
Evaluating the Performance of Middleware Load Balancing Strategies

Jaiganesh Balasubramanian, Douglas C. Schmidt, Lawrence Dowdy, and Ossama Othman
fjai,schmidt,ossamag@dre.vanderbilt.edu and larry.dowdy@vanderbilt.edu

Institute for Software and Integrated Systems

Vanderbilt University, Nashville, TN, USA

Abstract

This paper presents three contributions to research on
middleware load balancing. First, it describes the de-
sign of Cygnus, which is an extensible open-source middle-
ware framework developed to support adaptive and non-
adaptive load balancing strategies. Key features of Cygnus
are its ability to make load balancing decisions based on
application-defined load metrics, dynamically (re)configure
load balancing strategies at run-time, and transparently
add load balancing support to client and server applica-
tions. Second, it describes the design of LBPerf, an open-
source middleware load balancing benchmarking toolkit
developed to evaluate load balancing strategies at the
middleware level. Third, it presents the results of ex-
periments that systematically evaluate the performance of
adaptive load balancing strategies implemented using the
Cygnus middleware framework using workloads generated
by LBPerf. The workloads used in our experiments are
based on models of CPU-bound requests that are represen-
tative of a broad range of distributed applications.

Our experiments with LBPerf illustrate the need for eval-
uating different adaptive and non-adaptive load balancing
strategies under different workload conditions. In addition
to assisting in choosing a suitable load balancing strategy
for a particular class of distributed applications, our em-
pirical results help configure run-time parameters properly
and analyze their behavior in the presence of different work-
loads. Our results also indicate that integrating Cygnus into
distributed applications can improve their scalability, while
incurring minimal run-time overhead. As a result, devel-
opers can concentrate on their core application behavior,
rather than wrestling with complex middleware mechanisms
needed to enhance the scalability of their distributed appli-
cations.

Keywords: Middleware load balancing, adaptive load
balancing strategies.

1 Introduction

Load balancing is a well-established technique for utiliz-
ing available computing resources more effectively by parti-
tioning tasks according to load distribution strategies. Dis-

tributed applications can improve their scalability by em-
ploying load balancing in various ways and at various sys-
tem levels. For example, heavily accessed Internet web
sites often use load balancing at the network [4] and op-
erating system [13] levels to improve performance and ac-
cessibility to certain resources, such as network hosts and
host processes, respectively. Load balancing at these levels,
however, may be unsuitable for certain types of distributed
applications (such as online stock trading, weather predic-
tion, and total ship computing environments [20]) due to the
lack of application-level control over load balancing poli-
cies, lack of extensible load metrics, and inability to know
the distributed system state/behavior and client request con-
tent when distributing loads.

For these types of distributed applications, load balanc-
ing at themiddlewarelevel can help improve scalability
without incurring the limitations of load balancing at lower
levels outlined above. As with load balancing done at other
levels, middleware load balancing can beadaptiveor non-
adaptive, depending on whether or not run-time load con-
ditions influence load balancing decisions. Adaptive load
balancing strategies use run-time system state information
(e.g., host workload), to make load balancing decisions,
whereas non-adaptive load balancing strategies do not.

In theory, adaptive load balancing can be more flexible
and desirable than non-adaptive load balancing since it can
satisfy key distributed application requirements, such as:

� Improved handling of erratic client request patterns
� Optimizing resource utilization for different work-

loads, workload conditions, and types of systems.

In practice, however, the effectiveness of adaptive load bal-
ancing depends on the load distribution strategy chosen, the
type of load metrics chosen, and on other run-time param-
eters needed by the adaptive strategies. For example, an
influential run-time parameter is theload metric[14] a load
balancer uses to make load balancing decisions. Since load
balancing middleware can be employed using various load
balancing strategies and multiple metrics, determining the
appropriate adaptive load distribution strategies for differ-
ent classes of distributed applications is hard without the
guidance of comprehensive performance evaluation mod-
els, systematic benchmarking metrics, and detailed empiri-
cal results.

1



Our earlier work [18, 17, 19] on middleware load bal-
ancing focused on (1) defining a nomenclature that can de-
scribe various forms of load balancing middleware, (2) cre-
ating a flexible and portable load balancing model, (3) iden-
tifying advanced features of load balancing middleware that
can be used to enhance and optimize this load balancing
model, (4) designing a middleware framework that supports
the RoundRobin, Random, and LeastLoaded load balancing
strategies, and (5) developing an efficient load balancing
service that implements the strategies using standard mid-
dleware features.

This paper explores a previously unexamined topic per-
taining to load balancing middleware bycharacterizing
workload models in distributed systems and empirically
evaluating the suitability of alternative middleware load
balancing strategies for distributed applications that gen-
erate these workloads. We evaluate these strategies in the
context of two technologies:
� LBPerf, which is a benchmarking toolkit for evaluating

middleware load balancing strategies.
� Cygnus, which is an extensible C++ middleware

framework that supports a range of adaptive and non-
adaptive load balancing strategies.

LBPerf and Cygnus are open-source and available from
deuce.doc.wustl.edu/Download.html .

We developed Cygnus to investigate the pros and cons
of adaptive and non-adaptive load balancing strategies op-
erating in standard middleware distributed systems. The re-
sults of applying LBPerf to Cygnus show that well-designed
adaptive load balancing strategies can improve the perfor-
mance of the system in the presence of a range of CPU
loads. Moreover, the threshold values associated with adap-
tive load balancing strategies help meet key quality of ser-
vice (QoS) requirements needed by certain types of dis-
tributed applications.

The remainder of this paper is organized as follows: Sec-
tion 2 presents our load balancing and distributed system
models; Section 3 examines the architecture of the Cygnus
middleware framework used to implement the load balanc-
ing experiments conducted in this paper; Section 4 intro-
duces the LBPerf middleware load balancing toolkit used to
drive the benchmarking experiments in this paper and ana-
lyzes empirical results that evaluate the suitability of vari-
ous middleware load balancing strategies for distributed ap-
plications; Section 5 compares our research on middleware
load balancing with related work; and Section 6 presents
concluding remarks.

2 Middleware Load Balancing Architecture
and Distributed System Model

This section presents the architecture our middleware
load balancing service and distributed system model. We

first illustrate the key requirements for a middleware load
balancing service and provide an overview of the archi-
tectural concepts and components of our middleware load
balancing service. We then describe the distributed system
model used in the evaluation of this service.

2.1 Key Middleware Load Balancing Require-
ments

The following are the key requirements of a middleware
load balancing service [18]:

� General purpose– A load balancing service should
make little or no assumptions about the types of appli-
cations whose loads it balances.

� Transparency – A load balancing service should bal-
ance loads in a manner transparent to client applica-
tions (and as transparently as possible to servers).

� Adaptive – A load balancing service should be able to
adapt its load balancing decisions based on dynamic
load changes.

� Scalable and Extensible– A load balancing service
should provide scalability to a distributed application
by utilizing available computing resources to handle
a large number of client requests and manage many
servers efficiently, and should be neutral to different
load balancing strategies.

2.2 The Structure and Dynamics of a Middleware
Load Balancing Architecture

The key middleware load balancing concepts we defined
to meet the requirements outlined in Section 2.1 are shown
in Figure 1 and described below:

� Load balancer, which is a component that attempts to
distribute the workload across groups of servers in an
optimal manner. A load balancer may consist of a sin-
gle centralized server or multiple decentralized servers
that collectively form a single logical load balancer.

� Member, which is a duplicate of a particular object on
a server that is managed by a load balancer. It performs
the same tasks as the original object. A member can
either retain state (i.e., is stateful) or retain no state at
all (i.e., is stateless).

� Object group, which is a group ofmembersacross
which loads are balanced. Members in such groups
implement the same remote operations.

� Session, which in the context of load balancing mid-
dleware defines the period of time that a client invokes
remote operations to access services provided by ob-
jects in a particular server.



Load
Balancer

Clients

R
e

qu
e

st
s

R
e

pl
ie

s

Members
Object Groups

S
e

ss
io

n

Figure 1. Key Middleware Load Balancing Ser-
vice Concepts

2.3 Distributed System Model

Figure 2 shows the model of the distributed system used
as the basis for the load balancing experiments in this paper.
In this model, distributed systems are built by interconnect-

Client Server

NETWORK

Load
Balancer

In
te

rc
ep

t

Redirect to Server
Load Information

Figure 2. Distributed System Model

ing clients and servers. Each server is a member of an object
group. All servers register themselves with a load balancer,
which itself consists of one or more servers that mediate
between different elements of the load balancing service.

When a client invokes an operation, this request is ini-
tially intercepted by the load balancer. The load balancer
finds an object group member (i.e., a server) suitable to
handle the request and then redirects the operation request
to the designated group member using the underlying mid-
dleware request redirection support. Client applications are
thus assigned a group member to handle their request. The
overhead of contacting the load balancer is incurred only for
thefirst request. Henceforth, the client communicates to its
designated server directly, unless further dynamic adapta-
tion is needed (and supported by the load balancing service,

of course).
As with the load balancing service described in Sec-

tion 2.2, the distributed system model presented above can
be implemented on a range of middleware platforms. Sec-
tion 3 describes how we implemented this model using the
Cygnus load balancing middleware framework.

3 Overview of Cygnus

This section presents an overview of the Cygnus load
balancing framework, which is a CORBA [16] implemen-
tation of the middleware load balancing architecture de-
scribed in Section 2.2. In addition to explaining the respon-
sibilities of the key components in Cygnus, we describe
Cygnus’s load balancing strategies and load monitors and
show how all these elements interact at run-time. Section 4
then describes benchmarks that evaluate the performance of
Cygnus empirically.

3.1 Components in the Cygnus Load Balancing
Framework

Figure 3 illustrates the components in the Cygnus load
balancing framework. The components in this figure form

Client

Location/Node

LoadManager

MemberLocator

LoadAnalyzer

next_member

push_loads

POArequests

member

requests

*

*
LoadMonitor

LoadAlert alert

Figure 3. Load Balancing Components in Cygnus

a middleware load balancing framework that provides the
following capabilities:

� The load manager is a mediator [8], that is the ap-
plication entry point for all load balancing tasks. This
component facilitates client and object group member



participation in load balancing decisions without ex-
posing them to implementation details that should re-
main internal to the load balancing service.

� Themember locator is theinterceptor[21] that binds
a client to an object group member. This component
allows the load balancer to transparently inform the
client to invoke requests on the chosen object group
member.

� The load analyzerexamines load conditions and trig-
gers load shedding when necessary based on the load
balancingstrategyin use. This component also de-
cides which object group member will receive the next
request. Distributed applications whose loads change
frequently can use the load analyzer to self-adaptively
choose new load metrics and load balancing strategies
at run-time.

� The load monitor makes load reports available to
the load manager, thereby decoupling potentially
application-specific load retrieval tasks from the load
balancer. This component also allows the load bal-
ancer to independent of the load-metric.

� The load alert acts as amediatorbetween the load
balancer and the object group member. It shields the
object group member from load shedding instructions
issued by the load balancer by handling those instruc-
tions and taking appropriate actions, such as intercept-
ing client requests and transparently redirecting them
to the load balancer.

3.2 Cygnus Load Balancing Strategies

The following load balancing strategies are currently in-
tegrated into the Cygnus middleware framework described
in Section 3.1:

� RoundRobin – This non-adaptive strategy keeps a list
of locations containing at least one object group mem-
ber, and selects members by simply iterating through
that location list.

� Random – This non-adaptive strategy keeps a list of
locations where object group members are present and
randomly chooses a location to serve a request.

� LeastLoaded– This adaptive strategy allows locations
to continue receiving requests until a threshold value
is reached. Once the threshold value is reached, subse-
quent requests are transferred to the location with the
lowest load.

� LoadMinimum – This adaptive strategy calculates
the average loads at locations containing object group
members. If the load at a particular location is higher
than the average load and greater than the least loaded
location by a certainmigration threshold percentage,
all subsequent requests will be transferred to the least
loaded location.

Two key elements of Cygnus’s adaptive load balancing
strategies are theirtransferandgranularitypolicies [6]. The
transfer policy determines whether a request should con-
tinue to be processed at the server where it is currently be-
ing processed or migrated to another server. The granularity
policy determines which object group member receives the
request selected for execution.

Transfer policies typically use some type ofload met-
ric threshold to determine whether the particular location is
overloaded. Cygnus supports the following load metrics:
� Requests-per-second, which calculates the average

number of requests per second arriving at each server.
� CPU run queue length, which returns the load as the

average number of processes in the OS run queue over
a specific time period in seconds, normalized over the
number of processors.

� CPU utilization , which returns the load as the CPU
usage percentage.

Cygnus load monitor components outlined in Section 3.1
measure the loads at each endsystem based on the config-
ured load metrics.

Granularity policies typically focus on entities such as a
host or process. For example, a host-oriented load balancer
would balance loads across multiple hosts and a process-
oriented load balancer would balance loads across multi-
ple processes. Since certain granularity levels may not be
suitable for all types of applications, Cygnus performs load
balancing at a more abstract unit of granularity, namelylo-
cation, which can be defined to be whatever the applica-
tion developer chooses. For instance, members of one ob-
ject group could be load balanced at the host level, whereas
members of another object group could be balanced at the
process level. Cygnus only sees abstract locations, how-
ever, which increases its flexibility since its load balancing
strategies need not be designed for specific granularities.

3.3 Dynamic Interactions in the Cygnus Load Bal-
ancing Framework

Figure 4 illustrates how Cygnus components (Sec-
tion 3.1) interact with each other and with the load balanc-
ing strategies (Section 3.2) at run-time. As shown in this
figure, the following interactions occur when Cygnus com-
ponents process client requests:

1. A client invokes an operation on what it believes to
be its target CORBA object. In actuality, however,
the client transparently invokes the request on the load
manager itself.

2. The load manager dispatches that request to its mem-
ber locator component.

3. The member locator component queries the load ana-
lyzer component for an object group member (server)
to handle the request.



Client Load
Manager

1: send_request

3: next_member

4: LOCATION_FORWARD

5: send_request

6: push_loads

7: is_overloaded

8: alert

9: LOCATION_FORWARD

Member and LoadAlert
object are at same
location.

2: send_request

Member
Locator

Load
Analyzer

Load
Monitor

Load
Alert

Member

Figure 4. Interactions Between Cygnus Compo-
nents

4. After a member is chosen by the load analyzer, the
member locator component uses the standard CORBA
GIOP LOCATION FORWARD message to dynamically
and transparently redirect the client to that member.

5. Clients start sending requests directly to the chosen
object group member. The load manager component
is not involved in any requests that are sent, eliminat-
ing the additional indirection and overhead incurred by
per-request load balancing architectures [18].

The remaining activities described below are carried
out by Cygnus only when adaptive load balancing
strategies are used.

6. The load monitor monitors a location’s load and this
information is reported to the load analyzer.

7. As loads are collected, the load analyzer analyzes the
load at all known locations.

8. When the load analyzer detects that an object group
member is overloaded, the load manager does not in-
form the client that it needs to contact another less
loaded object group member. To fulfill the trans-
parency requirements, the load manager issues analert
to the load alert component residing at the location
where the object group member resides.

9. When instructed by the load analyzer, the load alert
component uses the GIOPLOCATION FORWARDmes-
sage to dynamically and transparently redirect subse-
quent requests sent by one or more clients back to the
load manager, whose object reference it obtained from
the contents of the alert message.

4 Empirical Results

This section describes the design and results of ex-
periments that empirically evaluate the performance of

Cygnus’s adaptive and non-adaptive load balancing strate-
gies outlined in Section 3.2. These results illustrate how
Cygnus addresses the key middleware load balancing re-
quirements outlined in Section 2.1. In particular, they show:

� How Cygnus improves the scalability of distributed ap-
plications, without incurring significant run-time over-
head.

� How well Cygnus’s adaptive load balancing strategies
adapt to changing workload conditions.

� How different threshold values help maintain QoS
properties needed by certain distributed applications.

We start by describing the workload model used to eval-
uate the performance of Cygnus’s load balancing strategies
empirically. We next describe the hardware and software in-
frastructure used in our experiments. We then describe the
experiments themselves, focusing on the load metrics and
the run-time configuration for the adaptive load balancing
strategies we evaluate. Finally, we present and analyze the
empirical results.

4.1 Workload Model

A key motivation for studying load balancing perfor-
mance is to compare and contrast different architectures
and strategies. The performance of these architectures and
strategies is often evaluated by conducting benchmarking
experiments under different environments and test configu-
rations [23]. The results of such experiments are not partic-
ularly useful, however, unless the system workload is rep-
resentative of the context in which the load balancer and
applications will actually be deployed. This section there-
fore describes the workload model we use in Section 4.5
to empirically evaluate the performance of Cygnus’s load
balancing strategies described in Section 3.2.

4.1.1 Workload Characterization for Load Balancing

Accurately characterizing workload is important when
planning and provisioning scalable distributed systems.
This activity starts by defining a distributed system model
(see Section 2.3) that conveys the components in the system,
how these components interact, and what types of inputs are
possible. This activity produces aworkload model, which
could be:

� A closed analytical queuing network model [5],
where workloads are characterized by information
such as input parameters, job arrival rates, and system
utilization.

� A simulation model [22], where workloads include
additional scenarios, such as concurrency and synchro-
nization.



� An executable model[23], where workloads capture
the request traffic patterns experienced by the system
to help demonstrate empirically how the system will
behave.

This paper focuses on executable workload models be-
cause our performance studies are based on the Cygnus
middleware load balancing framework described in Sec-
tion 3. We are therefore interested in analyzing the behav-
ior of Cygnus using workloads that are characteristic of ac-
tual application scenarios. To facilitate this analysis, we de-
veloped a benchmarking toolkit called LBPerf, which gen-
erates workloads that mimic the processing performed in
middleware-based distributed systems and then uses these
workloads to test the behavior of middleware load balancing
services. Based on the the model described in Section 2.3,
workloads generated by LBPerf can be further classified ac-
cording to:

� Resource type, where workloads can be characterized
by the type of resource being consumed,e.g., CPU us-
age, I/O usage, and overall system usage.

� Service type, where workloads can be characterized
by the type of service performed by servers on behalf
of clients,e.g., a database transaction, an e-mail trans-
action, or web-based search.

� Session type, where workloads can be characterized
by the type of requests initiated by a client and serviced
by a server in the context of a session. These requests
can be of any type, including the resource type and the
service type of requests.

4.1.2 Workload Characterization for Cygnus

To compare the performance of the adaptive load balancing
strategies (Section 3.2) implemented in the Cygnus middle-
ware load balancing framework (Section 3.1), this paper fo-
cuses onsession typeworkloads for middleware-based dis-
tributed systems.

We do not considerresource typeworkloads since in
middleware-based distributed systems it is possible to re-
ceive simple requests (e.g., to obtain the server’s object ref-
erence from a Naming or Directory Service) that do not in-
cur significant resource usage. So the middleware load bal-
ancing service should not be tied down to the resource usage
of requests and should be usage neutral.

We also do not considerservice typeworkloads because
of the different resource usage associated with those work-
loads. For example, a single request could fetch a large ta-
ble of numbers from a database (resulting in I/O usage) and
then determine if any number is prime (resulting in CPU
utilization). Designing a single load metric to measure the
load in such cases can be very hard. We therefore focus on
session typeworkloads, which include both resource and
service type workloads,i.e., the resource usage associated

with those workloads can be either CPU or I/O. This paper,
however, just focuses on session type workloads that incur
CPU resource usage.

Section 4.5 describes results from empirical experiments
that apply the workload model presented above to evalu-
ate the performance of Cygnus’s load balancing strategies.
These experiments make the following assumptions pertain-
ing to the workload model discussed above:

� Load balancers used the run-time load information, but
did not use the type of their client requests to make
decisions on which server will run the requests.

� Though Cygnus need not make any assumptions about
the servers whose loads it balances, all server hosts in
the experiments we ran were homogeneous,i.e., they
all had similar processing capabilities.

� Session length was not knowna priori, i.e., the load
balancer and servers did not know in advance how
much time was spent processing client requests.

4.2 Hardware/Software Testbed

All benchmarks conducted for this paper were run on
Emulab (www.emulab.net ), which is an NSF-sponsored
testbed at the University of Utah that facilitates simulation
and emulation of different network topologies for use in
experiments that require many nodes. As shown in Fig-
ure 5, we used Emulab to emulate the distributed system
model described in Section 2.3. Our Emulab experiments

100 MBps
Network SwitchClient 1

Client M

Server 1

Server N

Load Manager
and

Name Service Host

Figure 5. Load Balancing Experiment Testbed

used between 2 and 41 single CPU Intel Pentium III 850
MHz and 600 MHZ PCs, all running the RedHat Linux
7.1 distribution, which supports kernel-level multi-tasking,
multi-threading, and symmetric multiprocessing. All PCs
were connected over a 100 Mbps LAN and version 1.4.1 of
TAO was used. The benchmarks ran in the POSIX real-time
thread scheduling class [12] to enhance the consistency of
our results by ensuring the threads created during the exper-
iment were not preempted arbitrarily during their execution.



4.3 Benchmarking Experiments and Results

The core CORBA benchmarking software is based on
the single-threaded version of the “Latency ” performance
test distributed with the LBPerf open-source benchmark-
ing toolkit. TheLatency performance test creates a ses-
sion for clients to communicate with servers by making
a configurable number of iterated requests. All bench-
marks tests can be configured with the load balancing strate-
gies supported by Cygnus, which currently include the
RoundRobin, Random, LeastLoaded, and LoadMinimum
strategies described in Section 3.2. LBPerf can conduct the
following measurements for a session between the clients
and the servers:

� Throughput , which is the number of requests pro-
cessed per second by the server during a particular ses-
sion with the client.

� Latency, which is the roundtrip time taken for a partic-
ular request from the time it was invoked by the client
until the reply for the request came from the server.

To emulate the workload model described in Section 4.1,
LBPerf enables developers to generate whatever workload
is representative of particular distributed applications whose
workloads require balancing.

4.3.1 Run-time Configuration of Adaptive Load Bal-
ancing Strategies

Prior work [6, 14] shows the performance of adaptive load
balancing strategies depends on the following factors:

� The load metric(s) used to make migration and balanc-
ing decisions. Common metrics include requests-per-
second, CPU run-queue length over a given period of
time, and CPU utilization.

� The parameters chosen to configure the adaptive load
balancing strategies at run-time. Common parameters
include the interval chosen for reporting server loads
and threshold values that affect load balancing deci-
sions when analyzing those loads.

Section 3.2 described the load metrics supported by
Cygnus. We now describe how the benchmarking experi-
ments conducted for this paper used the Cygnus run-time
configuration parameters described below.

� Load reporting interval , which determines the fre-
quency at which server loads are propagated to the load
balancer. Theload reporting intervalshould be chosen
depending on the current load and request arrival rate
in the system [22]. Since the benchmarking experi-
ments in Section 4.5 cover different workload scenar-
ios, the load reporting interval used is stated for each
experiment.

� Reject and critical threshold values, which can be
set for the LeastLoaded load balancing strategy. The
reject thresholddetermines the point at which Cygnus
will avoid selecting a member with a load greater than
or equal to that load threshold. Thecritical threshold
determines the point at which Cygnus informs servers
to shed loads by redirecting requests back to Cygnus.

Changing threshold values to correspond to the work-
load can improve client response time [23]. For exam-
ple, if the number of requests is very high and the load
metric is the number of requests-per-second at each lo-
cation, the reject and critical threshold values should
be higher than when the number of requests is com-
paratively lower. Otherwise, incoming requests will
frequently exceed the reject and critical threshold val-
ues and trigger unnecessary load migrations and unsta-
ble load balancing decisions. These threshold values
must therefore be set properly to ensure that (1) por-
tions of the load on a highly loaded server are migrated
to a less loaded server and (2) highly loaded servers
do not repeatedly shed load by migrating their load
to less loaded servers, thereby incurring unnecessary
communication overhead. Since the benchmarking ex-
periments used in this paper cover different workload
scenarios, the threshold values used are stated before
each experiment in Section 4.5.

� Migration threshold percentage values, which can
be set for the LoadMinimum load balancing strategy.
The migration thresholddetermines the load differ-
ence needed between the load at (1) the most heavily
loaded location and (2) the least loaded location to trig-
ger the migration of the load from the heavily loaded
location to the least loaded location.

� Dampening value, which determines what fraction
of a newly reported load is considered when making
load balancing decisions. Cygnus’sdampening value
can range between 0 and 1 (exclusive). The higher
the value, the lower the percentage of newly reported
load taken into account by Cygnus when analyzing that
load. In particular, the dampening value affects how
sensitive Cygnus is to changes in loads. A dampening
value of 0.1 was chosen for these experiments so that
Cygnus used a higher fraction of the server load at a
particular moment. Our goal was to provide Cygnus
with finer grained load analysis, while simultaneously
reducing its sensitivity to large changes in load.

4.4 Cygnus Overhead Measurements

Figure 2 shows how a client request is intercepted by
Cygnus’s load balancer component, which then binds the
request to a server it choses. Subsequent requests will then
be issued directly to the chosen server, as discussed in Sec-



tion 3.3. Below we present empirical results that show the
overhead incurred in a load balanced application by this ini-
tial call to Cygnus’s load balancer. The number of clients in
these experiments ranged from 2, 4, 8, and 16, where each
client made 500,000 invocations to a single server. The ex-
periments were repeated forLatency test configurations
(Section 4.3) that included no load balancing support (the
baseline), as well as load balancing support using Cygnus’s
RoundRobin, Random, LeastLoaded, and LoadMinimum
strategies.

Figure 6 illustrates how client request throughput varies
as the number of clients and servers increase for each con-
figuration described above. This figure shows how request

0 2 4 6 8 10 12 14 16 18 20
Number of Clients

2000

2500

3000

3500

4000

4500

5000

5500

T
hr

ou
gh

pu
t (

E
ve

nt
s 

/ S
ec

on
d)

RoundRobin Strategy
LeastLoaded Strategy
LoadMinimum Strategy
Random Strategy
No LoadBalancing

Overhead Measurements
Single Server

Figure 6. Cygnus Overhead Measurements

throughput decreased for all strategies as the number of
clients increased, as expected. Figure 6 also shows, how-
ever, that the baseline throughput of theLatency test is
roughly the same,i.e., the throughput values experienced
by clients with and without load balancing support were
similar. These results indicate that Cygnus does not add
significant overhead to distributed applications.

4.5 Behavior of Different Load Balancing Strate-
gies

Having shown in Section 4.4 that Cygnus does not incur
appreciable overhead, we now present results that quantify
the behavior of Cygnus’s load balancing strategy in differ-
ent circumstances.

4.5.1 Cygnus Behavior Under CPU-intensive Work-
loads

Below we evaluate the performance of Cygnus’s load bal-
ancing strategies in the presence of light and heavy CPU

loads. We define a process that incurs light CPU load as
a one that does CPU-intensive work but takes compara-
tively less time to complete than a process that incurs heavy
CPU load. Four servers were used in each experiment and
the number of clients ranged from 8, 16, and 24 (a larger
number of clients than servers was chosen so that very
heavy workloads could be imposed on the servers). The
clients were divided into two groups: (1) light CPU load
generating clients and (2) comparatively heavy CPU load
generating client. The experiments were repeated for all
Cygnus load balancing strategies,i.e., RoundRobin, Ran-
dom, LeastLoaded, and LoadMinimum strategies.

We began with an experiment where the clients gener-
ated non-uniform loads, specifically light and heavy CPU
loads. Figure 7 shows how average client request through-
put varied as the number of clients and servers increased
for each configuration described above. Load balancing de-

0 4 8 12 16
Number of Clients

2650

2700

2750

2800

2850

2900
T

hr
ou

gh
pu

t (
E

ve
nt

s 
/ S

ec
on

d)
LeastLoaded Strategy
LoadMinimum Strategy
RoundRobin Strategy
Random Strategy

Throughput Measurement
4 Servers

Figure 7. Load Balancing Strategy Performance
Under Non-uniform CPU-intensive Loads

cisions in this experiment were based on CPU utilization.
The load reporting interval was set to 5 seconds and the re-
ject and critical thresholds for the adaptive strategies were
set to 95% and 98% CPU utilization, respectively, which
allowed the servers to run at their full potential.

Figure 7 shows the performance difference between the
adaptive (LeastLoaded and LoadMinimum) and the non-
adaptive (RoundRobin and Random) strategies (only the 4
server cases are shown to avoid cluttering the graph). The
goals of this experiment were to (1) compare the perfor-
mance of the four Cygnus load balancing strategies de-
scribed in Section 3.2 and (2) demonstrate how the adap-
tive strategies outperform the non-adaptive ones in the non-
uniform load case. In fact, this experiment presents the
worst-case behavior for the non-adaptive strategies since
two of the four servers always execute heavy CPU load in-



tensive requests, while the other two servers execute the
light CPU load intensive requests. Hence, two servers
are extremely loaded, whereas the other two servers are
less loaded. In contrast, the adaptive strategies utilized all
the server resources, thereby improving the average client
throughput.

Although our LBPerf testbed can only approximate ac-
tual workloads, our results indicate a significant difference
in performance between the two types of load balancing
strategies. Moreover, the performance advantage of adap-
tive strategies over non-adaptive ones would be even greater
for CPU loads that were more intensive and non-uniform.
To illustrate this point empirically, Figure 8 shows the max-
imum CPU utilization reached for each server in the experi-
ment described above. This figure depicts how non-adaptive

0 1 2 3 4 5 6
Servers

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n 
(P

er
ce

nt
ag

e)

RoundRobin Strategy
LeastLoaded Strategy
LoadMinimum Strategy
Random Strategy

CPU Utilization
All strategies (4 servers)

Figure 8. CPU Utilization in Each Server

load balancing strategies can underutilize servers since they
do not account for server load conditions. In contrast, adap-
tive strategies use this system state information to make ef-
fective dynamic load balancing decisions that can improve
overall performance.

Figure 8 also shows the difference between the per-
formance of the LoadMinimum and LeastLoaded adaptive
strategies, which stems from the run-time threshold param-
eters available to each strategy. For example, as client re-
quests are routed to a location, the LeastLoaded strategy
uses the reject threshold value to decide whether to pro-
cess incoming client requests or reject them. In contrast,
the LoadMinimum strategy has no such threshold. Thus,
even though both strategies choose the least loaded location
to handle client requests, the LeastLoaded strategy has the
luxury of using its reject threshold to prevent the system
from being overly loaded sooner rather than later.

During periodic load reports, the LeastLoaded strategy
determines if the location load has exceeded the critical

threshold value. If so, this strategy migrates the particular
location’s session to the least loaded location,i.e., it forces
load shedding to occur. In the LoadMinimum strategy case,
conversely, if the least loaded location’s load is less than the
monitored location’s load by a certain percentage the load
at the monitored location is migrated to the least loaded lo-
cation.

In systems with highly non-uniform loads, some servers
are loaded for short periods of time, whereas others are
loaded for long periods of time. The LoadMinimum strat-
egy will therefore try repeatedly to shed load from heav-
ily loaded location’s to less loaded locations. Although the
number of migrations could be controlled by using a higher
percentage value, some migrations are inevitable. The per-
formance of LoadMinimum strategy in the presence of non-
uniform loads will therefore generally be less than the per-
formance of the LeastLoaded strategy, as shown in Figure 8.

We do not consider uniform loads in the above discus-
sion since non-adaptive strategies can trivially perform as
well as adaptive strategies. Our results and analysis show
that the performance of the LeastLoaded strategy is better
than the LoadMinimum strategy in the presence of non-
uniform loads. Moreover, our results show how a thorough
understanding of the run-time parameters associated with
the LeastLoaded and LoadMinimum strategies is needed to
set them appropriately. In the remainder of this section, we
use LBPerf to study the importance of these parameters em-
pirically.

4.5.2 Importance of the Migration Threshold Value

As discussed in Section 4.3.1, the performance of the Load-
Minimum strategy depends heavily on the threshold value
chosen. The chosen threshold value affects the number of
migrations made to complete a particular client session. It
is worthwhile, however, to consider whether moving a ses-
sion to another location will speedup the completion of that
session.

According to [23], session migrations are not always as
effective as the initial session placement decisions, which
suggests that careful analysis of session migration impli-
cations should be made before migrating a client session.
Such observations are hard to validate, however, without
proper empirical study of the scenario in an experimental
testbed. We therefore used LBPerf to design an experiment
that switched the threshold values and measured the number
of migrations and the resulting throughput. We repeated this
experiment for two different cases: (1) when the threshold
value was 40% and (2) when the threshold value was 80%.
We chose 80% to prevent or minimize client session mi-
grations and 40% to determine what happens when a client
session at a fully loaded location is migrated to a location
with half the load.



To illustrate the performance implications of choosing
different migration thresholds, Figure 9 shows the average
client throughput achieved using the LoadMinimum strat-
egy by changing the threshold values as the number of
clients were varied between 4, 8, 16, and 32 (again, only
results for 4 the server case are shown to avoid graph clut-
ter). This figure shows the difference in the performance is

0 4 8 12 16 20 24 28 32
Number of Clients

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t (

E
ve

nt
s 

/ S
ec

on
d)

Threshold Value 40 percent
Threshold Value 80 percent

Throughput Comparison
4 Servers using LoadMinimum Strategy

Figure 9. Performance of the LoadMinimum
Strategy Under Different Threshold Values

insignificant when the load is very light,i.e., when the dif-
ference between the number of clients and the number of
servers is small. As the number of clients grows more than
the number of servers, however, the increased load causes
more migrations in the 40% case. Hence, the throughput
difference with the 80% case is more significant.

These results should not be interpreted as implying that
client session migrations are always bad, however, since in
certain cases client session migrations help to shed load at
heavily loaded locations to less loaded ones. An example is
a scenario with non-uniform system loads, where the differ-
ence between the generated loads is so large that one type
of workload takes a long time to complete, whereas another
type of workload takes much less time to complete. In such
cases, migrating the load from the heavily loaded location
to the less loaded location can improve response time. The
threshold value should therefore be selected based on (1)
the request completion time, (2) type of servers in the sys-
tem (which may be homogeneous or heterogeneous), and
(3) the existing load in the system. Our future work will
devise self-adaptive load balancing strategies that can tailor
threshold values according to run-time state information in
the system.

4.5.3 Importance of the Reject and Critical Threshold
Values

Figure 7 shows the performance of the LeastLoaded and the
LoadMinimum strategies in the presence of non-uniform
CPU intensive loads. The configurations for that experi-
ment were set in such a way that the servers performed at
100% CPU utilization. There are certain cases, however,
where rather than overloading the system, we need tobound
CPU utilization so that certain QoS properties (such as la-
tency and response time) are met predictably.

As discussed in Section 4.3.1, the LeastLoaded strategy
has two threshold values,rejectandcritical, that determine
whether a server can be considered to receive request and
when to migrate requests from one server to another, respec-
tively. These thresholds help ensure control of the system
utilization by the strategy. Although these thresholds may
cause some requests to be rejected, such admission control
may be needed to meet end-to-end QoS requirements.

We used LBPerf to design an experiment that switched
the reject threshold values and measured the number of
missed requests and the resulting throughput. The load re-
porting interval was set at 5 seconds and the reject and crit-
ical thresholds for the adaptive strategies were set at 75%
and 98% CPU utilization, respectively. We chose these val-
ues to test what happens when the load at each server is
kept at an optimal level (75% for this case) versus being
very high (98%).

To illustrate the performance implications of choosing
different reject threshold values, Figure 10 shows the aver-
age client throughput achieved using the LeastLoaded strat-
egy by changing the threshold values as the number of
clients were varied between 4, 8, 16 and 32 (again, only re-
sults for the four server cases are shown to avoid graph clut-
ter). This figure shows the difference in the performance is
insignificant when the load is very light,i.e., when the dif-
ference between the number of clients and servers is small.
As the number of clients grows in our experiment, however,
the increased load causes more request rejections in the 75%
case. Hence, the throughput difference with the 98% case
is more significant.

4.6 Summary of Empirical Results

The empirical results in this section use LBPerf to help
quantify how Cygnus’s adaptive load balancing strategies
can improve the distributed system scalability without in-
curring significant run-time overhead. Our results suggest
that in the presence of non-uniform loads, the adaptive
load balancing strategies outperform the non-adaptive load
balancing strategies. By empirically evaluating Cygnus’s
adaptive load balancing strategies, we show that the Least-
Loaded strategy performs better than the LoadMinimum
strategy under such load conditions, which motivates the



0 4 8 12 16 20 24 28 32 36
Number of Clients

600

800

1000

1200

1400

T
hr

ou
gh

pu
t (

E
ve

nt
s 

/ S
ec

on
d)

Reject Threshold 75%
Reject Threshold 95%

Performance of LeastLoaded Strategy
Threshold Values

Figure 10. Performance of the LeastLoaded Strat-
egy Under Different Threshold Values

choice of the LeastLoaded strategy in those conditions. We
also showed the importance of (1) reducing the number of
client request migrations and (2) maintaining system uti-
lization to enable more predictable behavior from the adap-
tive load balancing strategies.

5 Related Work

Load balancing middleware can enhance the flexibility
of many types of distributed applications [7]. For exam-
ple, load balancing middleware can take distributed system
behavior and state into account when making load shar-
ing and distribution decisions, enable flexible application-
defined selection of load metrics, and can also make load
balancing decisions based on request content.

Some load balancing middleware implementations [15,
10] integrate their functionality into the Object Request
Broker (ORB) layer of the middleware itself, whereas oth-
ers [9, 2, 1] implement load balancing support at a higher
level, such as the common middleware services layer. The
remainder of this section compares and contrasts our re-
search on Cygnus with related efforts on CORBA load bal-
ancing middleware that are implemented at the following
layers in the OMG middleware reference architecture.

� Service layer.Load balancing can be implemented as
a CORBA service. For example, the research reported
in [9] extends the CORBA Event Service to support
both load balancing and fault tolerance via a hierar-
chy of event channelsthat fan out from event source
suppliers to the event sinkconsumers. [2] extends
the CORBA Naming Service to add load balancing
capabilities. When a client calls theCosNaming::

NamingContext::resolve() operation it re-
ceives the IOR of the least-loaded server registered
with the given name. This approach, however, in-
troduces a problem in which many servers may reg-
ister themselves with the same name. In contrast,
Cygnus uses itsLoadBalancer component to pro-
vide clients with the IOR of the next available least-
loaded server, which ensures there are no naming con-
flicts with the available servers.

Various commercial CORBA implementations provide
service-based load balancing. For example, IONA’s
Orbix [11] can perform load balancing using the
CORBA Naming Service. Different group members
are returned to different clients when they resolve an
object. This design represents a typical non-adaptive
per-session load balancer, which suffers from the dis-
advantages described in [18]. BEA’s WebLogic [3]
uses a per-request load balancing approach, also de-
scribed in [18]. In contrast, Cygnus does not incur the
per-request network overhead of the BEA approach,
yet can still adapt to dynamic changes in the load.

� ORB layer. Load balancing can also be implemented
within the ORB itself, rather than as a service. Bor-
land’s VisiBroker implements an ORB-based load bal-
ancing strategy, where Visibroker’s object adapter [10]
creates object references that point to Visibroker’s Im-
plementation Repository (called the OSAgent) that
plays the role of an activation daemon and a load bal-
ancer.

The advantage of ORB-based load balancing mecha-
nisms is that the amount of indirection involved when
balancing loads can be reduced due to the close cou-
pling with the ORB i.e., the length of communica-
tion paths is shortened. The disadvantage of ORB-
based load balancing, however, is that it requires mod-
ifications to the ORB itself. Until such modifica-
tions are adopted by the OMG, they will be propri-
etary, which reduces their portability and interoper-
ability. The Cygnus service-based load balancer there-
fore does not rely on ORB extensions or non-standard
features,i.e., it does not require any modifications to
TAO’s ORB core or object adapter. Instead, it imple-
ments adaptive load balancing via standard CORBA
mechanisms, such asservant locators, server request
interceptors, andIOR interceptors. Unlike ORB-based
load balancing approaches, however, Cygnus only uses
standard CORBA features, so it can be ported to any
C++ CORBA ORB that implements the CORBA spec-
ification.



6 Concluding Remarks

Load balancing middleware is an important technology
for improving the scalability of distributed applications.
This paper describes Cygnus, which is a middleware load
balancing and monitoring service designed to satisfy the
requirements specified in Section 2. Cygnus provides a
framework for integrating a range of adaptive and non-
adaptive load balancing strategies, such asRoundRobin,
Random, LeastLoaded, and LoadMinimum, to help in-
crease overall system scalability for many types of CORBA
middleware-based distributed applications in an efficient,
transparent, and portable manner.

Our empirical results in this paper use the LBPerf bench-
marking toolkit to show how various load balancing strate-
gies supported by Cygnus allow distributed applications to
be load balanced efficiently. Cygnus increases the scal-
ability of distributed applications by balancing requests
across multiple back-end server members without increas-
ing round-trip latency substantially. The adaptive load bal-
ancing strategies implemented in Cygnus generally handle
non-uniform workloads much better than its non-adaptive
strategies. The threshold values configured with Cygnus’s
adaptive load balancing strategies help maintain various
QoS properties, such as throughput, latency, and CPU uti-
lization.

Our empirical benchmarks also revealed how tuning
threshold parameters is essential to improve the perfor-
mance and scalability of distributed applications. We there-
fore plan to focus our future work onself-adaptiveload bal-
ancing strategies, which dynamically tune these threshold
values according to the run-time state of distributed appli-
cations they manage.

References

[1] M. Aleksy, A. Korthaus, and M. Schader. Design and
Implementation of a Flexible Load Balancing Service for
CORBA-based Applications. InProc. of the International
Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA’01), Las Vegas, USA, June 2001.

[2] T. Barth, G. Flender, B. Freisleben, and F. Thilo. Load
Distribution in a CORBA Environment. InProc. of the
International Symp. on Distributed Objects and Applications
(DOA’99), Edinburgh, Scotland, Sept. 1999. OMG.

[3] BEA Systems Inc. WebLogic Administration Guide.
edoc.bea.com/wle/ .

[4] Cisco Systems, Inc. High availability web services.
www.cisco.com/warp/public/cc/so/neso/
ibso/ibm/s390/mnibm_wp.htm , 2000.

[5] S. P. Dandamudi and M. K. C. Lo. A Comparitive study of
Adaptive and Hierarchical Load sharing policies for
Distributed Systems. InInternational Conference on
Computers and Their Applications, Mar. 1998.

[6] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive
Load Sharing in Homogeneous Distributed Systems.IEEE
Tran. on Software Engineering, 12(5):662–675, May 1986.

[7] T. Ewald. Use Application Center or COM and MTS for
Load Balancing Your Component Servers.
www.microsoft.com/msj/0100/loadbal/
loadbal.asp , 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[9] K. S. Ho and H. V. Leong. An Extended CORBA Event
Service with Support for Load Balancing and
Fault-Tolerance. InProc. of the International Symp. on
Distributed Objects and Applications (DOA’00), Antwerp,
Belgium, Sept. 2000. OMG.

[10] I. Inprise Corporation. VisiBroker for Java 4.0:
Programmer’s Guide: Using the POA.
www.inprise.com/techpubs/books/vbj/
vbj40/programmers-guide/poa.html , 1999.

[11] IONA Technologies. Orbix 2000.
www.iona.com/products/orbix2000_home.htm .

[12] Khanna, S.,et al. Realtime Scheduling in SunOS 5.0. In
Proceedings of the USENIX Winter Conference, pages
375–390. USENIX Association, 1992.

[13] W. G. Krebs. Queue Load Balancing / Distributed Batch
Processing and Local RSH Replacement System.
www.gnuqueue.org/home.html , 1998.

[14] T. Kunz. The Influence of Different Workload Descriptions
on a Heuristic Load Balancing Scheme.IEEE Transactions
on Software Engineering, 17(7):725–730, July 1991.

[15] M. Lindermeier. Load Management for Distributed
Object-Oriented Environments. InProc. of the 2nd

International Symp. on Distributed Objects and Applications
(DOA 2000), Antwerp, Belgium, Sept. 2000. OMG.

[16] Object Management Group.The Common Object Request
Broker: Architecture and Specification, 3.0.2 edition, Dec.
2002.

[17] O. Othman, J. Balasubramanian, and D. C. Schmidt. The
Design of an Adaptive Middleware Load Balancing and
Monitoring Service. InLNCS/LNAI: Proceedings of the
Third International Workshop on Self-Adaptive Software,
Heidelberg, June 2003. Springer-Verlag.

[18] O. Othman, C. O’Ryan, and D. C. Schmidt. Strategies for
CORBA Middleware-Based Load Balancing.IEEE
Distributed Systems Online, 2(3), Mar. 2001.

[19] O. Othman and D. C. Schmidt. Optimizing Distributed
system Performance via Adaptive Middleware Load
Balancing. InProceedings of the Workshop on Optimization
of Middleware and Distributed Systems, Snowbird, Utah,
June 2001. ACM SIGPLAN.

[20] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp,
and L. DiPalma. Towards Adaptive and Reflective
Middleware for Network-Centric Combat Systems.
CrossTalk, Nov. 2001.

[21] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley &
Sons, New York, 2000.

[22] J. Xu and D. L. Parnas. Scheduling Processes with Release
Times, Deadlines, Precedence, and Exclusion Relations.



IEEE Transactions on Software Engineering,
16(3):360–369, Mar. 1990.

[23] W. Zhu, C. F. Steketee, and B. Muilwijk. Load Balancing
and Workstation Autonomy on Amoeba.Aust. Computer
Science Communications, 17(1):588–597, Feb. 1995.


