds of 

open source licenses as they work. Black Duck’s validation of the 

integration between protexIP, which is touted to support the needs 

of many individuals and teams involved in soft ware development, 

and Rational Application Developer off ers WebSphere developers 

the ability to instantly check their code against the Black Duck 

KnowledgeBase, to ensure license compliance.

 Black Duck has previously, achieved the IBM Ready for Rational 

soft ware validation of protexIP integration for Rational Application 

Developer V6, and the Rational ClearCase soft ware confi guration 

management system. “Open source code permeates many 

organisations’ soft ware assets today, making compliance with the 

complex license terms governing the code a priority for corporate 

counsel and management. Now, with this updated integration, users 

of Rational Application Developer will be able to quickly assess if the 

code they want to use can be used and is in compliance with corporate 

policy—all without leaving the development environment and 

opening additional applications” said the company, in a statement. 

Black Duck Soft ware’s protexIP/development Enterprise Edition will 

be available for use with IBM Rational Application Developer 7.0 in 

early 2007. Developers will also be able to access protexIP directly 

through the open source Eclipse 3.2 development environment.

[MORE INFO]

Eclipse Plugins for Rapid Integration 
of Stream Processing Applications
StreamBase Systems, a provider of Complex 

Event Processing (CEP) soft ware, has 

announced a new set of Eclipse-based plug-ins 

that make it easy for developers to extend and rapidly integrate 

StreamBase applications into any enterprise environment. 

Th ese plug-ins enable developers to connect new data feeds 

and custom adapters to StreamBase’s stream processing engine 

in a fraction of the time typically required for extensive low-

level custom-coding of real-time feed interfaces. “We’ve all seen 

mainstream adoption of stream processing for complex events 

intensify signifi cantly over the last 12 months, “ said Dr. Michael 

Stonebraker, Founder and CTO of StreamBase. “Th is has driven 

the need for an open, easily accessible development environment 

based on accepted industry standards.

 Th e company claims that the Eclipse-based plug-ins off er 

wizards and templates that dramatically cut the time required 

to integrate stream processing capabilities with existing 

messaging systems and real-time market data feeds. StreamBase 

developers can interface and connect StreamBase with existing 

infrastructures and systems including: XML message streams, 

fi nancial market data feeds such as Reuters or Bloomberg, 

Exchanges such as NASDAQ and more. StreamBase’s Eclipse-

based environment for CEP will also provide the foundation for 

developers worldwide to take advantage of Eclipse capabilities 

including testing, debugging, and version control. Furthermore, 

the company claims its alignment with Eclipse’s development 

environment enables StreamBase to be embedded or plugged 

into a variety of tools for application development, including 

those supported by OEM and ISV partners

[MORE INFO]

Intalio Releases Open Source 
Workfl ow Framework
Intalio, an Open Source BPMS company, has 

announced the release of the Tempo Workfl ow 

Framework under the Eclipse Public License. 

“While BPEL is a very effi  cient process execution language, it 

does not provide any semantics for human workfl ow,” said 

Ismael Ghalimi, founder and CEO of Intalio. “Th is need has been 

addressed by the BPEL4People paper jointly draft ed by IBM and 

SAP, and today’s release of the Tempo project marks the fi rst 

Open Source implementation of this emerging standard.”

 Intalio’s implementation of the BPEL4People model is made 

without any extensions of modifi cations to the standard BPEL 

2.0 specifi cation. Instead, ad-hoc task management services are 

New Releases

http://www.eclipsemag.net/ecm/ecmnews/psecom,id,406,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,405,nodeid,2.html


10  E c l i p s e  M a g a z i n e  N o v e m b e r  2 0 0 6
 www.eclipsemag.net      

News & Trends 

• Improved AspectJ Build Properties

• Build Automation for AspectJ-enabled plug-ins

• Bug fi xes

[MORE INFO]

Agitar Software Announces ‘No Java Class 
Left Behind’ Program

Agitar Soft ware, a provider of developer testing 

solutions, has announced that its newly released 

product for Java unit testing – AgitarOne – is 

available free of charge to accredited educational 

institutions for teaching and academic research. 

Agitar will also create and make available course material for 

introducing basic unit-testing principles in programming courses. 

Th e initiative will be carried out by Agitar Soft ware Laboratories 

(AgitarLabs), Agitar’s recently established division for research and 

advanced development. AgitarOne is a new integrated solution 

that aims to simplify Java unit testing by providing a complete 

set of tools in the market. It includes Agitar’s soft ware agitation 

technology for interactive exploratory testing, which enables 

automated generation of JUnit tests for thorough regression testing 

and enforces fl exible and extensible code-rules that help eliminate 

error-prone coding patterns.

 “Researchers and practitioners alike agree that having developers 

create and execute tests while they are writing the code is one the 

most eff ective ways to prevent and fi nd bugs. Today, however, most 

computer science students graduate with little or no exposure to 

the science and art of soft ware testing,” said Alberto Savoia, Agitar’s 

CTO and head of AgitarLabs. “We believe that the most eff ective 

way to get developers used to the theory and practice of testing 

is to teach them how to test at the same time they are learning 

how to program. Th e key goal of this initiative is to give both 

instructors and students easy access to superior teaching materials 

and technology, and to show them the huge benefi ts that developer 

testing can bring.” AgitarOne off ers a server-based deployment 

model that model requires no confi guration on the workstation 

and enables students to begin seeing meaningful results within 

minutes of downloading and installing an Eclipse-based client. 

Additionally, such a deployment model reduces the computing 

power requirements for students’ workstations by offl  oading most 

of the computation to the distributed server, says the company.

[MORE INFO]

deployed on top of the J2EE platform and are made available as 

Web services through WSDL interfaces, while using standard 

BPEL processes for advanced workfl ow patterns such as multi-

channel notifi cations and alert escalations, claimed the company

 Th e release of Tempo under an Open Source license follows the 

donation of Intalio’s BPMN modeler to the Eclipse Foundation 

and Intalio’s BPEL engine to the Apache Soft ware Foundation, 

both made earlier this year. All three components form the 

foundation for Intalio|BPMS, the fi rst BPM solution to support 

a Zero-Code development model.

[MORE INFO]

Code Generator Eclipse Plug-in Launched
Bruno Braga, has announced the fi rst 

international release of J2EE Spider, Version 

0.1.1, an open source project about Java code 

generation. Spider is OS independent and for 

now, Braga is the only developer on the team. 

Th e project explores advanced resources of code generation and 

aims to minimize the eff ort and time of J2EE projects, using the 

code generation.

 Th e main concerns of the project are usability, integration 

with development platform, freedom to choose which code 

needs to be generated, incremental development generation 

and customisation of code templates to better fi t the needs of 

the development team. Besides, other concern is support for 

several technologies like Struts, JSF and Tapestry. Only Struts is 

supported by the fi rst version of J2EE Spider.

[MORE INFO]

AJDT 1.4.1 Released, Includes Support for 
AspectJ 1.5.3 on Eclipse 3.0-3.3

Th e AspectJ Development Tools (AJDT) 

team has announced the release of ADJT 

1.4.1, providing numerous bug fi xes, new 

features, along with includes support for 

Aspect 1.5.3. Th e AJDT project provides 

Eclipse platform based tool support for AOSD with AspectJ. 

Signifi cant changes in the release include:

• Refactoring participant, that will search for and update 

references when a Java class is renamed

• Improved Binary Weaving support

http://www.eclipsemag.net/ecm/ecmnews/psecom,id,404,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,396,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,398,nodeid,2.html
http://www.eclipsemag.net/ecm/ecmnews/psecom,id,395,nodeid,2.html


Introduction to the Generic Eclipse Modeling System  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      11

Introduction

Graphical Model-Driven Engineering (MDE) tools 

have become extremely popular in the development of 

applications for a large number of domains. A wide range of 

frameworks supports development of MDE tools for Eclipse. 

Th e Eclipse Modeling Framework (EMF) provides an 

object graph for representing models, as well as capabilities 

Introduction to the Generic 
Eclipse Modeling System

By Jules White, Douglas C. Schmidt, Andrey Nechypurenko, Egon Wuchner

Developing a Graphical Modeling Tool for Eclipse

for (de)serializing models in a number of formats, checking 

constraints, and generating various types of tree editors for 

use in Eclipse. Th e Graphical Editor Framework (GEF) 

and Draw2D provide the foundations for building graphical 

views for EMF and other models types. Th e Graphical Model 
Framework (GMF) for Eclipse provides a rich framework 

for reducing the complexity of developing an GEF/EMF-

Graphical Model-Driven Engineering (MDE) tools have become extremely popular in the development of applications 
for a large number of domains. In many cases, however, an organization does not have the resources or time 
available to develop a graphical modeling environment from scratch using the Eclipse Modeling Framework (EMF), 
Graphical Editor Framework (GEF), or Graphical Modeling Framework (GMF). In other situations, the complexity 
of the domain limits the feasibility of using a graphical model to describe a domain solution. The Generic Eclipse 
Modeling System (GEMS), which is part of the Eclipse Generative Modeling Technologies (GMT) project, helps 
developers rapidly create a graphical modeling tool from a visual language description or metamodel without any 
coding in third-generation languages. GEMS automatically generates the requisite EMF, GEF, and GMF code required 
to implement the editor from a metamodel. GEMS also provides extensive capabilities for expressing modeling 
guidance and performing optimization. Finally, graphical modeling tools created with GEMS automatically support 
complex capabilities, such as remote updating and querying, template creation, styling with Cascading Style Sheets 
(CSS), and model linking.



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7 
www.eclipsemag.net      12

Feature Introduction to the Generic Eclipse Modeling System

based modeling tool. Th ese frameworks are designed to 

provide the degrees of fl exibility needed to support products, 

such as IBM’s Rational Architect.

 MDE tools are rarely simple to develop, however, and 

are generally reserved only for the highest payoff  domains. 

Regardless of the framework used, developers must still 

produce a signifi cant amount of XML and Java code to 

construct a working graphical modeling tool. Smaller 

organizations tend to lack the required development 

expertise to implement a graphical modeling tool using EMF, 

GEF, and GMF. Even in situations where an organization can 

develop a graphical modeling tool from scratch, the time 

spent performing these activities subtracts from the time 

available for developing the true assets of these tools—the 

complex domain validation, code generation, optimization, 

and simulation capabilities. Moreover, there is a signifi cant 

cost associated with maintaining a graphical modeling tool 

infrastructure, as understanding of the domain deepens and 

the tool and domain-specifi c modeling language (DSML) 
requirements change.

 Th e Generic Eclipse Modeling System (GEMS), a part 

of the Eclipse Generative Modeling Technologies (GMT) 

project, helps developers rapidly create a graphical modeling 

tool from a visual language description (metamodel) without 

any coding in third-generation languages. GEMS is an open 

source project, based on the Eclipse License, that has been 

developed in conjunction with Siemens CT SE2, IBM, and 

Prismtech. GEMS gives developers the ability to graphically 

describe the DSMLs they wish to create a modeling tool 

for and automatically generate the requisite EMF, GEF, and 

GMF code required to implement an Eclipse-based plug-

in for creating and editing instances of the DSML. GEMS 

pulls together these various Eclipse modeling frameworks 

and uses standardized naming conventions, fi le formats, and 

other simplifi cations to make coding an editor from scratch 

unnecessary. Although GEMS uses multiple techniques to 

allow developers not to write code unless they want to, the 

decisions and default visualizations used by GEMS can still be 

overridden through the use of Cascading Style Sheets (CSS), 

extending GEMS extension-points and other facilities, such 

as model templates and remote updating mechanisms.

 GEMS substantially reduces the cost of developing a 

graphical modeling tool by allowing developers to focus 

on the key aspects of their tool—the specifi cation of the 

DSML and the intellectual assets built around the use of the 

language. Th e infrastructure to create, edit, and constrain 

instances of the language is generated automatically by 

GEMS from the language specifi cation. As the language 

specifi cation changes, GEMS can regenerate the Java, EMF, 

GEF, GMF, and XML descriptors required to edit the new 

language. Moreover, GEMS allows the separation of language 

development, coding, as well as ‘look and feel’ development, 

such as changing how modeling elements appear based on 

domain analyses.

 A GEMS-generated graphical modeling tool can have 

both static and dynamic visual behavior specifi ed through 

stylesheets. Graphic designers or developers can create styles 

and icons that should be applied to elements when they are 

in specifi c states. For example, a developer building a tool 

for specifying the deployment of soft ware components to 

nodes could develop separate icons and styles for drawing 

a component when it is deployed and undeployed. Th e CSS 

capabilities of GEMS will be discussed in detail in the Section 

‘Customizing the Look of the Modeling Tool with CSS’.

 Th e process for developing and using a graphical 

modeling tool using GEMS is based on the Model Integrated 

Computing paradigm [5] developed at Vanderbilt University 

and originally implemented in the Generic Modeling 

Environment (GME) [6]. Th is process can be seen in Figure 1.
 Th e fi rst step for building a graphical modeling tool with 

GEMS is to defi ne a metamodel for the DSML. Th is metamodel 

describes the graphical entities, connection types, attributes, 

and other visual syntax information needed by GEMS. In 

step two, the user invokes a code generator that produces 

the EMF, GEF, GMF, XML and so on, which are needed 

Fig. 1: The GEMS Development Cycle

http://www.isis.vanderbilt.edu/mic.html
http://www.isis.vanderbilt.edu/Projects/gme


Introduction to the Generic Eclipse Modeling System  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      13

to create a plug-in for editing the DSML described by the 

metamodel. Graphic designers or developers create custom 

icons and CSS styles for the DSML elements in the third step. 

For the fourth step, developers specify the constraints on the 

model that GEMS uses to ensure that only correct models 

are built with the model. Th e constraints generally involve 

domain information that requires a constraint language to 

express properly. Finally, domain experts use the modeling 

tool produced by GEMS to construct models of the domain. 

If the DSML is suffi  ciently expressive that no modifi cations 

are needed for the metamodel, model interpreters (or code 

generators) are developed to produce soft ware artifacts 

(such as Java code or XML descriptors), run simulations, or 

execute the model. Th e following sections describe each of 

these steps in detail.

Creating a GEMS Metamodel
Th e core of a GEMS-based modeling tool is a metamodel 

describing the syntax of the DSML. As a case study, we 

describe the development of a tool, called AUTODeploy, 

for specifying the deployment of soft ware components to 

nodes in a data center. AUTODeploy allows IT professionals 

to describe each soft ware component they wish to deploy 

in their data center, the requirements of the node hosting 

each component, the nodes available in the data center, 

and the resources available on each node. AUTODeploy 

can also specify where components should be deployed 

by creating connections between components and nodes. 

Finally, this modeling tool can automatically deduce and 

create a valid deployment for all the components. Figure 2 

shows a screenshot for AUTODeploy that we will produce 

using GEMS.

 Examining the fi nished AUTODeploy product we are 

creating helps clarify how various parts of the GEMS 

development cycle fi t together and map to AUTODeploy, 

which has fi ve diff erent types of model entities or elements. 

Th e fi rst entity is the DeploymentPlan, which is represented as 

the main white canvas containing the Nodes and Components. 

Th e DeploymentPlan is the root entity in our model. Node 

and Component entities can be seen on the right and left  

hand sides of the model, respectively. Two more entity types 

are present but not visible in the screenshot. Requirements are 

child entities of Components that can be seen by expanding 

a Component by clicking on the button in the upper left  

hand corner of each Component. Resources are child entities 

of Nodes and are also not visible. We can, however, see 

evidence of the Resources in the properties pane of the tool.

 Th e Overview attribute in the properties pane visible in the 

bottom of Figure 2 provides a brief outline of the children 

contained by each entity and the attributes of the children. 

CPU, GeoDB, and OS are all Resources contained by Host3. 

Th e fi nished AUTODeploy tool contains connections 

between Components and Nodes. Th ese are Deployment 

connections that were defi ned in the metamodel. Figure 3 
shows the complete metamodel for our soft ware component 

deployment tool.

 Th e Entity elements in the metamodel correspond to the 

entities we described in AUTODeploy. Th e metamodel can 

Fig. 2: A GEMS-based Software Component   
 Deployment Tool

Fig. 3: The Complete Software Component   
 Deployment Metamodel



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7 
www.eclipsemag.net      14

Feature Introduction to the Generic Eclipse Modeling System

be viewed as a class diagram for the instances of the model 

entities seen in AUTO Deploy. Th e Entity elements in Figure 

3 correspond to the types in our DSML. Th e Atrributes, 

visualized with the ‘@’ sign, represent the properties of the 

types that can be set in the property pane. Th e Connection 

element, called Deployment, corresponds to the Deployment 

connection type in AUTODeploy. Figures 4, 5, 6, and 7 
illustrate these mappings.

 Entities can have Inheritance relationships between them, 

although this example does not show this feature. Inheritance 

relationships are created by adding an Inheritance element to the 

model and connecting it to the parent type and derived type(s). 

Any attributes, connections, or containment relationships 

specifi ed by the parent are inherited by derived types. Aspects 

are another metamodel element that can be defi ned to group 

sets of Entities and Connections into separate views on the 

model. Entity types are associated with an Aspect element in 

the metamodel through containment relationships. In the 

generated modeling tool, Aspects appear as unique views that 

can be used to fi lter the currently visible Entity and Connection 

types. Custom CSS styles can be defi ned for an element so that 

its visual appearance changes when the aspect changes.

Fig. 4: Realization of Entities in AUTODeploy Fig. 5: Realization of Connection Entities

Fig. 6: Realization of Attributes in AUTODeploy Fig. 7: Realization of Containment in AUTODeploy              



Introduction to the Generic Eclipse Modeling System  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      15

Generating a Graphical Modeling Tool Using 
GEMS
Aft er creating a metamodel, GEMS’s DSML plug-in 

generator can be invoked to create the modeling tool. Th e 

code generator fi rst traverses the various entities in the 

model and generates an Ecore model, which is a set of EMF 

objects that represent the metamodel or syntax of the visual 

language, to implement the metamodel. GEMS then invokes 

the appropriate EMF code generators to produce EMF 

classes that implement the Ecore defi nition. Th is process 

can be seen in Step 1 of Figure 8.

 Th e generated EMF classes are used as the object graph 

underlying AUTODeploy. Th ese classes automate key aspects 

of serialization and de-serialization. By default, GEMS leverages 

EMF’s ability to save EMF models to XMI. Other serializers can 

be plugged into persist models in a database or use an alternate 

fi le format. Th e EMF object graph also allows GEMS to leverage 

the libraries available for Eclipse to check Object Constraint 

Language (OCL) constraints against a model.

 Th e second set of code generated by GEMS are the classes 

required to plug the generated EMF code into the GEMS 

runtime framework. Th e GEMS runtime provides a layer built 

on top of GEF (and soon GMF) that provides higher level 

capabilities, such as applying CSS styles to elements, exposing 

remote update mechanisms, and providing constraint solver 

modeling intelligence. Th e relationship between the generated 

artifacts, GEMS runtime, and Eclipse modeling frameworks 

can be seen in Figure 9.
 

Fig. 8: Realization of Containment in AUTODeploy Fig. 9:  GEMS and Eclipse Modeling Frameworks



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7 
www.eclipsemag.net      16

Feature Introduction to the Generic Eclipse Modeling System

Th e GEMS runtime provides numerous extension points 

for adding custom functionality to the generated modeling 

tool. Extension points are available for adding actions that 

can be triggered by OCL, Java or role-based object constraint 

assertions on the model, customization of menus, custom 

code generators, remoting mechanisms, custom serializers, 

and many other features. As the underlying Eclipse modeling 

technologies evolve, GEMS continues to incorporate and 

expose their new features.

 Th e third set of code artifacts, generated by GEMS, are 

the various XML descriptors, build specifi cations, classpath 

directives, and icons required to integrate the generated tool 

into Eclipse as a plug-in. When a modeling tool is generated 

into a Java project, these various artifacts confi gure the 

project properly to build the plug-in and make it visible for 

testing with the runtime workbench. Th e build artifacts also 

confi gure the project so that it can be exported properly as 

an Eclipse modeling tool plug-in.

Customizing the Look of the Modeling Tool 
Using GEMS
 One goal of GEMS is to avoid requiring developers to 

use third-generation languages to write any graphics code 

required to implement a modeling tool. In most cases, 

however, simply providing a stock set of visualizations will 

not suffi  ce. GEMS allows developers to customize the look 

and feel of their modeling tools. It supports this capability 

by allowing developers to change the default icons visible 

on the palette and in the model, which enables developers 

to quickly create impressive visualizations that match the 

domain notations.

 Swapping icons isn’t the only mechanism GEMS provides 

to customize the look and feel of modeling tools like 

AUTODeploy. Developers can use CSS style sheets to change 

fonts, colors, backgrounds, background images, line styles, 

and many more features of a GEMS-based modeling tool. 

If an organization has a graphic design department, the 

customization of the look is similar enough to using HTML 

and CSS that they can oft en handle this eff ort. Figure 10 
shows the application of a CSS line style to change the line to 

a four-pixel, dotted, green line.

 CSS styles are applied to elements using traditional CSS 

selectors. Th e key diff erence is that selectors refer to the 

roles and types specifi ed in the metamodel. For example, to 

make all the Components that are deployed have a diff erent 

style than un-deployed Nodes, a style could be created with 

a selector that matches the source role of a Deployment 

connection. Aft er adding this style, any Component that 

serves as the source of a Deployment connection will have 

the style applied.

 Even more complex visual behaviors can be created 

by leveraging a feature called TAGS in GEMS. TAGS are 

textual markup that can be added to modeling elements 

to denote that they have a certain property. For example, 

AUTODeploy could provide visual queues to modelers 

by changing the background color of nodes that cannot 

host any more components to red. Two pieces of code are 

required to create this complex behavior based on domain 

analysis:

• An OCL, Java, or role-based object constraint trigger 

must be added to include a ‘NodeFull’ tag to nodes 

whose resources cannot support any more Components

• Create a CSS style that matches Nodes with the ‘NodeFull’ 

tag

 Th e GEMS TAGS facility supports the combination of 

domain analysis with CSS styles to rapidly develop complex 

domain-specifi c visual behaviors, such as changing the 

icon for a node that doesn’t have suffi  cient resources to host 

anymore components or highlighting green nodes that 

have more than a predefi ned level of slack on their CPU. 

 
Adding Domain Constraints 
A key benefi t of MDE tools is their ability to capture 

and enforce domain constraints. Th e GEMS constraint 

framework supports a number of constraint types, 

Fig. 10:  Applying a CSS Line Style



Introduction to the Generic Eclipse Modeling System  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      17

including OCL, Java, and role-based object constraints. 

Other constraint languages can be plugged into GEMS by 

extending various extension points in the plug-in.

 GEMS views constraints more as triggers than actual 

constraints since this allows constraints to perform 

a number of actions to guarantee model correctness, 

such as showing a warning message, vetoing a model 

change, or adding elements to fix the error. In GEMS, a 

domain analysis is performed using one of the constraint 

languages, such as OCL, and when the analysis indicates 

that a constraint has been violated, an action is triggered. 

For a traditional constraint, the action can veto the 

modeling event that produced the constraint violation 

and roll back any changes that it caused. A trigger can 

also result in a message popping up above the modeling 

element that has violated the constraint. Much more 

complex actions can take place as well. For example, 

a constraint violation can trigger an action that runs 

automated diagnostics to identify why the event was 

generated, as seen in Figure 11.

Model Intelligence
A unique feature of GEMS that sets it apart from other 

MDE tools is its integration of Role-based Object 

Constraints (ROCs). ROCs allow developers to describe 

declarative domain constraints, just like they would 

with OCL, except that GEMS can leverage its built-in 

constraint solvers to find solutions for many types of 

constraint problems. To put it another way, if you tell 

the GEMS-based modeling tool about what the rules are 

for a correct solution, it can find the solution for you. 

 For example, in AUTODeploy, each Component 

must be deployed to a node that supports the proper 

configuration of middleware, OS, OS version, databases, 

and so on. These constraints are modeled as Requirements 

that must be matched with >, <, or = against a value on 

a Resource contained by a Node. For example, you could 

have the requirements, OSVersion > 2.3, MultiCoreCPU 

= true, FireWallInstalled = true, or HeatProduction 

< 25. In AUTODeploy, users can add arbitrary name, 

comparator, value requirements that must be matched 

against the Resources contained by a Node.

 A realistic deployment model for a data center will likely 

contain hundreds of servers and hundreds or thousands 

of software components. Human modelers clearly can’t 

point and click their way through a deployment of 

this size. The GEMS Model Intelligence and ROCs are 

designed to handle problems at this scale.

 Model Intelligence provides a modeling tool like 

AUTODeploy with two key capabilities. First, it allows 

the tool to show a modeler the valid ways of satisfying 

a constraint. For example, in AUTODeploy, when a user 

places the mouse over a Component, Model Intelligence 

can highlight the Nodes that satisfy the configuration 

requirements for the Component. This type of suggestion 

can be seen in Figure 12. 

Fig. 11:  A Constraint Violation Triggering a Popup   
    Warning

Fig. 12:   Model Intelligence Suggesting Deployment  
     Locations



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7 
www.eclipsemag.net      18

Feature Introduction to the Generic Eclipse Modeling System

 Suggesting local modeling decisions is certainly a huge 

improvement over merely constraint checking a manually 

produced solution. Th e real benefi t of Model Intelligence 

becomes evident when it is combined with batch 

processing. As described previously, large-scale models 

are too complex to manage manually, particularly if the 

model has complex global constraints, such as resource 

constraints. GEMS provides a facility for combining batch 

processing with Model Intelligence to perform complex 

assignments automatically, such as fi nding a target host for 

every Component in a model. 

 To see how this could work using GEMS, we will add the 

following ROC rules written in Prolog to AUTODeploy:

compare_value(V1,V2,’>’) :- V1 > V2.

compare_value(V1,V2,’<’) :- V1 < V2.

compare_value(V1,V1,’=’).

matches_resource(Req,Resources) :-

  member(Res,Resources),

  self_name(Req,RName),

  self_name(Res,RName),

  self_type(Req,Type),

  self_value(Req,Rqv),

  self_value(Res,Rsv),

  comparevalue(Rsv,Rqv,Type).

can_deploy_to(Componentid,Nodeid) :-

  self_type(Componentid,component),

  self_type(Nodeid,node),

  self_requires(Componentid,Requirements),

  self_provides(Nodeid,Resources),

  forall(member(Req,Requirements),matches_resource(Req,Resources)).

 Th ese rules implement exactly the requirement to 

resource matching that we described earlier. Th ey tell Model 

Intelligence to only deploy a Component to a Node if all of 

the Requirements are met by the Node. We can then make 

the rule ‘can_deploy_to’ invokable as a batch process. Th e 

result of running this Model Intelligence batch processor can 

be seen in Figure 13.
 Th e ROCs that Model Intelligence uses are a programming 

paradigm built on top of constraint solvers. Th e default solver 

packaged with GEMS uses Prolog since it provides a large 

number of constraint solver and optimizer implementations, 

Douglas C. Schmidt
is a Full Professor in the Electrical Engineering 

and Computer Science (EECS) Department, 

Associate Chair of the Computer Science and 

Engineering program, and a Senior Research 

Scientist at the Institute for Soft ware 

Integrated Systems (ISIS) at Vanderbilt 

University, Nashville, TN. For the past two 

decades, he has led pioneering research on 

patterns, optimization techniques, and empirical analyses of 

object-oriented and component-based frameworks and model-

driven development tools that facilitate the development of 

distributed middleware and applications. 

Jules White
is a researcher in the Distributed Object 
Computing (DOC) group at Vanderbilt 
University’s Institute for Soft ware 
Integrated Systems (ISIS). He is the head 
of development for the Generic Eclipse 
Modeling System (GEMS).

Andrey Nechypurenko
works at Siemens Corporate Technology 
SE2 in Munich, Germany.

Egon Wuchner 
works Siemens Corporate Technology SE2 
in Munich, Germany.



Introduction to the Generic Eclipse Modeling System  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      19

an easy to use declarative language, and good performance. 

ROCs allow users to describe constraints using domain-

specifi c notation, while at the same time allowing existing 

complex Prolog solvers and algorithms to be plugged 

in. ROCs is an extensible paradigm not limited solely to 

Prolog-based solvers. New solvers, such as highly optimized 

bin-packers, simplex methods, or other libraries can be 

incorporated into the paradigm. Plugging a solver into 

ROCs is a non-trivial task, however, and is rarely needed. 

In the soft ware component deployment modeling tool that 

we developed with GEMS, complex Prolog-based solvers 

have been developed for resource constraints. We are in the 

process of templatizing and incorporating these complex 

solvers into the base ROCs installation.

Concluding Remarks
Th is article has described the powerful features available for 

building graphical modeling tools with GEMS. Th e article has 

just scratched the surface of what GEMS provides and many 

features, such as remote updating and model templatization 

have note been addressed, due to space limitations. For more 

information on GEMS, please refer the project web site [1].

Fig. 13:   Model Intelligence Assigning a Target Host for  
  Every Component

Resources & References
[1] GEMS: http://www.eclipse.org/gmt/gems
[2] GEMS Download and Development: http://www.sf.net/projects/gems 
[3]  GEMS Research at the Distributed Object Computing Group http://www.dre. 
 vanderbilt.edu/~jules/gems.htm 
[4]  The Distributed Object Computing Group http://www.dre.vanderbilt.edu 
[5]  Model-Integrated Computing at ISIS: http://www.isis.vanderbilt.edu/mic.html
[6] Generic Modeling Environment (GME): http://www.isis.vanderbilt.edu/Projects/gme

www.jaxmag.com

Come, 
See What's Brewing

The Premier Online Resource for Java, Apache, 

XML and Web Services

Fresh Brew     

Jax Hojo                             

Coffea Works     

Book Club

http://www.eclipse.org/gmt/gems
http://www.sf.net/projects/gems
http://www.dre.vanderbilt.edu/~jules/gems.htm
http://www.dre.vanderbilt.edu
http://www.isis.vanderbilt.edu/mic.html
http://www.isis.vanderbilt.edu/Projects/gme
www.jaxmag.com


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      20

Feature Dynamic Wizard Modeling with GMF

Using GMF to Build a Dynamic Wizard Framework 
and a Graphical Editor

Introduction

Have you ever used a graphical editor and wondered 

what it takes to create one? In this article, we will see 

how to develop a graphical editor from scratch, using the 

Graphical Modeling Framework (GMF). 

 Before GMF, there was the Graphical Editing Framework 

(GEF) [1][2]. GEF off ers a powerful and fl exible platform for 

developing graphical editors. It makes use of the Model-

View-Controller (MVC) pattern heavily. Each item on 

the canvas has three distinctive features, a) model, that is 

the data pertaining to the item, b) view, that is the visual 

representation and c) controller, that ties the model and 

view together.

 One limitation with GEF is that it treats models as plain 

Dynamic Wizard Modeling with GMF

By Rajkumar C Madhuram

Java objects (POJOs). Hence the programmer needs to fi ll 

in the semantics associated with the model and map it to 

the relevant edit parts. Th is is a fairly cumbersome process, 

as there may be hundreds of types of objects on the canvas. 

Another problem the programmer has to deal with is the 

serialization and de-serialization of data. Th e model has to 

be stored in a fi le, typically in XML format. Along with the 

model, the graphical information also has to be persisted. 

For instance, if an object is represented as a rectangle, we 

need to store its placement, width, height, color, and so on. 

Mapping this information to the model information is also a 

tedious task.

 Eclipse Modeling Framework (EMF) is a powerful 

framework for modeling data. It provides facilities for code 

Developing a graphical editor is generally very complicated and requires lot of effort. There are few frameworks 
available for writing graphical editors in Java. The prominent open source frameworks are JHotDraw (which 
is Swing based) and GEF (which is SWT/Jface-based). While they provide sophisticated tools for graphical 
development, the painstaking work of modeling the domain and mapping to graphical elements is left to the user. 
Graphical Modeling Framework (GMF) bridges this gap nicely. In the article, I will take you through an end-to-end 
demonstration of GMF. To achieve that, fi rst we will create a framework for meta-data driven JFace wizards. Next, 
we will see how to use GMF to build a graphical editor for this framework. 

http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/47_Hudson.pdf
http://eclipsewiki.editme.com/GefDescription


Dynamic Wizard Modeling with GMF  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      21

generation, meta-data query/manipulations, editors, and 

serialization. As I pointed out earlier, these are features that 

would complement GEF in building a graphical editor. Th e 

Graphical Modeling Framework (GMF) is based on GEF and 

EMF, and it provides a comprehensive solution for building 

graphical editors.

 The graphical editor we are going to develop will 

model the page flow of JFace wizard pages. Figure 1 
shows the outline of the steps involved. First we will 

start by defining the data model (ecore). From the data 

model, we will proceed to create the model classes. Using 

the generated classes, we will build the dynamic wizard 

framework. After that, we will create the GMF graphical 

and tooling model, which would enable us to create the 

graphical editor.

 The graphical editor that is created will be an Eclipse 

plug-in. The user will be able to install the plug-in in her 

instance, create any project (Java or otherwise), create the 

wizard diagrams, and run the wizards by right clicking on 

the wizard file and selecting Run Wizard menu option.

Plug-in Description
wizard The main plug-in where the models reside. It contains 

the EMF generated model code in src/ directory. 

Our custom fi gures for GMF reside under custom/ 

directory.

wizard.diagram Auto generated plug-in that contains GEF code for 

graphical editor.

wizard.edit Auto generated plug-in that contains providers for 

EMF models.

wizard.

framework

Our plug-in that contains code for the JFace Wizard 

framework.

wizard.runner Our plug-in that contributes the Run Wizard menu 
option and also runs the selected wizard diagram.

It is recommended to have a read through the GMF 

tutorial[4] (all the parts) before starting on this. Besides, 

you’ll need to install GMF on Eclipse 3.2.1.

Dynamic Wizard Framework
JFace has a powerful framework for creating wizards[5]. 

However, the pages have to be hardwired to the wizard, 

using the addPage() method call. If you are into web 

development, this is not very different from how page 

transitions had to be hard-coded in JSP pages. One 

problem with this approach is that the re-usability of 

the pages is severely limited. To promote reuse, we could 

model the page description and the transitions using XML 

(similar to the Struts framework for Web).

 Our dynamic wizard framework is essentially a finite 

state machine (FSM) [6]. Each page that is displayed is a 

state. We have two types of states—display states and 

action states. Display states have user interface associated 

with them, whereas action states do not. States throw 

events, and based on the event thrown, they transition to 

the next state.

 When the user clicks the Next> button of the wizard, the 

engine is queried for the next page. It looks at the state 

diagram and determines the next page and returns it. 

Action states can be present in between display states. Th e 

Fig. 1: Dynamic Wizard Modeling with GMF

Th e article demonstrates the use of GMF in building a 

graphical editor. First a framework for JFace wizards is 

developed, that allows one to dynamically control the 

page fl ow. Next the author maps the domain to GMF 

elements and shows how to construct a graphical editor 

with very little eff ort. 

Table 1: List of Plug-ins Involved in the Graphical Editor

http://wiki.eclipse.org/index.php/GMF_Tutorial
http://www.eclipse.org/articles/Article-JFace%20Wizards/wizardArticle.html
http://en.wikipedia.org/wiki/Finite_state_machine


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      22

Feature Dynamic Wizard Modeling with GMF

engine executes the actions as it encounters them in the course of 

transition between display states. See Figure 1.

The Domain Model
To specify the model, fi rst create a new GMF project. Th e supplied 

plug-in project ‘wizard’ is a GMF project. To create this, select 

New Other Graphical Modeling Framework New GMF Project. All this 

does is to create a directory inside the project called model and 

add the required plug-in dependencies. We have all the model 

artifacts inside this directory. 

 Inside the model directory, you will see the fi le wizard.ecore. Th e 

ecore fi le contains data about the model, and hence is called 

as the meta-model. It uses the UML notation. To create this 

fi le from scratch, right click on the model directory and select 

New Other Example EMF Model Creation Wizards Ecore Model. Th e 

ecore model can be developed using the Ecore Diagram Editor. 

To use this, however, you need to install the GMF Examples 

feature.

 Inside the model directory, there is also a fi le called wizard.ecore_

diagram. When this fi le is opened with the diagram editor, the model 

looks like that shown in Figure 2. It should not be confused with 

the dynamic wizard framework class model. Th is model specifi es 

the domain and will dictate what will be contained in the XML 

fi le that is produced when serializing the diagram.

 We will now examine the classes that are modeled. Th e class 

Wizard is the container of everything. It contains zero or more 

states and transitions. Th ere are two types of states, a DisplayState 

which has a visual page associated with it, and an ActionState that 

just performs an action and transition to another display or 

action state. Th ere is also a special marker state called StartState, 

which signifi es the start of the wizard. It must have a transition to 

a display state (an implicit assumption that is not modeled for the 

sake of simplicity).

 Each state has a ‘name’ attribute that serves as an identifi er for 

the state, and hence is unique. It also contains a ‘class’ attribute. 

Th e engine loads the states (pages and actions) at runtime based 

on the class attribute. Th us, the page and action classes 

should implement interfaces defi ned in the framework. You 

can fi nd more details about the framework implementation 

in the following sections. Th e DisplayState class has an attribute 

‘header’, the value of which is displayed as the title of the 

wizard page.

 From this meta-model, we can create the model classes. 

Th is is a two-step process: 1) Create genmodel and 2) 

Generate code. Th e fi rst step is to create another XML fi le 

called the Generator Model fi le (genmodel). Th e objective 

of this fi le is to provide parameters to customize code 

generation. Fortunately, EMF provides a wizard to create 

this easily. Select File New Other Eclipse Modeling Framework 

EMF Model. Select the model/ directory and specify ‘wizard.

genmodel’ for the fi lename. In the ‘Model Importers’ page, 

select ‘Ecore’ model. In the next page, select the wizard.ecore 

fi le from the workspace. Click on Load to import the model. 

Now click Next and Finish.

 Th e genmodel fi le will be opened in a tree editor. Th e 

generator can generate multiple code for model, a tree editor 

for building the XML fi le based on your model and test code 

as well, all from a single domain model (ecore). Th ere are 

plenty of customizations possible to completely control the 

generated code. You can select a node in the genmodel and 

look at the properties view to get the idea. Now, right click on 

the root node Wizard and select Generate Model Code. Th is will 

Fig. 2: Domain Model for Dynamic Wizard

Th e code for the examples detailed in this article is 

included in the source code pack downloaded along with 

the magazine PDF. Follow the instructions specifi ed in 

the fi le setup.doc to install and run the samples. You can 

also visit http://www.impigertech.com/wizard/.

Quick start

http://www.impigertech.com/wizard/


Dynamic Wizard Modeling with GMF  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      23

create all the code for manipulating the model elements and 

a factory class to create them in the src/ directory of the wizard 

plug-in project.

Wizard Framework Implementation
In this section, we will look at the dynamic wizard framework 

implementation. Feel free to skim over this if you are not too 

concerned about the implementation aspects. Th e code for the 

framework is contained in wizard.framework plug-in. Figure 3 

shows the implementation of DynaWizard, which extends the 

JFace Wizard class. Th e constructor accepts a Wizard object, 

that is the root of the domain model we constructed in the last 

section. If you look into the code of DynaWizard, method addPages(), 

you will notice that we pre-load all the display and action state 

classes. 

 Th e DynaWizard class also contains three Hashmaps. One maps 

the display states to wizard pages (org.eclipse.jface.wizard.IWizardPage). 

Another one maps the action states to DynaAction objects. Th e 

last one holds session variables. Th e concept of session here is 

not diff erent from the session in web applications. It contains 

information that needs to be shared across pages and actions. 

 Now let’s take a look at the method that makes the framework 

dynamic, getNextPage(State current, String event). It is called from 

BaseDynaPage where it overrides getNextPage() method. It looks at 

transitions from the current state and executes any actions until 

it reaches a display state. When it fi nds the next display state, it 

returns the corresponding page.

 Figure 4 shows the class diagram for the dynamic wizard 

framework. Th e interfaces DynaPage and DynaAction has two 

important methods, setSession() which provides the session to 

the underlying page or action, and setState() which provides the 

domain model and the wizard.

 Th e BaseDynaPage class is a binding to JFace wizard page. It 

queries the wizard for canFlipToNextPage() and getNextPage() calls. 

Th e method throwEvent() can be called by the widgets in the 

subclasses to throw events. It registers the event and calls 

updateButtons() method of the wizard container. Th is in turns calls 

the canFlipToNextPage() method and determines if the Next> button 

can be enabled. Th e DefaultPage is a page that displays the state 

name. Just to spice it up, it also contains a browser with URL 

set to the wikipedia entry corresponding to the state name!. It 

throws an event ‘next’ by default.

 Action classes may extend BaseDynaAction and implement the 

run() method. Actions throw events by returning the event name 

from the run() method. Th e DefaultAction is a simple implementation 

that throws ‘ok’ event always.

Fig. 3: Dynawizard Model Fig. 4: Wizard Framework Class Diagram



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      24

Feature Dynamic Wizard Modeling with GMF

Wizard Runner
Th e plug-in wizard.runner takes care of running the dynamic 

wizard. It contributes a menu item ‘Run Wizard’ when you 

right click on the wizard. Aft er creating the wizard ecore model 

from the fi le, the class wizard.runner.popup.actions.RunnerActionDelegate 

creates a new URL classloader by adding the output directory 

of the project in which the wizard is present. Th is enables 

the wizard framework to load the page and action classes 

dynamically, as specifi ed by the user.

GMF Models
The graphical editor produced by GMF is essentially a 

graph (as in graph theory) modeller. It has two main 

types of objects—nodes and links. A node is typically 

associated with a domain object and a link connects 

two domain objects. The editor is produced by defining 

a series of models. Figure 5 shows the various models 

involved.

 One of the strengths of GMF is the separation of 

concerns. The domain model is kept clean and separate, 

as we saw in the previous section. The graphical 

definition describes all the graphical elements in the 

editor. The shapes of nodes and connections and their 

properties are all described here. No association is yet 

made with the domain model. Then there is the tooling 

model. It describes the various tool elements like the 

palette, actions, and so on.

 The mapping model brings together the domain 

model, graphical, and tooling definitions. It primarily 

consists of two main types of mapping—node and link 
mappings. A node mapping maps the domain element 

to graphical definition (for example, rectangle, ellipse or 

custom figure). It also maps the tool used to create this 

object on the canvas (typically a palette entry). A link 

mapping is very similar, but it maps the domain element 

to the connection figure (the polyline connection, for 

example) graphically.

 The generator model consists of customization to code 

generation, like the edit part class name and plug-in name. 

Using the generator model, GMF creates all the required 

plug-ins for the graphical editor.

Graphical Defi nition Model (gmfgraph)
Th e GMFGraph fi le defi nes all the graphical elements 

present in the editor. I’ll describe the process by which this 

fi le can be created. Select File New Other Graphical Modeling 

Framework GMFGraph Simple Model. Set the parent folder to 

‘wizard/model’, the directory where the ecore fi le isplaced. 

Select a gmfgraph fi le name (don’t overwrite wizard.gmfgraph). 

Select /wizard/model/wizard.ecore for the domain model fi le 

name. Clicking Next > will bring up a page to select the model 

elements to process, as shown in Figure 6.
Select ‘Wizard’ for the diagram element. Recall that Wizard 

is the top-level container node in the model defi nition. It 

is mapped to the diagram canvas, which contains all the 

objects. Uncheck ‘State’ and all its attributes, as we are not 

interested in having a visual representation for the base class. 

Fig. 5: GMF Models Fig. 6: GMF Graphical Defi nition Creation



Dynamic Wizard Modeling with GMF  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      25

Notice how the ‘Transition’ object is automatically resolved 

as a link. Also uncheck the attributes for ‘StartState’ as we are 

not interested in displaying them (it is just a marker state). 

 Let’s take a look at the model/wizard.gmfgraph fi le in the 

‘wizard’ project. It contains the graphical defi nitions for 

our editor. It is diff erent from the one generated by the 

process described earlier, since I’ve customized it to suit 

the presentation needs. Look carefully at the tree structure. 

Below the ‘Canvas wizard’ node is the ‘Figure Gallery 

Default’. Th is node contains all the fi gure defi nitions. Th ere 

are four fi gures defi ned. Below the fi gure gallery node, 

there is a set of nodes, diagram labels and connections 

corresponding to the diagram model elements. Keep in 

mind that these are not the same as the domain model. We 

need to map these diagram model elements to the fi gures. 

You can click on any of these elements and observe the 

‘Figure’ property in the Properties view. For instance, you can 

see that the node ‘Node StartState’ is mapped to the fi gure 

‘Ellipse StartStateFigure’.

Fig. 7: GMF Graphical Defi nition Creation

Listing 1

Code for Drawing Custom Figures

protected void drawPanel(Graphics g, int delta, Image image, 
  Color panelColor, Color gradientCol) {
 Rectangle bounds = getBounds();
 
 // drop shadow
 g.setBackgroundColor(
   Display.getDefault().
     getSystemColor(SWT.COLOR_
WIDGET_NORMAL_SHADOW));
 g.setForegroundColor(
   Display.getDefault().
     getSystemColor(SWT.COLOR_
WIDGET_NORMAL_SHADOW)); 
 g.fi llRoundRectangle(
   new Rectangle(bounds.x+delta, 
bounds.y+delta, 
           bounds.width-delta, 
bounds.height-delta
     ), 5,5);
 
 // draw the panel.
 g.setForegroundColor(
   Display.getDefault().
     getSystemColor(SWT.COLOR_
BLACK)); 
 g.setBackgroundColor(panelColor);
 g.fi llRoundRectangle(
   new Rectangle(bounds.x, bounds.y, 
     bounds.
width-delta, bounds.height-delta
     ), 5,5);
 g.drawRoundRectangle(
   new Rectangle(bounds.x, bounds.y, 
     bounds.
width-delta, bounds.height-delta
     ), 5,5);
 
 // draw the icon.
 g.drawImage(image, bounds.x+2,bounds.y+2);
 
 // draw the gradient.
 g.setBackgroundColor(gradientCol);
 g.setForegroundColor(
   Display.getDefault().
     getSystemColor(SWT.COLOR_
WHITE)); 
 g.fi llGradient(bounds.x+18, getBounds().y+2, 
   bounds.width-(20+delta), 16 , false);
 
}



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      26

Feature Dynamic Wizard Modeling with GMF

Figure Defi nitions
Figure 7 shows the diff erent fi gures involved (except the 

transition fi gure, which is a regular polyline). Th e start state 

is modeled as an ellipse with word ‘START’ inside it. Th e 

display and action states are much more involved and hence 

need to be modeled as custom fi gures.

 Th e custom fi gures extend org.eclipse.draw2d.Figure and are 

defi ned under the custom/ directory of the ‘wizard’ plug-in. Th e 

labels displayed in these fi gures are also fi gures themselves. 

Th e custom fi gure just needs to draw the template, on top 

of which the child fi gures would be displayed. Listing 1 

shows the code for the base class (BaseFigure.java) that draws the 

template. First it draws the drop shadow and then the panel. 

Th e icon and gradient are drawn next. Also note that we are 

using the XY layout, which may not be the best choice, for 

the sake of simplicity.

GMF Tooling Model (gmftool)
We will use the GMF tooling model to add creation tools 

to the palette. We need four creation tools, for display state, 

action state, start state and transition respectively (as seen 

in Figure 8). In the ‘wizard’ plug-in, the fi le ‘model/wizard.

gmft ool’ contains the tooling defi nitions. To create this fi le, 

follow a process similar to that for creating gmfgraph fi le. 

Select New  Other  Graphical Modeling Framework  GMFTool Simple 

Model. Select ‘wizard.ecore’ for domain model. 

 In the tooling defi nition page, select ‘Wizard’ as the diagram 

element and check only the four elements we discussed 

earlier; this is shown in Figure 9. It will create tooling 

defi nitions with default icons. However, I have replaced the 

small icons with the icons from the icons/ directory in the 

‘wizard’ bundle. 

 In the tooling defi nition page, select ‘Wizard’ as the 

diagram element and check only the four elements we 

discussed earlier; this is shown in Figure 9.

Putting it All Together: The GMF Mapping 
Model (gmfmap)
As we saw earlier, the mapping model ties the domain, 

graphical, and tooling models together. Th e fi le wizard/model/

wizard.gmfmap contains the mapping model. You can select New 

 Other  Graphical Modeling Framework  Guide GMFMap Creation 

to initiate a wizard that lets you create this fi le. Open the 

gmfmap fi le and observe the mappings in the property 

sheet.

 Th ere are three ‘Top Node Reference’ elements under the 

‘Mapping’ element, corresponding to the three type of states. 

Under these elements are the ‘Node Mapping’ elements. If you 

click on the one corresponding to ‘DisplayState’, you can see 

that the ‘Element’ is mapped to the ecore class ‘DisplayState’, 

the diagram node is mapped to the ‘Node DisplayState’ and 

the tool is mapped to ‘Creation Tool Display State’, as shown 

in Figure 10.
 One other mapping worth mentioning is the Link Mapping. 

You can see that the source and target features are mapped to 
Fig. 8: Tool Palette

Fig. 9: GMF Tooling Defi nition Creation



Dynamic Wizard Modeling with GMF  Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      27

‘from’ and ‘to’ EReference respectively. Th is will enable it to 

connect any two states in the diagram.

Code Generation
Now that the mapping is done, we are ready to generate 

code. Th e fi rst step is to create the generator model. Right 

click on the gmfmap fi le and select Create Generator Model…. 

Click Yes to accept the use of IMapMode. It will create 

the wizard.gmfgen fi le. Now right click on this fi le and select 

Generate diagram code. It will create all the necessary code 

and plug-ins for the graphical editor in the wizard.diagram 

plug-in. 

 To make changes to the generated code, remove the @

generated tag in the method. Th ose methods will be skipped 

when you run the generator again. In fact, I had to make 

a couple of tweaks to the editor code. Th e refreshBounds() 

method in DisplayStateNameEditPart.java is made to force the 

layout of the state name fi gure at (25,2). Th is is because I 

couldn’t get it to work using the XYLayout in the model 

defi nition. If it is not already supported, this might be 

addressed in future GMF releases. You can fi nd this tweak 

in all the children edit parts corresponding to our custom 

fi gures.

Running the Graphical Editor
Finally we have come to the most fun part—running the 

editor and seeing it in action. Create a new run confi guration 

as an Eclipse application and run it with default settings. In 

the target workspace, import the plug-ins wizard and wizard.

framework as links. Also import the wizard.example project that 

is supplied. 

 To create a new wizard, create a Java project fi rst. Select 

New  Other  Examples  Wizard Diagram. Supply a fi le name, 

say test.wizard. It will also create another fi le test.wizard_diagram 

and open it with our newly generated editor. You can add 

the diff erent states and transitions between them. If you 

don’t specify a class name for the page, the default page 

class wizard.framework. DefaultPage is used. Similarly for the 

action, wizard.framework.DefaultAction will be used. To run the 

wizard, simply right click on the wizard fi le and select the 

‘Run Wizard’ option. Make sure you have a transition to a 

page from the start state.

 Opening the supplied example wizard test2.wizard will 

produce the diagram as shown in Figure 11. Running 

it will bring up the pages as shown in Figure 12. Try 

Fig. 11: Actual export of the wizard diagram “test2.
wizard” as a PNG fi le. Right click on the 
diagram and select “File à Save as Image File..” 
to generate this.

Fig. 12: Screenshots of the dynamic wizard in action.

Fig. 10: GMF Mapping for DisplayState



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      28

Feature Dynamic Wizard Modeling with GMF

admin/admin as the username and password to go to the 

administration page and wizard/wizard to go to the wizard 

page. You can experiment by changing the page titles and 

rewiring the transitions and running the wizard again.

Conclusion
In this article, we went through the process of creating a 

dynamic wizard framework and a graphical editor using 

GMF from the scratch. GMF opens up endless possibilities 

in creating model driven graphical editors. It does, however, 

have a steep learning curve. Here are some tips you can put 

to use while working with GMF.:

• Experiment a lot.

• Look at the underlying XML produced by each of the  

models. Th is will give you a deeper understanding of 

what’s under the covers.

• Make liberal use of the Validate option found in most  

 model editors (Right click on the root node to get that  

 option). Th is can save you a lot of time.

 Happy GMF programming!

Rajkumar Madhuram 
is the Vice President of Engineering at 

Impiger Technologies in Chennai, India. Raj 

has been developing soft ware for 17 years 

and holds a M.S in Computer Science from 

the University of Central Florida, Orlando. 

He is an Eclipse enthusiast, and was also the 

winner of the International Challenge for Eclipse contest held in 

2003 for his plug-in FireAntz.

Resources & References
[1] R.Hudson, Eclipsecon 2004 presentation: 
 http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/47_ 
 Hudson.pdf
[2] Eclipse Wiki GefDescription, http://eclipsewiki.editme.com/GefDescription
[3]  Catherine Griffi n, Using EMF: http://www.eclipse.org/articles/Article-Using%20EMF/ 
 using-emf.html 
[4]  GMF Tutorial: http://wiki.eclipse.org/index.php/GMF_Tutorial
[5]  Doina Klinger, Creating JFace Wizards: http://www.eclipse.org/articles/Article- 
 JFace%20Wizards/wizardArticle.html
[6]  Wikipedia article on FSM: http://en.wikipedia.org/wiki/Finite_state_machine

Every hour,
every day

round
the year...

www.sda-asia.com  |  www.sda-india.com  |  www.sda-indo.com

http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/47_Hudson.pdf
http://eclipsewiki.editme.com/GefDescription
http://www.eclipse.org/articles/Article-Using%20EMF/using-emf.html
http://wiki.eclipse.org/index.php/GMF_Tutorial
http://www.eclipse.org/articles/Article-JFace%20Wizards/wizardArticle.html
http://en.wikipedia.org/wiki/Finite_state_machine
www.sda-asia.com


Flexibility at the Roots of Eclipse    Cover Story

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      29

Introduction
Th e worst choice is to have no choice at all. Th erefore, it seems 

less a curse then a blessing to have this choice with SWT and 

Swing. However, the lack of time and motivation is oft en the 

reason not to master both of the GUI toolkits. Th us, it is not 

astonishing that the choice of the toolkit isn’t focused to the 

current problem at hand but follows the taste of the developer, 

which means there was no real choice from the beginning.

 Wouldn’t it be great, if one had the choice between SWT and 

Swing not only at the beginning of a project but throughout 

development? How about using familiar APIs to develop 

Eclipse-Plug-ins, RCP-applications or a JFace/SWT GUI and 

still keep the option to switch back and forth between SWT 

and Swing without changes to your code?

Flexibility at the Roots of Eclipse 

By Dieter Krachtus and Christopher Deckers

No trench in the world of Java is deeper then that between SWT and Swing or Eclipse and Sun. Unity is only 
found in the knowledge that everybody suffers from this argument. But how to end this almost religious battle 
over the righteous GUI-toolkit? How to bang their heads together if they only know one point of view—for 
them or against them! The sister projects SWTSwing and Eclipse on Swing (EOS) achieve this trick. They 
offer both wranglers a conciliative solution, which combines the best of both worlds and seemingly has only 
advantages for everybody.

Solving the GUI Dilemma: SWTSwing and Eclipse on Swing

 SWTSwing off ers this possibility, and Eclipse on Swing 
(EOS) is the proof that it even works for the most complex 

SWT applications, namely Eclipse itself.

SWTSwing
 In August 2005 the SWTSwing project was started but it took 

over a year until its fi rst offi  cial release. Th e SWT-Snippets [3] 

are used as developer tests and to document the progress of 

Th is article would be of interest to Technical Managers 

and Architects, Project Managers and Leads, and 

Developers. Since this paper is on interoperability, an 

exposure to multiple technologies (especially SWT, 

Swing, Eclipse RCP and Plug-ins) is desirable.

SWTSwing

Snippets: www.eclipse.org/swt/snippets/


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      30

Cover Story   Flexibility at the Roots of Eclipse 

the project. Th ese snippets are minimal examples for SWT 

beginners who want to learn how to build SWT widgets. 

SWTSwing can execute the majority of these snippets without 

or only minor bugs by using Swing instead of SWT widgets.

 It became obvious that more complex applications and 

their GUIs were not only more than the sum of their pieces 

(widgets) but that they also show more bugs than would be 

expected from their pieces alone when run on Swing.

 Th e sister-project, Eclipse on Swing (EOS) [5], was founded 

to serve as Gold Standard [9] of a complex SWT application 

for the development of SWTSwing. At the beginning EOS 

was based on a branched and heavily modifi ed version of the 

SWTSwing code base, solely to convince Eclipse to start up 

successfully using Swing.

 However, the strategy to use both simple (Snippets) and 

very complex tests (EOS) was very successful in speeding 

things up. Error-prone implementations and bugs became 

visible through the EOS project and led to feedback and 

changes in SWTSwing.

 By now, these improvements of SWTSwing allow the 

execution of other complex SWT-applications which soon 

may be used in productive environments. At the moment, a 

few minor bugs still spoil the overall picture, which however 

may be already removed when this article is published. To get 

an impression of the current status of SWTSwing, the most 

recent screenshots of the popular SWT-applications Azureus 
[6] and RSSOwl [7] (Figure 2 and 3) speak for themselves.

 SWT(Swing) Details
Next, let’s have a quick look at the general design of SWT 

in order to understand how SWTSwing is implemented 

through Swing. SWT off ers a public API which has a private 

interface to the system by using a very thin native layer (see 

Figure 3).

  
  
  
  
 
  
 
  

  

  

  

  

  

  

  

Before taking a closer look at the projects SWTSwing and EOS, it is helpful to remember the capabilities of the solutions used in 
Java GUI-toolkit development.

• The Abstract Windows Toolkit (AWT) offers the developer only a meagre selection of native widgets (GUI-components like Buttons) to 

build his GUI. This weakness is due to the lowest-common denominator (LCD) design concept from Sun; that is, only widgets that exist 

on all Java-platforms were used for the implementation of AWT.

• In contrast, Swing is 100% implemenented in Java and consequently very portable. This advantage, since basically all widgets are 

emulated, is seen by some as a weakness when it comes to performance. Similarly, the very high fl exibility of Swing was achieved at the 

cost of an often criticised [1] complexity.

• SWT is conceptually similar to AWT, as it uses mainly native widgets. However, emulation is still possible and actually has to be used in 

order to realize widgets that don’t exist on a certain platform. Once exclusively bundled with Eclipse, SWT is now available separately to 

develop standalone applications. This process has become even more convenient by using the JFace library or the Eclipse RCP.

A more verbose overview about all three UI-toolkits, also touching things like event-handling, is detailed in an IBM developerWorks 
article, SWT, Swing or AWT: Which is right for you? [2].

AWT, Swing, SWT, JFace, Eclipse RCP

Fig. 1: Azureus

www-128.ibm.com/developerworks/opensource/library/osswingswt/?ca=dgr-lnxw01WhichGUI
eos.sourceforge.net
azureus.sourceforge.net
www.rssowl.org
en.wikipedia.org/wiki/


Flexibility at the Roots of Eclipse    Cover Story

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      31

  

  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

 The actual implementation of SWT follows a general 

pattern. The basic idea is that all native calls are accessed 

through a single class called org.eclipse.swt.internal.<given-

platform>.OS, which is a one-to-one mapping of the related 

C-functions. The functions of this very thin layer are 

directly called by the classes of the SWT public API (see 

Listing 1). Note that AWT also uses a native layer but 

places some logic inside making it a fatter layer compared 

to SWT.

 In the next step we show how SWTSwing actually 

creates Swing instead of SWT-widgets. Listing 1 and 2 

show the creation of a Button with SWT and SWTSwing, 

respectively. The most striking difference for SWTSwing 

in Listing 2 is the lack of the class org.eclipse.swt.internal.<given-

platform>.OS and thus all native dependencies. Instead the 

interface org.eclipse.swt.internal.swing.CButton allows creation of 

instances of the classes CButtonPush, CButtonToggle and 

CButtonCheck. These classes are specializations of the 

Swing-classes JButton, JToggleButton and JCheckBox.

 For each SWT widget, there exists an interface similar to 

CButton and classes like CButtonPush, which implements 

this interface and are derived from Swing widget classes.

The core of SWTSwing was technically most difficult to 

get right, due to a fundamental conceptual difference—

event pumping is performed explicitly in SWT, whereas 

Swing manages the event pump internally. To solve that 

problem, SWTSwing defines two modes of functioning 

called best-effort dispatching and real dispatching.

 

 The real dispatching is the expected SWT behavior, 

where the SWT UI thread is the operating system UI 

thread. In case of Swing, that means SWT controls the 

automatically-managed UI thread. This is possible only if 

the application or the UI Thread is launched in a certain 

way, so it is not the default mode, but is recommended for 

theoretical performance gains and strict compliance with 

SWT’s design.

 The best-effort dispatching, which is the default mode, 

does not control the Swing-UI-thread. It consists of 

having two UI threads, the SWT and the Swing UI thread, 

both considered as valid threads for SWT calls. The 

Fig. 2: RSSOwl

Fig. 3: How SWTSwing fi ts

Listing 1

// Widget-creation in SWT for Windows:

class org.eclipse.swt.widgets.Button extends Control {
  public void setText (String string) {
    // ...
    TCHAR buffer = new TCHAR (getCodePage (), text, true);
    OS.SetWindowText (handle, buffer);
    // ...
  }
}

class org.eclipse.swt.widgets.Control {
  void createHandle () {
    // ...
    // Creation of the handle is done through the super-class
    handle = OS.CreateWindowEx (...);
    // ...
  }
}

class org.eclipse.swt.internal.win32.OS {
  // Native Methods
}



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      32

Cover Story   Flexibility at the Roots of Eclipse 

Listing 2

// Widget-creation in SWTSwing:

class org.eclipse.swt.widgets.Button extends Control {
  Container createHandle () {
    // Creation of the handle takes place within the widget
    return (Container)CButton.Instanciator.
createInstance(this, style);
  }
  public void setText (String string) {
    // ...
    ((CButton)handle).setText(string);
    // ...
  }
}

interface org.eclipse.swt.internal.swing.CButton {
  public static class Instanciator {
    public static CButton createInstance(Button button, int 
style) {
      if((style & SWT.PUSH) != 0) {
        return new CButtonPush(button, style);
      }
      if((style & (SWT.CHECK)) != 0) {
        return new CButtonCheck(button, style);
      }
      if((style & (SWT.TOGGLE)) != 0) {
        return new CButtonToggle(button, style);
      }
      // ...
    }
  }
  public void setText(String text);
}

class CButtonPush extends JButton implements CButton 
{...}
class CButtonToggle extends JToggleButton implements 
CButton {...}
class CButtonCheck extends JCheckBox implements 
CButton {...}

assumption is that most of the code executed from the 

SWT thread is some initialization work performed before 

a Swing window is actually shown and that the rest of the 

work is performed in response to Swing events. Under 

that assumption, SWT can act on Swing directly without 

the risk of an event originating from Swing.

 
 Advantages
One obvious advantage of the Swing implementation of SWT 

is portability. Separate native libraries are not necessary, 

which is considered very important by some developers. 

Moreover, the number of supported platforms increases by 

those who are exclusively supported by Swing.

 Th e look and feel support also plays a big part, when it 

comes to ‘company branding’. With SWT one is constrained 

to the native look and feel of the target platform, which in 

some cases is not what a developer or its company wants.

 Another important point for some applications is an 

easy and fl exible deployment. A standalone native SWT 

application could be deployed with a platform-specifi c 

installer, and at the same time without any code changes, as 

a slender platform-independent application via Webstart.

 Th ese are only a few examples where actual problems are 

solved because you keep the choice of using either SWT 

or Swing at the same time without any additional work or 

expense.

 
Eclipse on Swing
Eclipse on Swing had three motivations for its creation. One 

role, as mentioned earlier, was to serve as a ‘gold standard’ 

for the maturing of SWTSwing. Th e separation of the 

standalone code bases of SWTSwing and EOS was reverted 

recently aft er a long process of feedback and improvements, 

whereby now the most up-to-date SWTSwing can be used as 

a basis for EOS.

 Th e EOS project provides a plug-in that hooks into the 

Eclipse Preferences and allows a smooth switch between using 

Swing and SWT. As shown in Figure 4, when using Swing 

one can naturally select one of the various Swing Look & 
Feels that already come with the plug-in. 

 It is important to note, that all Views of EOS are already 

usable; only a few minor problems are left  that cloud the 

overall picture during productive work. In Figure 4, Eclipse 

runs with the Swing Windows Look & Feel, showing hardly 

any recognizable visual diff erences to SWT or any other 

native Windows application.

 Another positive feature is the possibility, not only to 

run Eclipse itself on Swing, but in principle any application 

based on the Eclipse Rich Client Platform (RCP). Figure 5 
shows this capability of the EOS-Plug-in for the JAX 2006 

Innovation Award [11] winner Bioclipse [12].

 Th e founders of EOS and SWTSwing currently focus all 

eff orts on improving SWTSwing. Th e EOS plug-in will be 

off ered in a manually installable form, until a satisfying 

maturity of SWTSwing and EOS is reached. Th e plug-in can 

be downloaded from the EOS project page [5].

 With the EOS plug-in the second goal of the EOS project 

is pushed forward—to provide a non-invasive plug-in to 

eos.sourceforge.net
http://jax-award.de/jax_award/index_eng.php
www.bioclipse.net


Flexibility at the Roots of Eclipse    Cover Story

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      33

the Eclipse user, which can be updated from time to time 

to evaluate and test the progress of SWTSwing and EOS. 

It could be the key element in the Java community, which 

mediates between SWT and Swing or Eclipse and Sun, by 

creating unity and destroying prejudice.

 In an interview [8] Mike Milinkovich, the Executive Director 

of the Eclipse Foundation said: “One of the nice things about 

Eclipse is that we are not religious but pragmatic. According 

to the motto: Th e people can solve their technical diffi  culties 

with this technology. It fi ts, it functions, it scales. It works like 

a charm”.

 In the spirit of Eclipse it is now possible to embrace the 

Swing technology (Figure 4 and 5)

 Th e third, and in a long-term perspective, perhaps the 

most important motivation for the EOS project is probably 

not obvious when described with the words—more security 

and fl exibility for the future of Eclipse.

 Like a stock market share, the success of Eclipse strongly 

depends on the fact that many people believe in the future of 

Eclipse and rely on the promise that Eclipse will still be there 

in 10 years leading the bleeding edge of technology.

EOS: Eclipse on Spare (Tyre)
Accordingly, it is interesting to examine what are the most 

fragile parts of Eclipse, in case development has to be carried 

on by third parties. Firstly, there are many plug-ins for Eclipse 

with redundancy—meaning that free or commercial plug-

ins exist that do more or less the same and which could serve 

as a replacement. Secondly, Eclipse is almost completely 

written in Java, well documented, has Unit Tests, and so on. 

Besides, many developers would be more then qualifi ed to 

carry on the torch of Eclipse.

 Th e one and only element at the very root of Eclipse, 

that doesn’t fulfi ll both criteria is SWT. Given a worst 

case scenario there is neither a direct replacement exists 

for SWT, nor is the development trivial due to the native 

dependencies.

 Even in real-case scenarios SWTSwing/EOS could save 

the day; for example, to port SWT to a new version of an 

operating system. Swing could deliver a permanent or 

temporary solution, until the native SWT-implementation 

has reached a certain stage of maturity.

 In the end, it is also less than certain that the decision to go 

the platform-dependent, native way will be the best solution 

for Eclipse. At the moment Swing is no better choice for 

Eclipse than SWT. In ancient times, as an aspirant for the 

GUI-throne, Swing was once scolded as ‘Prince Valium’ not 

without reason. However things turned for the better when 

it came of age. So who can tell what improvements for Swing 

a JRE 10.0 has to off er?

Summary
Accepted common sense—namely to choose the technology 

that solves a problem most elegantly—is usually ignored 

when it comes to Java GUI development. Rather, once the 

decision for a GUI toolkit is already cast, arguments and 

justifi cations for why this is the most pragmatic decision 

are found aft erwards. Th e founders of SWTSwing/EOS and 

Fig. 4: Eclipse on Swing Fig. 5: Bioclipse

http://eclipse-magazin.de/itr/ausgaben/psecom,id,321,nodeid,228.html


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      34

Cover Story   Flexibility at the Roots of Eclipse 

authors of this article stick with Orwell, who reminds us that 

you usually cannot choose between good and evil but rather 

the lesser of the two evils.

 Th is means two things. Firstly, there isn’t an ultimately 

best toolkit—SWT and Swing both have their weaknesses. 

Secondly, from now on, you are in the lucky position to choose 

between one of these two evils throughout development.
 Feedback on this article can be mailed to editors@
eclipsemag.net.

Dieter Krachtus 
is the founder of Eclipse on Swing (EOS) 

and co-developer of SWTSwing. He works 

as a developer and consultant with a main 

focus on Rich Clients on the basis of Swing 

or the Eclipse RCP. Currently he does a PHD 

at the Interdisciplinary Center for Scientifi c 

Computing (IWR) in Heidelberg. 

Resources & References
  [1] 
  [2]   IBM developerWorks: www-128.ibm.com/developerworks/opensource/library/os- 
    swingswt/?ca=dgr-lnxw01WhichGUI 
  [3]   SWT-Snippets: www.eclipse.org/swt/snippets/
  [4]   SWTSwing: swtswing.sourceforge.net
  [5]   Eclipse on Swing: eos.sourceforge.net
  [6]   Azureus: azureus.sourceforge.net
  [7]   RSSOwl: www.rssowl.org
  [8]   The Executive Director of the Eclipse Foundation Mike Milinkovich, in Eclipse  
    Magazin Vol. 8
  [9]   en.wikipedia.org/wiki/Eos
[10]    en.wikipedia.org/wiki/Gold_standard_%28test%29
[11]    http://jax-award.de/jax_award/index_eng.php
[12]    www.bioclipse.net

Christopher Deckers
is the founder of SWTSwing and co-

developer of EOS. He lives in France 

and works as a Senior Java developer. 

Christopher had always an interest in rich 

user interfaces, tools and APIs and has his 

share in many Open source projects.

www-128.ibm.com/developerworks/opensource/library/osswingswt/?ca=dgr-lnxw01WhichGUI
Snippets: www.eclipse.org/swt/snippets/
swtswing.sourceforge.net
eos.sourceforge.net
azureus.sourceforge.net
www.rssowl.org
http://eclipse-magazin.de/itr/ausgaben/psecom,id,321,nodeid,228.html
en.wikipedia.org/wiki/
en.wikipedia.org/wiki/Gold_standard_%28test%29
http://jax-award.de/jax_award/index_eng.php
www.bioclipse.net
mailto:editors@eclipsemag.net
mailto:editors@eclipsemag.net
www.eclipsemag.net


Subversive   Plug-in-Parade

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      35

Introduction

In the recent past, version control systems came to play a 

central role in soft ware engineering. With the proliferation 

of distributed global development, they have become 

indispensable. It is vital to both large and small teams to be 

able to access the actual state of the development, and highly 

desirable to have access to changes throughout the history 

of any given project. In recent years, CVS became the poster 

child versioning system of the open source community.

 However, many felt that CVS could not keep pace 

with changing technologies and practices. Th is led to the 

development and release of Subversion (SVN) in 2001, 

which many now view as the successor to CVS. Originally 

developd by the ‘fathers of CVS’ Ben Collins-Sussman and 

Karl Fogel, SVN inherits its status as an open source system. 

However, its main focus is to eliminate the weak points of CVS 

that could not be practically remedied without a fresh start. 

Subversive

Version control systems play a central role in software engineering. In the beginning, CVS was the poster child 
versioning system of the open source community. Then Subversion was developed because many felt CVS 
could not keep pace with changing technologies and practices. New plugins such as Subversive and Subclipse 
have appeared in the Eclipse ecosystem to connect Eclipse developers and Subversion. The article introduces 
you to Subversive.

The Eclipse Plug-In for Subversion

For example, SVN has support for refactoring a concept that 

was unknown when CVS was originally designed—handling 

the full fi le history. 

 CVS became the de facto standard of the open source 

world, as can be seen by the fact that it comes with Eclipse 

version 3.2. However, the winds of change are blowing, and 

Subversion looms large on the horizon of interest. New 

plugins such as Subversive and Subclipse have appeared 

in the Eclipse ecosystem to connect Eclipse developers 

and Subversion. Th e rest of this article will introduce 

Subversive.

Subversive Overview
Subversive is developed by Polarion Soft ware, an 

international vendor of Application Lifecycle Management 

(ALM) solutions including Polarion for Subversion[1], 

which handles Requirements, Change, Project, Task, and 

By Frank Schröder

http://www.polarion.com/subv/


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      36

Plug-in-Parade   Subversive

Build Management for all sizes of soft ware development 

organizations. Subversive is based on Subversion and was 

originally developed as one of the clients for the Polarion 

Server. 

 In March of 2006, Subversive became open source soft ware 

and was off ered to the Eclipse community where it rapidly 

became one of the most popular Eclipse plugins (see Eclipse 

Plugin Central – EPIC).

 Subversive is incorporated into FastTrack—a free plugin 

for Eclipse that provides issue tracking and management 

features in Eclipse in addition to providing as a Subversion 

client interface via Subversive. FastTrack is available as 

a free download at http://www.polarion.com/fasttrack/ 

(registration is requested). FastTrack with Subversive is 

available for Eclipse 3.0 and SVN 1.1 or higher – the Java 

SDK 1.4 or 1.5 is also needed.

Getting Started with Subversive
Assuming an existing installation of the Eclipse IDE and 

Subversion, you can use the Eclipse Update Manage to get 

the latest version[2] of Subversive.

 Subversive adds the Repository Exploring perspective to 

the Eclipse IDE where you fi nd the same level of support for 

Subversion as Eclipse off ers for CVS. You can use the client 

interface to defi ne ‘Repository Locations’ that access any 

root in your SVN repository. Using the Subversive client in 

the Repository perspective you can:

• Browse the repository and modify the resources (Files)

• Checkout

• Synchronize

• Commit

• Update

• Solve confl icts

• Merge

Subversive’s Focus
Th e Subversive development team placed much emphasis 

on the user interface and general usability of the plugin, 

incorporating a great deal of feedback from the community 

all during the development cycle. Some of the post popular 

features[3] include:

• Cross project atomic commits

• Support of recommended repository layout, including  

 trunk, branches and tags layout

• Recursive directory revision comparison

• Adding repository locations with same URL

 validation in forms

• Extended commit dialog

 Subversion is based on libraries and executables developed 

in the C programming language. To connect it to a Java 

based environment like Eclipse, it is necessary to use special 

Java interfaces. Th ere are two libraries which support this 

connection: JavaHL and JavaSVN. Subversive supports both, 

although there is extended functionality in JavaSVN because 

both development teams have extended the Subversion API. 

Subversive supports the following features for JavaSVN:

 

• Interactive merge operation, similar to merge in the  

 Eclipse CVS plug-in

• Full projection of Eclipse refactoring operations into  

 Subversion

• Support of recommended repository layout, including  

 trunk, branches and tags layout

• Automatic resolving of confl icts 

FastTrack is a FREE tracker plug-in for Eclipse. 

It provides basic issue tracking, plus basic project 

planning and team collaboration, all deeply integrated 

into the Eclipse IDE. For more information on 

FastTrack read Volume 5 of Eclipse Magazine.

Fig. 1: SVN Repository View

http://www.polarion.com/fasttrack/
http://www.polarion.org/index.php?page=download&project=fasttrack
http://www.polarion.org/index.php?page=features&project=subversive


Subversive   Plug-in-Parade

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      37

Subversive – Next Steps
Th e Subversive projects seeks to become the standard way 

that Eclipse connects with Subversion in the same way that 

‘Eclipse CVS Team Project’ enables connectivity and ease 

of use with CVS. In the summer of 2006, Polarion Soft ware 

submitted Subversive as an Eclipse proposal [4] to become the 

Eclipse/SVN connector included in the Eclipse distribution.

Fig. 2: Subversion Synchronization

Resources & References
  [1]   http://www.polarion.com/subv/
  [2]   Download the latest version: http://www.polarion.org/index.php?page=downloa 
    d&project=fasttrack
  [3]   Subversive Features: http://www.polarion.org/index.php?page=features&project=
    subversive
  [4]   Subversive Project Proposal: http://www.eclipse.org/proposals/subversive/
  [5]   www.polarion.org
  [6]   http://www.eclipse.org/proposals/
  [7]   www.tmate.org/svn
  [8]   www.svnbook.red-bean.com
  [9]   http://www.polarion.com/subv/index_pro.php
[10]    www.tigris.org

Frank Schröder 
is CEO of Polarion Soft ware. At Polarion 
Frank is focused on building a market-
driven company for soft ware development 
platforms. He brings more than 16 years of 
experience at senior levels in IT/soft ware 
companies. He has built international 
operations and managed Merger and 
Acquisitions.

IT’S FRESH!

The all new www.sda-india.com

The bright, new face of Enterprise & IT Management. THE MAGAZINE FOR ENTERPRISE IT, IT MANAGEMENT & IT BUSINESS
INDIAINDIA

http://www.polarion.com/subv/
http://www.polarion.org/index.php?page=download&project=fasttrack
http://www.polarion.org/index.php?page=features&project=subversive
http://www.eclipse.org/proposals/subversive/
www.polarion.org
http://www.eclipse.org/proposals/
www.tmate.org/svn
www.svnbook.red-bean.com
http://www.polarion.com/subv/index_pro.php
www.tigris.org
www.sda-india.com
http://www.eclipse.org/proposals/subversive/


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      38

Feature Deploying the BIRT Viewer to JBoss 

Disseminate Report Content to an Application Server

Introduction

The BIRT project supplies a variety of components for 

download. Th e BIRT Designer, which is an Eclipse 

Perspective, is used to develop report designs, templates and 

libraries. Th e Charting package provides support for complex 

charting and is integrated with the BIRT Designer. A stand-

alone version of the Charting component is also available. 

Th e BIRT Viewer is an AJAX-based JSP/Servlet application 

that wraps the various BIRT APIs to deliver reports. Th e APIs 

included are the Report Engine API (RE API), Chart Engine 

API (CE API) and the Design Engine API (DE API). Th e DE 

API is used to create XML-based report designs, templates 

and libraries, and is used by the BIRT Designer. Th e CE API 

is used to design and create various chart types and is used by 

Deploying the BIRT Viewer to JBoss 

By Jason Weathersby

all BIRT components. Th e RE API is used to load, run, and 

render XML based designs created by the BIRT Designer.

 All the BIRT components and APIs off er a wide range of 

integration and extensibility options. Th is article will focus on 

the BIRT Viewer and its deployment to the JBoss Application 

Server. I will demonstrate the concepts using BIRT 2.1.1 and 

JBoss 4.0.5.GA. We will begin by presenting an overview of 

the BIRT Viewer, followed by instructions for deployment 

to the JBoss Application Server and conclude with details on 

setting up and using a JBoss supplied connection pool. 

BIRT Viewer Overview
BIRT supplies an example viewer that wraps the BIRT APIs for 

report generation and rendering. Th is viewer is encapsulated 

With information applications, developing content for delivery is only a part of the equation. After report designs 
are complete, the infrastructure for deploying the application has to be addressed. This is equally true for BIRT 
applications. In previous articles, we discussed many of the BIRT Designer’s features, but in this one we will cover 
deployment options available to the BIRT developer, with an emphasis on deploying the Example BIRT Viewer 
to the JBoss Application Server—although the techniques discussed in this article should apply to most J2EE-
compliant application servers.



Deploying the BIRT Viewer to JBoss   Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      39

in an Eclipse plug-in that the BIRT Report Designer uses to 

preview the reports while in development. Th e BIRT Viewer is 

also available in a separate download as a JSP/Servlet application 

that can be deployed to a J2EE application server. Th e viewer 

has two modes of operation that correspond to two servlet 

mappings (run and frameset) within the viewer application. 

 Th e frameset mapping is used to display an AJAX-based 

viewer that has controls for table of contents, parameter 

entry, export to CSV, and printing of reports. Additionally 

this mapping supports paginated HTML and features a set 

of page navigation controls.

 When using the run mapping, reports are returned as PDF 

or HTML. With this mapping the HTML that is returned 

is not paginated. Th is mapping also does not make use of 

interactive features such as table of contents and export to 

CSV. Th e designer uses this mapping when the preview tab 

is selected in the report editor.

 Th e viewer supports many URL parameters and application 

settings that determine how reports are processed. When 

deploying the Viewer these settings can be very important. 

Some of the key parameters and settings are presented 

below.

 Th e __report URL parameter specifi es the name of the report 

design to run. For example, use http://localhost:8080/birtweb/

frameset?__report=c:/tmp/Sample.rptdesign to execute a sample 

report located in the tmp directory. Th e path can be absolute 

or relative. If the path is relative, the Viewer will search for the 

report design relative to the context location. Relative paths also 

work when the Viewer is deployed as a .war. Th e only drawback 

is that the reports need to be contained within the war, unless the 

BIRT_VIEWER_DOCUMENT_FOLDER attribute is set. Th is attribute is 

discussed below.

 Th e __document URL parameter specifi es the name for the report 

document. When using the frameset mapping the Viewer divides 

report creation into two phases—Generation and Presentation. 

In generation a report design (.rptdesign) fi le is read and a report 

document is generated (.rptdocument). In the presentation phase 

the report document is rendered to the Viewer. Th is allows the 

AJAX code embedded in the Viewer to perform pagination and 

other interactive functions. Th e report document is automatically 

created by the Viewer application, unless the __document parameter 

is set. If the __document parameter exists, the Viewer will use it as 

the fi lename for the report document. Th e path can be absolute 

or relative. If the path is relative, the Viewer will search for the 

report document relative to the context location. If you specify 

a __document parameter with no __report parameter the Viewer 

can be used to render an existing report document. Th is may be 

useful when report generation is time consuming and the data 

changes infrequently.

Fig. 1: Options for Launching the BIRT Viewer within  
 the BIRT Designer

Th e article demonstrates the use of GMF in building a 

graphical editor. First a framework for JFace wizards is 

developed, that allows one to dynamically control the 

page fl ow. Next the author maps the domain to GMF 

elements and shows how to construct a graphical editor 

with very little eff ort. 

Requirements to Deploy and Run Examples

Fig. 2: Example Report in the BIRT Viewer



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      40

Feature Deploying the BIRT Viewer to JBoss 

 Both the __report and __document parameters can be relative to a 

fi le location specifi ed in the web.xml for the Viewer. Th e setting is 

BIRT_VIEWER_DOCUMENT_FOLDER.

<context-param>

 <param-name>BIRT_VIEWER_DOCUMENT_FOLDER</param-name>

 <param-value>c:/tmp</param-value>

</context-param>

 Setting the BIRT_VIEWER_DOCUMENT_FOLDER as above will 

result in the c:/tmp directory being searched for relative values 

of __report and __document parameters.

 Th e __resourceFolder URL parameter is used to set the 

resource folder for the BIRT engine. BIRT uses a resource 

folder to contain reusable components such as libraries and 

images. Th is parameter is expected to be an absolute path. 

Th ere is also a setting in the web.xml for the resource folder. 

If neither setting has a value, resources are collected from 

the same folder as the report designs. Th is setting is very 

important when deploying reports that use libraries and 

other resources.

 Th e __format URL Parameter is used to specify the output format 

when using the run mapping. Th e current values are HTML and 

PDF. Th is list will be expanded in the 2.2 release of BIRT.

 Th e __locale parameter is used to set the locale for the given 

report. Th ere is also a setting in the web.xml fi le to set the locale.

 Report parameters are specifi ed by ReportParameter=P

arameterValue pairs. To set the value of MyParmeter for the 

MyReportDesign, the URL would be formatted similar to: 

http://localhost:8080/birtweb/frameset?__report=MyReportDesign.
rptdesign&MyParameter=TestMyParameter.

 Customizations to the Viewer can be accomplished by 

checking out the org.eclipse.birt.report.viewer project from CVS 

as described on the BIRT web site. In addition to checking 

out the source code, customizations to the BIRT Viewer can 

be accomplished by making changes to the JSP fragments, 

JavaScript fi les, and Styles used by the BIRT Viewer. Th e 

directory structure for the BIRT Viewer is presented below 

with a description of the contents of key locations.

Deploying the Viewer to JBoss Application 
Server
JBoss supports many ways to build, package, and deploy 

applications. Th ese methods are covered extensively on the 

JBoss web site. Ideally we would create an ANT project to 

deploy the BIRT Viewer, but for brevity we will illustrate 

deployment as a simple copy. Th e example BIRT Viewer is 

packaged as part of the birt-runtime-version download. From 

the BIRT web site select the ‘Download’ link. Th e options 

available are as shown in Figure 4.
 Th e Runtime link listed under Deployment is the package 

that contains the example BIRT Viewer. In this article we 

Fig. 3: BIRT Viewer Directory Structure Fig. 4: BIRT Download Site



Deploying the BIRT Viewer to JBoss   Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      41

are using BIRT 2.1.1, so download the birt-runtime-2_1_1.zip fi le 

and extract the birt-runtime-2_1_1/WebViewerExample directory to 

a temporary location. Th e WebViewerExample folder contains 

everything we need to deploy to a J2EE compliant application 

server, with the exception of iText jars and JDBC drivers.

 Th e iText jars are used for PDF generation and need to 

be added to WebViewerExample. BIRT 2.1.1 uses the itext-

1.3.jar, which can be downloaded from http://prdownloads.
sourceforge.net/itext/itext-1.3.jar. If your reports need PDF 

Asian font support you will also need iTextAsian.jar, which 

can be downloaded from http://prdownloads.sourceforge.net/
itext/iTextAsian.jar. Aft er downloading these fi les, create a lib 

folder in the WebViewerExample/WEB-INF/platform/plugins/com.lowagie.

itext directory. Copy both jars to this location.

 JDBC drivers are typically copied to the WebViewerExample/

WEB-INF/platform/plugins/org.eclipse.birt.report.data.oda.jdbc_2.1.1.v20060922-

1058/drivers directory, but because we want to setup connection 

pooling through JBoss, we will skip this step.

 To deploy to the JBoss Application Server, rename the 

WebViewerExample directory to applicationname.war (for example, 

birtweb.war) and copy it to the $JBOSS_HOME /server/your_confi guration/

deploy directory (for example, $JBOSS_HOME/server/default/deploy in 

the default confi guration). JBOSS will automatically deploy 

the exploded war.

 Another option is to war the Viewer using the following 

command within the WebViewerExample directory.

jar –cvf birtweb.war 

 Aft er the WAR is created, copy it to the $JBOSS_HOME/server/

default/deploy directory and JBoss will automatically deploy the 

application.

Testing the Viewer
 Aft er deploying the Viewer, start the JBoss Application 

server and enter http://localhost:8080/birtweb as the URL and 

select the View Example link. Th e output will be similar to that 

shown in Figure 5.
 Although this report is not very exciting it verifi es that 

the Viewer is running correctly. We can now move on to 

deploying user-created reports.

Deploying a Report
In most cases you will want to make changes to the fi le 

web.xml as described in the Viewer section of this article to 

deploy reports. Th is will include setting values for the report 

document locations and resource locations. One key item 

for deployment that we touched on briefl y in the last section 

is JDBC drivers. BIRT has a default directory for JDBC 

drivers, but in deploying to JBoss we would prefer to share a 

connection pool provided by the Application Server. Th is is 

fairly simple to set up with JBoss and is a logical choice for 

deploying BIRT reports.

 In this article we will demonstrate with the MySQL 

Connector/J driver, which is contained in the mysql-connector-

java-3.1.12-bin.jar. As per the JBoss instructions, we first 

copy the driver to the $JBOSS_HOME/server/confi guration/lib 

directory.

 Next we make a copy of the mysql-ds.xml fi le located in the 

$JBOSS_HOME/ /docs/examples/jca directory and make the following 

changes highlighted in ‘bold’. (See Confi guring JDBC 

DataSources in Th e JBoss 4 Application Server Guide for more 

information).

<datasources>

  <no-tx-datasource>

    <jndi-name>MySqlDS</jndi-name>

    <connection-url>jdbc:mysql://localhost:3306/Classicmodels</connection-url>

    <min-pool-size>5</min-pool-size>

    <max-pool-size>15</max-pool-size>

    <driver-class>com.mysql.jdbc.Driver</driver-class>

    <user-name>root</user-name>

    <password>root</password>

    <exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.

Fig. 5: BIRT Test Report

http://prdownloads.sourceforge.net/itext/itext-1.3.jar
http://prdownloads.sourceforge.net/itext/itext-1.3.jar
http://prdownloads.sourceforge.net/itext.iTextAsian.jar
http://prdownloads.sourceforge.net/itext.iTextAsian.jar


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      42

Feature Deploying the BIRT Viewer to JBoss 

MySQLExceptionSorter</exception-sorter-class-name>

 

    <metadata>

       <type-mapping>mySQL</type-mapping>

    </metadata>

  </no-tx-datasource>

</datasources>

 We are setting this data source up as a no-tx-datasource, 

because we do not require transaction support. Th e pool 

size is set to be a minimum of fi ve and a maximum of 15 

connections for example only. Th e driver is set to the MySQL 

driver and the connection URL is set to a local copy of the 

Classic Models database available from the BIRT web site. 

We will discuss building a report that uses this data source in 

the next section, but when running a report against it you can 

use the JMX Management Console to view the connections.

 Now that the Viewer is deployed to the JBoss Application 

Server and the connection pool is set up, we can launch the 

BIRT designer and start developing reports to deploy. 

Building a Connection within the BIRT 
Designer
 Illustrated below is the BIRT Data Source Editor for a 

JDBC connection. Th is editor can be reached by adding 

a new data source to a report or by double clicking on an 

existing data source. In this example the driver class is set to 

the MySQL driver and the URL points to the local copy of the 

Classic Models database. We also have supplied a username, 

password, and JNDI URL. Th e JNDI URL is used to look up 

a connection from a Naming Service.

 When designing a report to use in this environment, we 

could use JBoss’ support for remote client access, but this is 

not recommended, and would require additional changes 

to the mysql-ds.xml fi le. Instead, our data source is defi ned 

under the java:/ context, which will allow access to the pool 

by other applications within the same virtual machine, 

including the deployed BIRT Viewer, but not the BIRT 

Report Designer.

 Th e BIRT JDBC Data Source, whether used within the 

designer or from the deployed Viewer, tries to use the 

JNDI name to do a lookup, passing the supplied username 

and password. If the lookup or connection fails, the driver 

attempts a JNDI lookup with no username and password 

supplied, which will default to the values we confi gured 

earlier in the mysql-ds.xml fi le. It is important that the same 

username and password are used for each request to the 

pool. If this is not the case, the pool will automatically be 

rebuilt when the credentials change. If both lookups fail, 

the BIRT driver will try to make a direct connection using 

the supplied Driver Class, URL, User Name and Password.

 Th is presents somewhat of a problem when developing 

reports. Ideally we would have a username and password 

that is used for development, and use the supplied mysql-ds.xml 

credentials when the report runs in the deployed version 

of the Viewer. Fortunately BIRT provides a mechanism 

to enable this. BIRT Data Sources have a feature called 

Property Binding that allows public driver properties to be 

modifi ed at runtime. Th is is accessible by selecting Property 

Binding entry while in the Data Source Editor.

Fig. 6:  JMX Management Console
Fig. 7: GMF Graphical Defi nition Creation



Deploying the BIRT Viewer to JBoss   Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      43

 Th e BIRT JDBC driver supports changing the Driver Class, 

Driver URL, User Name, Password, or JNDI URL within the 

property binding feature. When a property binding value 

expression is entered, it will be evaluated at runtime to return 

a value. Th is can be very useful for running the same report on 

diff erent databases in production and development, as well as 

other situations. 

 We can use this feature to change the username and password 

depending on how the report is executed. Expressions in the 

Data Source Property Binding editor can reference many values, 

such as parameters, session variables, or script values. If we enter 

the expression shown below for User Name and Password, the 

engine will use ‘me’ as the username and password to make 

a local database connection while running the report in the 

designer. On the other hand, the username and password will be 

set to blank when running in the Web Viewer deployed in JBoss, 

forcing the use of the connection pool credentials.

 To test the property binding, we can build a report that includes 

the expression above. We can also add a fi eld to the report that 

shows the user who made the connection. Th is value will be ‘me’ 

if run locally and ‘’ if executed on the JBoss Application Server.

Summary
In this article we have discussed one deployment scenario 

available to the BIRT developer. Deploying the BIRT Viewer 

to an application server is only one of many options available 

for disseminating report content. Deploying using any of the 

BIRT run time APIs are valid approaches. Wrapping the BIRT 

Viewer or the APIs in portlet technology provides another 

means of integration. While there are many options available, 

information covered in this article should be pertinent to any 

deployment strategy involving J2EE application servers.

Fig. 8: BIRT Data Source Editor Property Binding

Fig. 9: Property Binding Expression

Resources & References
[1] www.jboss.org
[2] www.eclipse.org/birt

Jason Weathersby 
is the BIRT Evangelist at Actuate Corporation 

and a member of the Eclipse Business 

Intelligence and Reporting Tools (BIRT) 

Project Management Committee (PMC). 

Jason has over 15 years experience in the 

soft  ware development fi  eld, ranging from 

real time process control to business intelligence soft  ware. At 

Actuate, Jason is currently responsible for educating the Open 

Source community on BIRT and encouraging its adoption.

Fig. 10: GMF Mapping for DisplayState

www.jboss.org
www.eclipse.org/birt


 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      44

Feature Enabling Integration and Interoperability for 
Eclipse-based Development

Enabling Integration and 
Interoperability for Eclipse-based 
Development
An Introduction to the Corona Project

Introduction

Designing, developing, testing, and managing business 

critical applications has become increasingly 

more complex. Today’s applications have a distributed 

architecture; they implement multiple languages and span 

multiple platforms from browser to mainframe. In addition 

applications have many integration points with packages and 

legacy applications.

 To manage this complexity, projects are typically divided 

into tasks and teams are assigned to execute them. As a result, 

the IT organization responsible for delivering and managing 

these business critical applications has become increasingly 

complex as well and is required to interact with multiple 

organizations.

By Edwin Shumacher

 In order to ensure the application will deliver on the 

expectation of the business it is common sense to involve 

business stakeholders in the requirements capturing 

phase. Also, to ensure the project will be run as cost eff ective 

as possible, organizations may execute a strategy called 

multi-sourcing—a combination of in-house development 

and outsourcing to local/specialized SI’s and off shore 

development. Knowledge and experience are further 

Designing, developing, testing and managing business critical applications has become increasingly more complex. 
To manage this complexity, projects are typically divided into tasks and teams are assigned to execute them. But 
IT managers also need to ensure all these different teams and team members collaborate effectively as if they 
were a small team all working in the same room, in the same offi ce, and on the same project. The article explains 
why Corona is the right tool to address this IT business problem.

Corona is a server-side framework that enables Eclipse-

based tools to collaborate, sharing information about 

projects, applications and events. It provides Eclipse 

developers with a wider selection of plug-ins to more 

quickly diagnose and resolve application problems.



   Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      45

Enabling Integration and Interoperability for 
Eclipse-based Development

key factors in making a project successful, however the 

knowledge that you need may not be available in one 

location, but spread across different locations. From a 

tools perspective, most people will probably favor the 

Eclipse IDE, but we have to acknowledge that there are 

more IDE’s available in the market. In addition, IDEs are 

used by developers whereas testers need testing tools 

and business analysts need requirements management 

tools and operations people need tools to help them 

monitor applications running in production.

 As if this is not difficult enough the business users want 

IT to deliver more value and better service, more quickly 

and at a lower cost.

 So the question is how to involve all these different 

teams and team members and make them collaborate 

effectively as if they were a small team all working in 

the same room in the same office on the same project? 

That is the IT business problem that Corona is aiming to 

address.

What the Market Needs
To address these challenges, large companies like Microsoft 

and IBM have been working on individual solutions. 

Microsoft provides Visual Studio Team System that 

utilizes information in the Team Foundation Server to 

address the needs for communication and collaboration 

across the lifecycle. At EclipseCon 2006, IBM gave 

a demo on Jazz. Jazz is an IBM proprietary solution 

for collaborating information across the development 

environment. There are other companies also working on 

collaboration solutions.

 Compuware agrees with Microsoft and IBM that 

a solution is required to help solve these business 

challenges, because the existing means of communication, 

such as meetings, conference calls, groupware, wikis 

and slashdots, to fill these gaps are lacking and require 

the team to go outside their normal environment (using 

manual processes). We need to automate these processes 

so they become part of the daily activities of the team.

 So why not use Microsoft or IBM solutions? In reality 

customers need to have a solution that’s open to both 

Microsoft and Java based applications. By providing this 

solution, many different tool vendors with best of breed 

products will be able to participate in tool solutions for 

customers that share information across the full lifecycle. 

What is Corona?
Corona is about tool integration. It will enable Eclipse 

constructs, such as a ‘project’, to be shared in a distributed 

environment. Th e power of the Eclipse Workbench will 

be extended to enable a project team to function as a 

workgroup.

 Within the Eclipse Workbench, the project provides the 

context for plug-in interoperability. Plug-ins can share the 

same project and its resources. Th ey can receive notifi cations 

when a project or its resources have been updated to allow 

them to take appropriate actions. However, this is limited to 

the scope of a single Eclipse Workbench instance.

 Corona extends the knowledge of a project to the server-

side. Th is allows multiple Eclipse Workbench instances 

to share the same project defi nition. Corona introduces a 

Collaboration Nature that can be attached to a project. 

Th is enables project notifi cations that are local to an Eclipse 

Workbench to be published as Collaboration Events and 

shared with all members of a workgroup. All project team 

members are notifi ed when updates are made to project 

resources. Th is allows project team members to be more 

proactive, instead of reactive, to project events.

Eclipse = Workbench Interoperability
Eclipse is originally known as an IDE. It is a platform for 

tool vendors to provide plug-ins to empower the developer. 

As the popularity of Eclipse grew, it became apparent that its 

plug-in model could be used for applications in other vertical 

markets. Beginning with Eclipse version 3, the Eclipse 

Workbench became an independent platform separate 

from the IDE. Th e IDE became an application based on the 

Workbench.

 Th e Eclipse Workbench provides the foundation for Eclipse 

based Rich Client Applications (RCP). It defi nes common 

constructs such as projects, resources, and events that enable 

interoperability across multiple plug-ins. In addition to 

these common constructs, the Workbench also provides 

technology frameworks confi guration settings, installation 

and updates, online help, and many other capabilities that 

unite plug-ins into a cohesive solution. See Figure 1.

See Volume 2 of Eclipse Magazine where Edwin 

Schumacher speaks about the Corona Project, how it 

works with ALF, and more.



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      46

Feature Enabling Integration and Interoperability for 
Eclipse-based Development

Corona = Workgroup Interoperability
Corona extends the Workbench interoperability to the 

Workgroup. Th e defi nition of a project is moved to the 

Corona server so that it can be shared with multiple Eclipse 

Workbench applications. Th e common shared project 

defi nition now provides the context for collaboration across 

all Workbenches, thus enabling the Workgroup.

 Project notifi cation events that were once local to a 

single Workbench are now shared across the Workgroup as 

Collaboration Events. Th ese events enable the members of 

the Workgroup to stay synchronized with one another.

 Finally, Corona will extend the capabilities of the Eclipse 

Communication Framework (ECF) to provide a context to 

collaboration features such as chat and shared editors. See 

Figure 2.

Corona = Enterprise Interoperability
Not all tools are based on the Eclipse Workbench. Corona 

acknowledges and respects this and is therefore based upon 

a Service-Oriented Architecture (SOA) component model. 

Corona plug-ins can be enabled to expose functionality via 

Web Services.

 Th e benefi t of this design is that it will allow additional 

Corona plug-ins, both commercial and open source, to be 

deployed within Corona. Th ese plug-ins can act as proxies to 

provide integration with non-Eclipse solutions. See Figure 3.

Example User Scenario – Production Issue 
Resolution
Imagine you are having problems in your production 

system. Th ey are intermittent but are becoming increasingly 

more critical to the integrity of the system. Many team 

meetings between diff erent operational areas have been held 

to determine the cause of the problem. A special team has 

been assigned to try to identify the cause of the problem and 

determine a resolution. Th is scenario shows how monitoring 

and debugging tools can plug into the Corona framework 

Fig. 3: Enterprise interoperability with Corona

Fig. 1: Eclipse Workbench

Fig. 2: Workgroup Interoperability with Corona



   Feature

 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      47

Enabling Integration and Interoperability for 
Eclipse-based Development

providing the communication and collaboration tools used 

by the special team to share information critical in resolving 

the problem:

• Production Monitoring technology is running on the 

production server. An exception takes place and the monitoring 

agent captures key information about the cause of the problem, 

such as heap information and values of variables.

• Th e Production Monitoring Adaptor, running in the 

Corona framework, receives the key information via Web 

Services. Th e information is converted and published as a 

Collaboration Event within Corona.

• Corona utilizes the OSGi EventAdmin service, implemented 

by Equinox, to distribute the Collaboration Event to other 

services that have subscribed to the particular event.

• Th e Knowledge Manager receives a copy of the 

Collaboration Event that contains the key information. It 

updates its Knowledge Base with the key information and 

associates it to relevant projects and resources.

• Th e Event Router also receives a copy of the Collaboration 

Event. It will route the event to all Eclipse Workbench 

instances that are participating in the workgroup. 

Developers, team leaders, and managers who are members 

of the workgroup receive copies of the Collaboration Event. 

Th e project manager receives notifi cation of the issue and is 

able to assign a priority and resource to the issue.

• Th e developer logs into her Eclipse IDE and sees the new 

issue with the high priority and is able to open the information 

in her environment and look at the details of the information 

captured. If more information is required the developer can 

send a request to operations to capture additional information, 

or resolve the problem with the existing information. See 

Figure 4.

The Key Benefi ts Of Corona
 Corona is an open, standards-based extensible 

collaboration framework. Th e Eclipse community owns 

Corona and Compuware is determined to ensure it meets 

the needs of the market.

 Where Eclipse provides interoperability on the Workbench, 

Corona will extend interoperability into collaboration 

across Eclipse Workbenches and even across non-Eclipse 

Workbenches:

• Vendor benefi ts: Corona will allow tools from diff erent 

vendors to become part of an integrated application life cycle 

Th e core components of Corona are:

• Core Framework: Corona is based upon Equinox to provide the basis for a SOA environment. Equinox has implemented 

the OSGi specifi cation. In addition to the OSGi runtime, Corona also leverages several other Eclipse frameworks. Th e 

result is a consistent Eclipse plug-in model that is used in both client (Workbench) and server (Corona) environments.

• Collaboration Framework: Eclipse defi nes constructs, such as Projects and Resources that can be shared across 

plug-ins within a single Workbench instance. Corona will extend this model to a distributed environment by allowing 

these constructs to be shared across multiple Workbench instances. Th is will enable workgroup collaboration on those 

particular Resources.

• SOA Framework: Corona introduces a web services model that allows Eclipse plug-in extension points to be mapped 

to web service endpoints, thus allowing non Eclipse-based applications to collaborate with Eclipse-based applications.

• Semantic Framework: Th e semantic framework ties everything together. It provides the persistent memory that 

describes Resource capabilities as well as relationships between Resources. Th e semantic framework provides growth 

opportunities. Th e knowledge base can be extended to include additional relationships defi ned by plug-in providers.

Corona Frameworks

Fig. 4: Corona Tool Integration Framework



 E c l i p s e  M a g a z i n e  J a n u a r y  2 0 0 7
 www.eclipsemag.net      48

Feature Enabling Integration and Interoperability for 
Eclipse-based Development

solution. Every Corona compliant tool will become a potential 

building block for a life cycle solution. Tools cannot be ignored 

or excluded anymore as result of not being part of a proprietary 

ALM solution. By creating Corona plug-ins for their tools, 

vendors can quickly become part of a bigger solution.

• End-user benefi ts: Corona will allow customers to create 

their custom application life cycle solution comprised of the 

tools of their choice. Th is allows them to reuse the investments 

they made in tools, methodologies, best practices, and skills 

as much as possible. It prevents them from having to switch 

to a single vendor proprietary solution. In addition, Corona 

will accelerate the speed of delivery for complex, business 

critical applications, thus improving IT’s effi  ciency and 

increasing the return of investment (RoI) for the business.

Edwin Shumacher
Based in the worldwide development 

centre in Amsterdam, the Netherlands, 

Edwin Schumacher is responsible for 

the technical direction of Compuware’s 

application development and integration 

products, including Compuware OptimalJ, 

an enterprise application development and 

integration environment that helps organizations adopting 

J2EE standards increase both developer productivity and Java 

application quality.

www.developersutra.com


www.eclipsemag.net  Vol.6 January ‘07

Advertisers
JAX Innovation Award
http://www.jax-award.com

 
JAX Magazine
http://www.jaxmag.com

SDA Asia
http://www.sda-asia.com

Eclipse Magazine
http://www.eclipsemag.net

SDA India
http://www.sda-india.com

Developer Sutra
http://www.developersutra.com

Software &Support Media
www.soft waresupportmedia.com

19

28

34

37

08 Editor-in-Chief Indu Britto

Associate Editor Alexander Neumann

Managing Editor Dilip Th omas

Authors  Andrey Nechypurenko, Christopher  

  Deckers, Dieter Krachtus, Douglas C.  

  Schmidt, Edwin Schumacher, 

  Egon Wuchner, Frank Schroeder,

  Jason Weathersby, Jules White, 

  Rajkumar C Madhuram

Layout  S. Ganesh, Gwendolyn Vaz

How to Contact Us

We invite you to submit letters, articles, announcements, and 

press releases to Eclipse Magazine.

E-Mail:  editors@eclipsemag.net

Address:  Soft ware & Support Verlag GmbH

 Geleitsstraße 14

 60599 Frankfurt am Main

 Germany

Tel:  +49 (0) 69 63 00 89 0

Fax:  +49 (0) 69 63 00 89 89

Web Site:  www.eclipsemag.net

Advertising

E-Mail:  advertise@eclipsemag.net

 noutmani@entwickler.com

Tel: +49 (0) 69 63 00 89 0

Fax:  +49 (0) 69 63 00 89 89

© Copyright 2007. Soft ware & Support Media

All rights reserved. No part of this publication may be 

produced in any form without prior consent of the copyright 

holder. While all reasonable attempts are made to ensure 

accuracy, Soft ware & Support Media disclaims any liability 

whatsoever for any use of code or other information therein.  

All trademarks and brands used are usually registered 

trademarks of companies and organisations. 

Imprint

48

50

http://www.jax-award.com
http://www.jaxmag.com
http://www.sda-asia.com
http://www.eclipsemag.net
http://www.sda-india.com
http://www.developersutra.com
www.soft waresupportmedia.com
www.eclipsemag.net
mailto:advertise@eclipsemag.net
mailto:noutmani@entwickler.com


 You can also visit http://www.impigertech.com/
wizard/.

WHERE DO YOU WANT TO 
MEET YOUR CUSTOMER?

S&S Media
CHAMPIONING CROSS MEDIA COMMUNICATIONS

SINGAPORE S&S MEDIA PTE LTD 

133 NEW BRIDGE ROAD #08-10 CHINATOWN POINT 

SINGAPORE 059413 

TEL: +65 6435 0260 (MAIN LINE) FAX: +65 6887 3842 

E-MAIL: advertise@sda-asia.com

WebSite:www.softwaresupportmedia.sg

Software & Support Verlag GmbH

Geleitsstraße 14

60599 Frankfurt am Main, Germany

Phone: +49 (0) 69 63 00 89 0     Fax: +49 (0) 69 63 00 89 89

E-mail: sda-asia@software-support.biz

Website:www.software-support.biz 

S&S Media 

MENARA KADIN INDONESIA,

JAKARTA 12950, INDONESIA

Phone: +62 21 5263083            Fax: +62 21 5299 4599

E-mail: contactus@media-ti.co.id

WebSite:www.media-ti.co.id 

S&S Media

#15/6, I FLOOR, PRIMROSE ROAD,

BANGALORE - 560 025

Off: +91 80 41124392/3       Fax: +91 80 41124391

E-mail: editors@sda-india.com

WebSite:www.softwaresupportmedia.in 

FOUR SERVICES. ONE SOURCE.

S&S
Media

Print
(Magazine)

Custom
Events

Branded 
Conference

Online

www.softwaresupportmedia.com



