
Reducing Enterprise Java Bean Deployment Costs via
Model-Driven Deployment and Configuration

Jules White and Douglas C. Schmidt,

Vanderbilt University, Department of Electrical Engineering and Computer Science,
Box 1679 Station B, Nashville, TN, 37235

{jules, schmidt}@dre.vanderbilt.edu
http://www.dre.vanderbilt.edu

Abstract. Extensive testing is required to develop reliable distributed Enterprise Java
Bean (EJB) applications. It is therefore crucial to create test environments that -
ensure the quality of these applications on multiple OS platforms and hardware con-
figurations. Creating separate test environments for different developers and/or de-
velopment teams makes it easier to rapidly refactor components and test them in a
known working system configuration without interrupting other test configurations.
Once an application is deemed ready for deployment and configuration in a produc-
tion environment, it is crucial that these activities be done identically to the tested
configurations and upholds the assumptions of the component developers. Rapidly
setting up numerous distributed test environments and ensuring that they are de-
ployed and configured correctly is hard. In this paper we present Ant Hill, which is a
tool for the model driven development of deployment plans, and Fire Ant, which is a
tool for remotely deploying distributed EJB applications. A distributed constraints
optimization system for scheduling highway freight shipments to trucks is used as a
case-study to illustrate the significant improvements in deployment correctness, re-
producibility, and manual efforts gained from the use of these tools.

1 Introduction
Component-based distributed systems require extensive testing to ensure proper

functionality. Testing these types of systems involves deploying and configuring the
application components across a group of nodes connected via a network. In many
cases, deploying and configuring application components requires physical access
each node to install the necessary software and configure it properly. Since testing
can account for as much as 2/3 of application development cost [1], it is crucial that
the deployment and configuration of test environments be straightforward and effec-
tive .

Much deployment and configuration of application components today is done with
ad hoc techniques, such as having a system administrator remotely copy files to a
group of computers, editing XML configuration files, and starting an application
server. Moreover, deploying a distributed application component to a node often
requires significant insight into the configuration. Since distributed applications may
consist of a hundred or more components, these ad hoc techniques make it hard to
manage the large number of steps and artifacts required to deploy and configure a
component-based distributed application.

Ad hoc techniques often employ build and configuration tools, such as Make and
Another Neat Tool [2], but application deployers still must manage the large number

of scripts required to perform the component installations. Developing these scripts
can involve significant effort and require the in-depth understanding of the compo-
nents. Understanding the intricacies and properly configuring the application is cru-
cial to its proper functionality and quality of service (QoS) requirements [3]. For
example, the performance of an Enterprise Java Bean (EJB) [4] component can be
greatly affected by the object pool settings of an application server. Setting the pool’s
minimum size too low can lead to failed requests under heavy loads, whereas a mini-
mum size that is set too high wastes application resources and may adversely affect
other components. Incorrect system configuration due to operator error has been
shown to be a significant contributor to down-time and recovery [5].

Developing custom deployment and configuration scripts for each application
leads to a significant amount of reinvention and rediscovery of common deployment
and configuration processes. The scripts themselves can become sources of applica-
tion error. Many component installations may require significantly different deploy-
ment and configuration processes for each target environment. A script that fails to
account for each of the intended target and component configurations can become a
source of application errors.

Deployment and configuration scripts require human interaction and thus there is
no assurance of the quality of an installation. Often, errors in the configuration proc-
ess can create hard to debug errors and require costly expert attention to correct. Op-
erator and deployer errors are some of the most significant sources of distributed
application down time. Requiring operator interaction also degrades the repeatability
of the deployment and configuration process since there is no guarantee that an op-
erator correctly runs the deployment and configuration process for each installation.
Ad hoc deployment and configuration methods needing human intervention, provide
no quality assurance and make it hard to reproduce deployments predictably.

This paper presents three contributions to the deployment and configuration of dis-
tributed EJB applications. First, we describe the structure and functionality of Ant
Hill, which is an open-source model-driven Eclipse plug-in for specifying and gener-
ating deployment and configuration plans for EJB applications. Second, we describe
the structure and functionality of Fire Ant, which is an open-source tool for executing
deployment plans generated by Ant Hill. Third, we illustrate the improvements in
deployment script creation, deployment correctness, and deployment reproducibility
provided by using these two tools in the context of a case study of an EJB-based sys-
tem that schedules highway freight shipments using the multi-layered architecture
shown in Figure 1. The system has a list of freight shipments that it must schedule
using a constraint-optimization engine to find a cost effective assignment of drivers
and trucks to shipments.

The highway freight shipment system is composed of the Scheduler Module, Re-
quest Module, and Route Time Module. Each of these modules contains beans that
must be deployed and configured on separate application servers. Each module also
has specific requirements for the application server on which it is deployed. For ex-
ample, the Request Module contains beans that require access to the database con-
taining shipment requests.

A central component in Figure 1 is the Route Time Module (RTM), which deter-
mines the route time from a truck’s current location to a shipment start or end point.

The RTM uses a geo-database and the GPS coordinates from the truck to perform the
calculation. This module is critical to the proper operation of the optimization engine.
A heavy load is placed on the RTM, so it is crucial to configure it properly. Another
key aspect of the RTM is that it contains two beans, the RTM Bean and Truck Loca-
tions Bean, that must be co-located on the same application server to provide ade-
quate performance. Moreover, the Truck Locations Bean must reside on an applica-
tion server with fast access to the geo-database containing the current truck locations.

Freight Scheduling
System

Pickup
Requests

Truck
Locations

Scheduler Request

Next Pickup Location
Route Time

Module

Route Time
Calculation
Algorithm

R
ou

t e
 T

im
e

C
al

cu
la

ti o
ns

Route
Time

Module

RTM
Bean

Truck
Locations

Bean

Figure 1: Highway Freight Shipment Scheduling Architecture

The remainder of this paper is organized as follows: Section 2 describes the Ant
Hill model-driven tool for EJB component deployment; Section 3 describes the Fire
Ant Deployer; Section 4 quantifies the reduction in manual deployment effort
achieved by applying Ant Hill and Fire Ant to our highway freight shipment case
study; Section 5 compares our work with related research; and Section 6 presents
concluding remarks.

2 Improving Deployment Plan Quality via Ant Hill
The effectiveness of deployment and configuration capabilities can be measured

by three metrics: (1) the correctness of the deployment plan, i.e., whether or not the
configuration and deployment of each component is accounted properly for, (2) the
execution accuracy of the system, i.e., whether or not the plan is executed properly,
and (3) the execution reproducibility, i.e., whether or not the plan can be executed
repeatedly with the same results.

To address the challenges of deploying and configuring EJB applications, we have
created Ant Hill and Fire Ant. Ant Hill is a model-driven tool designed to improve
deployment plan correctness by (1) visually capturing the components that need to be
deployed and their dependencies, (2) describing the target infrastructure required for
the deployment, (3) visually specifying which components are to be deployed and
configured on which machines, (4) visually specifying the configuration of the com-

ponents on each target, and (5) providing constraint checking to ensure that each
component and its dependencies are accounted for properly. Fire Ant takes the de-
ployment models produced by Ant Hill does the run-time execution of the deploy-
ment plan to provide execution accuracy and reproducibility.

2.1 Ant Hill

Ant Hill is a model-driven tool designed to allow developers to create deployment
and configuration plans for EJB systems that are correct by construction. Ant Hill
provides a domain-specific modeling language (DSML) that allows developers to
visually specify the EJBs required for a distributed application, their configuration,
their application server configuration, and their target nodes. Another capability of
Ant Hill that is crucial to creating correct deployment plans is its constraint-checking
to ensure that plans are constructed properly.

Ant Hill is designed to facilitate the role of a deployment planner, who determines
the allocation of components to physical application nodes. A deployment planner
also determines the software installation and configuration process that must be per-
formed to deploy each component on its target node. This basis installation and con-
figuration includes setting up an application server (such as JBoss) on the target envi-
ronment and editing its configuration files to establish needed database connections.

Ant Hill was developed using the Generic Eclipse Modeling System (GEMS) [6]
created by the Distributed Object Computing (DOC) Group at the Institute for Soft-
ware Integrated Systems (ISIS) at Vanderbilt University. GEMS is an model-driven
environment built using Eclipse. A GEMS-based metamodel [7][8] describing the
problem domain was constructed and interpreted to create the Ant Hill DSML for
deployment and configuration of EJB systems. Ant Hill models constructed in the do-
main are interpreted to produce Fire Ant build scripts. This approach is similar to
other model-driven efforts that the DOC group has used for the deployment and con-
figuration of component systems in prior work [9, 10, 13, 15].

2.2 Ant Hill Application Model

To develop an Ant Hill deployment plan, a deployment planner must first create an
application model, which describes the EJBs and their required physical artifacts that
Fire Ant will deploy. Creating the application model includes capturing the EJBs,
their deployment descriptors, and other resources (such as supporting jar files) re-
quired by the EJBs. Deployment planners can create this model manually, by drag-
ging and dropping components in the Ant Hill modeling environment, or by import-
ing a jar file containing compiled Java class files, EJB deployment descriptors, and
Fire Ant Requirement descriptorS (FARS). FARS contain constraints associated with
each bean that must be fulfilled in the environment where the bean is deployed. For
example, a message bean may declare in a FARS that it requires access to a specific
message queue. FARS allow component developers to pass detailed configuration
requirements to the deployment planner.

Creating an application model provides Ant Hill with a list of resources that it
must configure and deploy properly. This list allows deployment planners to elimi-
nate common sources of error in deployment plans, such as failing to configure a

component or deploy a component properly. In an Ant Hill application model, every
component must have an associated configuration, which eliminates errors arising
from failing to configure resources. All components must also be deployed to a target
node, eliminating errors stemming from undeployed components.

The Ant Hill application model consists of packages of components, called assem-
blies, that need to be deployed to different application servers. Each assembly con-
tains one or more EJBs, EJB deployment descriptors, and supporting EJB resources.
The models of the EJBs contain the constraint information imported from the FARS,
such as required database connections and message queues. Figure 2 shows the por-
tion of the Ant Hill application model for the constraints optimization system, dis-
cussed in Section 1, that contains the Route Time Module’s EJBs.

Figure 2: RTM Assembly

The Route Time Module has one assembly, containing the RTMBean EJB, Truck-
Locations EJB, and the RTMDescriptor EJB deployment descriptor. Figure 3 illus-
trates the TruckLocations EJB’s constraint that it must have JDBC access to the truck
location database.

Figure 3: TruckLocations EJB Database Constraint

Assemblies ensure that components and their dependencies are deployed together.
By grouping components into assemblies, Ant Hill ensures that components are not
deployed to a target without their required dependencies, such as a supporting library.
Assemblies also ensure that components that require collocation are deployed to the
same target node. When dozens or hundreds of components are being deployed, Ant
Hill assemblies significantly reduce the complexity of tracking and managing de-
pendencies. Assemblies also help improve plan correctness by eliminating frequent
and possibly hard to diagnose errors in component deployment plans.

Importing Java class files is the preferred method of creating the application model
since it ensures that the EJB application is properly represented in the Ant Hill model,
thereby enhancing plan correctness. The Jar importation tool uses the Java in-
stanceof operator to identify classes that implement the SessionBean, Enti-
tyBean, and MessageDrivenBean interfaces. Each class that implements one of
these interfaces is added as the corresponding type in the Ant Hill model. The impor-
tation tool also identifies the name of the Jar file containing the compiled class file for
each bean in the application model.

Deployment planners can easily introduce typographic errors in the naming of
EJBs or other artifact names that would not be detectable until the deployment plan
was actually executed. Importing compiled Java code saves deployment planners the
significant effort that would otherwise be required to model a large-scale EJB distrib-
uted application in Ant Hill. Importation also allows development groups to separate
the roles of component development and deployment planning, since the deployment
planner only needs to access an archive containing (1) compiled classes, (2) the
FARS describing the EJB deployment constraints, and (3) a list of the EJBs that must
be deployed together as assemblies.

Even with the many advantages of using class file importation as the basis for cre-
ating the application model, there are circumstances in which manual construction of
the application model is required. In some cases the compiled class files for the com-
ponents may not be available to the system deployment planner. This situation could
arise if the EJBs were being developed in parallel to the deployment plan or if an
existing deployment plan was modified in anticipation of forthcoming functionality.

Once the EJBs for an application have been modeled, the deployment planner may
then begin specifying additional resources that should be deployed along with the
beans. As discussed later in Section 3, Fire Ant uses a single archive, called an EGG,
containing all required physical artifacts as input to the Fire Ant deployer. Each addi-
tional resource is given a URI, relative to the root of the EGG, specifying where the
resource resides. At deployment time, Fire Ant uses this URI to locate the resource.
In the constraint optimization system, a web application front end is deployed for
each system module. This front end includes Java Server Pages and Java Servlets that
allow system administrators to gather critical system information on each module,
such as the number of pending route time requests currently queued by the RTM.

The EGG single archive enhances both plan correctness and execution correctness
by allowing the runtime deployment infrastructure to read the deployment plan and
check that all the required artifacts are present. This verification process allows the
Ant Hill runtime deployment system to detect missing artifacts before (1) a build is
executed and (2) possibly hard to reverse changes are applied to the target node.

After the EJBs and related resources have been modeled, deployment planners
must assemble the artifacts needed to construct the Fire Ant EGG. Ant Hill provides a
model interpreter that can create the expected directory structure for the EGG based
on the information specified in the model. This interpreter creates the directories for
EJB jar files, EJB deployment descriptors, and additional resources files. Within each
of the generated directories, a file containing the list of expected artifacts is also cre-
ated. Generating the required directory structure and file lists helps enhance plan
correctness by ensuring that deployment planners construct the EGG properly.

2.3 Ant Hill Configuration and Deployment Model

After constructing the application model, deployment planners must specify how
each assembly is configured and where to deploy it. Configuration and deployment is
captured in the Deployment and Configuration model (DnC model). This model al-
lows deployment planners to specify the physical node where each assembly will
reside and the extra configuration that must be done to the physical node for the as-
sembly to function properly.

The first step in creating the Ant Hill DnC model is to develop a model of different
physical resources required for the deployment. Deployment planners drag and drop
nodes into the Ant Hill model for each physical node required. For each node added
to the model, developers must specify its provided properties, which are resources
that a node makes available to an assembly. For nodes, provided properties could
include CPU speed, CPU count, or available RAM. After creating the nodes, a de-
ployment planner drags and drops application servers into the nodes. Application
servers correspond to EJB application servers that will be running on the physical
node. Generally, each node will contain exactly one application server, but Ant Hill
allows multiple application servers per-node to provide flexibility. Each application
server must have its provided properties modeled, such as its available database
connections.

The node and application server specifications are not tied to specific machines or
application servers. The models serve as a requirements list for the actual physical
machines and application servers that the application will be deployed to. These re-

quirements are for planning purposes and can be used to verify the correctness of the
target environments at deployment time. At deployment time, the nodes are mapped
to actual physical nodes, which improves execution accuracy since the runtime
deployment system can ensure that the deployment plan properly accounts for the
target environment.

To associate assemblies with application servers, the deployment planner creates
connections between the two in the DnC model. Ant Hill matches the constraints
contained within the assemblies against the provided properties of the application
server and node to ensure that the resources required for the proper functioning of
that application component are met. If the application server and its hosting node do
not contain provided properties matching the constraints, Ant Hill prevents the con-
nection from being made. Matching constraints in this manner ensures the nodes that
components in assemblies are deployed to meet their resource requirements and is
vital to the application’s proper functionality [10][11]. Figure 4 shows the geo-data-
base constraint of the TruckLocations EJB being matched to the geo-database pro-
vided property of an application server. This feature helps Ant Hill improve both plan
correctness and execution accuracy since only plans that deploy components to nodes
satisfying their infrastructure requirements can be constructed. Moreover, once a plan
is constructed and executed, the runtime deployment system can ensure the target
infrastructure matches that modeled in the deployment plan.

Figure 4: A Database Constraint Matched to a Database Provided Property

EJB applications often require special preparation of the target environment and

application server, including the establishment of specific database connections by
the application server or the creation of a required set of directories on the target
node. To facilitate this custom configuration, Ant Hill provides a mechanism for
specifying ANT scripts that must be run on the target environment before and after
the deployment of assemblies. Deployment planners drag and drop ANT resources
into the DnC model to represent these custom configuration scripts. Each Ant re-
source has a URI specifying its location within the EGG and a URI, relative to the

assembly installation directory, specifying the root directory for the script on the
target environment. The script also specifies if it should be run before or after the
assembly is deployed.

After the deployment planner has finished constructing the DnC model, a model
interpreter is run to generate the Fire Ant deployment script for the model. The script
is used by Fire Ant to map the assemblies to the target nodes at deployment time. It is
also used to determine the ANT scripts to run on the target environment before and
after assembly deployment. Fire Ant scripts are discussed in more detail in the fol-
lowing section. Using a model interpreter to generate the script eliminates typo-
graphical and programmatic errors that could be made if the script was developed
manually, which is another improvement of plan correctness.

3 Design of the Fire Ant Deployer
Fire Ant is a model-driven tool for deploying a distributed EJB application to one

or more target nodes. It is designed to provide execution accuracy and re-
producibility. Fire Ant is based on the open-source ANT build tool developed by the
Apache Foundation [2] and is designed to ensure that deployments of distributed EJB
application components can be done reproducibly to different target nodes with a
minimum of effort by eliminating human errors in the execution of an application
deployment and configuration.

We chose ANT as the basis for Fire Ant since it provides a broad range of built-in
deployment and configuration tasks. It also a widely used tool for Java build, de-
ployment, and configuration. Moreover, ANT’s wide use and strong industry support
make it stable, which is essential to execution correctness and reproducibility.

Fire Ant uses a package format called an EGG, which contains all the artifacts re-
quired for a deployment and the Fire Ant deployment plan. The Fire Ant deployment
plan is an XML file that orchestrates the deployment of one or more assemblies of
EJBs to their target locations. The Fire Ant deployment plan specifies what artifacts
in an EGG to deploy on each node. The deployment plan also specifies additional
ANT build scripts that run on each target node to perform special pre- and post-
assembly deployment configuration.

A Fire Ant deployment proceeds in the following steps shown in Figure 5:
1. Fire Ant is launched.
2. Fire Ant then parses the deployment plan and verifies that all required re-

sources are present in the EGG.
3. Fire ANT copies an ANT installation to the target using Secure Copy Protocol

(SCP).
4. Fire ANT copies the EGG to the target using SCP.
5. Fire ANT executes any required pre-deployment configuration ANT scripts.
6. Fire ANT executes an ANT build, which deploys the components in the As-

sembly to the application server residing on that node.
7. Fire ANT executes any post-deployment configuration ANT scripts.
8. Fire ANT deletes the ANT installation and EGG.
9. Fire ANT closes the SSH connection to the target
10. Steps 4-10 are repeated for each deployment target.

Fire Ant uses SSH for its remote deployment, which provides significant advan-
tages in terms of security, target pre-configuration, and manual intervention. SSH is
an established secure standard for communicating with remote systems. Com-
municating over another protocol would require opening additional ports in an or-
ganization’s firewall and the implementation of a secure authentication system. The
secure authentication system itself would need to be installed on the target node and
would increase the target node’s public points of malicious attack. SSH also allows
Fire Ant a trusted, well tested, and accepted framework for doing remote deployment.
Moreover, SSH access is integrated into ANT and does not require extra development
work.

The only initial configuration that a target node needs to receive a deployment is a
working Java Runtime Environment (JRE). Although it is possible to push one to the
client using Fire Ant, this is not an advised practice, so we recommend that a JRE be
installed and tested before deploying components. It is also unlikely that a target node
for an EJB application would not already have a functioning JRE installation and
require one to be pushed through by Fire Ant. Requiring only a functioning JRE
alleviates developers from having to correctly deploy and install a custom deploy-
ment base. JREs are well understood and much more likely to be properly deployed
and configured, which is key to execution correctness and reproducibility, than a
custom deployment solution.

Deployment Node

Node 1

4. Egg

EJBs

Local ANT
Configuration

Scripts

Supporting
Artifacts

3. ANT
Installation

SC
P

SSH

Remote Execution
5. Execute Pre-configuration

6. Deploy Components
7. Execute Post-configuration

8. Remove EGG and Ant Installation
9. Close SSH Connection

Figure 5: Fire Ant Deployment Process

Although Fire Ant does not provide a built-in means of checking that every possi-
ble required resource on a target node is fulfilled, pre- and post-installation ANT
scripts can be used for this purpose. A pre-configuration ANT script can be devel-
oped to ensure that the target environment meets its requirements. If the pre-
configuration script fails, deployment will not proceed.

4 Case Study
Our constraints optimization system for scheduling highway freight shipments

shown in Figure 1 required several groups of EJBs to be distributed across multiple
applications servers. Each of the EJBs composing the system had requirements that
needed to be met in this target environment. We developed three separate deployment
and configuration processes to compare (1) a fully manual deployment and configura-
tion of our constraints optimization system, (2) a solution based on ANT, and (3) a
solution based on Ant Hill (and Fire Ant). We then compared the number of manual
steps involved for each, as well as the number of lines of scripting code that was
written for each.

The manual and Ant Hill approaches required writing no scripting code. The Ant
Hill approach generated approximately 600 lines of Fire Ant scripting code that re-
quired no manual editing. In contrast, the ANT approach required handcrafting an
equivalent amount of ANT script code. This difference was expected since Fire Ant is
based on ANT, uses the same XML file format, and shares many of ANT’s tasks. The
600 lines of generated Fire Ant code correct-by-construction. Since the ANT code
was written manually it therefore required debugging.

Ant Hill

Fire Ant ANT

Manual
Process

Manual
Process

Manual
Process

Deployment Plan Execution

Deployment Plan Creation

Ant Hill / Fire
Ant

Deployment
Process

ANT
Deployment

Process

Manual
Deployment

Process
Error Prone

Manual Steps

Figure 6: Comparison of Deployment Processes in Terms of Manual Steps

We next evaluated the total number of manual steps needed for each deployment.
The manual deployment took approximately 50 manual tasks executed on three sepa-

rate target nodes. The ANT and Fire Ant deployments only required one initial man-
ual task to launch the deployment.

Finally, we examined what types of errors could occur in each deployment process
to reduce plan correctness, execution accuracy, and execution repeatability. Figure 6
illustrates the error-prone manual steps involved for each of the three processes. The
manual approach yielded the lowest rankings on each metric since human interven-
tion was needed at each step of the process. Moreover, there was no assurance that
the deployer would correctly account for the configuration and deployment of each
component, correctly match the component requirements to the target nodes, execute
the deployment plan correctly, and execute the deployment plan the same way in
multiple executions. The ANT approach, however, ensured execution accuracy and
execution repeatability, but did not provide any plan correctness assurance. In par-
ticular, human development of XML ANT scripts can yield bugs that are hard to find.
Moreover, neither the ANT approach nor the manual process did any constraint
checking to ensure that the components were deployed and configured properly on
suitable infrastructure. Conversely, the Ant Hill approach provided constraint check-
ing to match component requirements, dependencies, and target capabilities.

5 Related Work
Fire Ant is inspired by the Deployment and Configuration specification [12] for

the CORBA Component Model (CCM). Both provide the ability to remotely deploy
and configure a distributed application to a group of nodes. The two, however, have
some significant differences. The OMG Deployment and Configuration specification
for CCM focuses on component deployment and assumes that the application server
on the target environment is already configured properly. This specification provides
mechanisms to adapt the container of the application but not the application server
itself. In contrast, Fire Ant provides the ability to run arbitrary pre- and post-
installation configuration steps, which gives deployers the ability to install and con-
figure auxiliary applications or even the application server itself as part of the de-
ployment process. This capability can be useful for testing purposes where it is essen-
tial that the deployment and configuration process ensure that application servers are
configured properly during each test cycle. Fire Ant also does not require that a dae-
mon application be installed on the target environments, but instead can use SSH to
copy over all its required infrastructure, which reduces the burden on deployers.

Deployment tools exist that provide the ability to separately model components
and the physical nodes they run on. One example is Proactive [18], which is a distrib-
uted programming framework for deploying object-oriented grid applications that
models applications as virtual structures and removes references to the physical ma-
chines from the functional code of the components. The functional code is later
mapped to physical machines using XML descriptors. Proactive separates the model-
ing of components and targets but does not provide the extensive component depend-
ency and overall application correctness checking that Ant Hill supports. Proactive
also does not include as flexible of a runtime deployment infrastructure as Fire Ant.

Other modeling tools exist for developing deployment plans. The CoSMIC
[13][14] tool suite provides the ability to specify deployment plans for CCM applica-
tions. Ant Hill provides similar functionality to CoSMIC, but for EJB rather than

CCM applications. CoSMIC is a tool based on the Generic Modeling Environment
(GME) [7] and is only available for Microsoft Windows. In contrast, Ant Hill is
based on the Generic Eclipse Modeling System (GEMS), which is based on the plat-
form-independent Eclipse Integrated Development Environment (IDE).

[19] proposes using UML to model the deployment and configuration of compo-
nents on application servers. This approach, however, lacks the deployment script
generation capabilities of Ant Hill. Without this generative capability, there is no
assurance that the actual implementation of the deployment and configuration will be
done according to the model. Ant Hill also provides a DSML that is specific to the
deployment and configuration of components and thus provides greater expressive
capabilities than generic UML.

Model-driven component design tools, such as Cadena [15] and J2EEML [16][17],
exist for Eclipse. J2EEML is a model-driven development tool for designing EJB
systems that provides the capability to package components, generate build scripts for
them, and generate test infrastructure. Its packaging infrastructure and generation of
ANT build scripts is similar to some of Ant Hill’s functionality. J2EEML, however, is
designed to package EJBs into EAR archives and does not generate any deployment
scripts. It does generate the deployment descriptors for the EJBs. Ant Hill and Fire
Ant are designed to start from EAR and Jar files and produce reproducible and cor-
rect deployment and configuration processes for their contained components.

It is also worth comparing Fire Ant and Ant Hill to ANT since it is the basis of
these two tools. ANT does not provide the complicated constraint checking and de-
ployment correctness checking provided by Fire Ant. It is possible to create this func-
tionality with ANT, as we have done, but it requires significant effort. Moreover,
ANT does not provide any model-driven tools to create component deployment plans.
Although graphical editors do exist for ANT, they are general tools not strictly de-
signed for component deployment and configuration.

6 Concluding Remarks
Deploying and configuring component-based distributed applications presents sig-

nificant R&D challenges. With traditional methods of deployment, where human
administrators use ad hoc techniques to do most of the actual component installation
and configuration, there is a significant risk that deployments will be erroneous. For
example, misconfiguration can result in subtle application bugs that do not manifest
themselves immediately, but can lead to costly system down time and defects.

Using model-driven techniques to create deployment plans and tools, such as Ant
Hill and Fire Ant, significantly reduces the probability that deployment and configu-
ration will be done improperly. These tools also allow deployment to be a separate
role from component development. Developers need only supply component resource
requirements, in a form such as FARS, to the deployment planners. Our Ant Hill
modeling tool can then ensure that the planned deployment meets the requirements of
the components. Ant Hill also provides other consistency checks to reduce the num-
ber of errors in the deployment process.

Building a correct deployment plan only provides part of the solution since there
still must be assurance that the plan executes properly. Our Fire Ant modeling tool
fills this role by alleviating deployers from manually executing each step in a deploy-

ment plan. Fire Ant also ensures that a deployment plan will always execute in ex-
actly the same manner. A deployment executor improves a development effort’s
ability to diagnose errors, generate test environments, and deliver an installation solu-
tion.

A key aspect of correct deployments is ensuring that the target environment and
the expectations of the components are consistent. Fire Ant provides a method of
matching these parameters but they still must be entered manually. Moreover, Fire
Ant cannot guarantee at runtime that every requirement specified for a target node is
met. Currently, the node requirements are a guideline used by administrators. In fu-
ture work, therefore, we plan to automate the discovery of target node provided re-
sources and the checking of target environments for these resources at deployment
time. The Fire Ant deployer and Ant Hill deployment planning tool are open-source
projects available from http://www.dre.vanderbilt.edu/~jules/Fire Ant.html.

References
1. Harrold, M. J., Liang, D., Sinha, S.: An Approach to Analyzing and Testing Com-

ponent-Based Systems. In: Proc. ICSE'99 Workshop on Testing Distributed Com-
ponent-Based Systems (1999)

2. Apache Foundation: Apache Ant. http://ant.apache.org
3. Wang, N., Gill, C., Schmidt, D., Subramonian, V.: Configuring Real-time Aspects

in Component Middleware. In: Proc. of the Conference on Distributed Objects
and Applications (DOA 2004), Cyprus, Greece

4. Matena, V., Hapner, M.: Enterprise Java Beans Specification, Version 1.1. Sun
Microsystems (1999)

5. Oppenheimer, D., Ganapathi, A., Patterson, D.: Why do Internet Services Fail,
and What can be Done about It?, In: Proc. USENIX Symposium on Internet
Technologies and Systems (2003)

6. GEMS, The Distributed Object Computing Group, Vanderbilt University,
http://www.dre.vanderbilt.edu/~jules/gems.html

7. Ledeczi, A., Bakay, A., Maroti, M., Volgysei, P., Nordstrom, G., Sprinkle, J.,
Karsai, G.: Composing Domain-Specific Design Environments. IEEE Computer,
Nov. (2001)

8. Ledeczi, A.: The Generic Modeling Environment. In: Proc. Workshop on Intelli-
gent Signal Processing (2001), Budapest, Hungary

9. Edwards, G., Deng, G., Schmidt, D., Gokhale, A., Natarajan, B.: Model-driven
Configuration and Deployment of Component Middleware Publisher/Subscriber
Services. In: Proceedings of the 3rd ACM International Conference on Generative
Programming and Component Engineering (2004), Vancouver, CA

10. Krishna, A., Turkay, E., Gokhale, A., Schmidt, D.: Model-Driven Techniques for
Evaluating the QoS of Middleware Configurations for DRE Systems. In: Proceed-
ings of the 11th IEEE Real-Time and Embedded Technology and Applications
Symposium (2005), San Francisco, CA

11. Dearle, A., Kirby, G.N.C., McCarthy, A.J.: A Framework for Constraint-based
Deployment and Autonomic Management of Distributed Applications. In: Proc.
IEEE International Conference on Autonomic Computing (2004), New York, NY

http://ant.apache.org/
http://www.cs.wustl.edu/%7Eschmidt/PDF/doa04_ciao.pdf
http://www.cs.wustl.edu/%7Eschmidt/PDF/doa04_ciao.pdf
http://www.cs.rmit.edu.au/fedconf/doa2004cfp.html
http://www.cs.rmit.edu.au/fedconf/doa2004cfp.html
http://www.program-transformation.org/Gpce
http://www.program-transformation.org/Gpce

12. Object Management Group: Deployment and Configuration Adopted Submission.
OMG Document ptc/03-07-08 edn. (2003)

13. Gokhale, A., Balasubramanian, K., Balasubramanian, J., Krishna, A., Edwards,
G., Deng, G., Turkay, E., Parsons, J., Schmidt, D.: Model Driven Middleware: A
New Paradigm for Deploying and Provisioning Distributed Real-time and Embed-
ded Applications. Elsevier Journal of Science of Computer Programming: Special
Issue on Model Driven Architecture, Edited by Mehmet Aksit, 2005 (to appear)

14. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D.C.: A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems. In: Proc. of the 11th IEEE Real-Time and Em-
bedded Technology and Applications Sym. (2005), San Francisco, CA

15. Hatcliff, J., Deng, W., Dwyer, M., Jung, G., Prasad, V.: Cadena: An Integrated
Development, Analysis, and Verification Environment for Component-based Sys-
tems. In: Proceedings of the 25th International Conference on Software Engineer-
ing (2003), Portland, OR

16. White, J., Schmidt, D., Gokhale, A.: The J3 Process for Building Autonomic En-
terprise Java Bean Systems. In: Proceedings of the International Conference on
Autonomic Computing (ICAC 2005), Seattle, WA

17. White, J., Schmidt, D., Gokhale, A.: Simplifying the Development of
Autonomic Enterprise Java Bean Applications via Model Driven
Development. In: Proc. ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems (2005), Seattle, WA

18. Baude, F., Caromel, D., Huet, F., Mestre, L., Vayssiere, J.: Interactive and De-
scriptor-based Deployment of Object-Oriented Grid Applications. In: Proc. Of the
11th International Symposium on High Performance Distributed Computing
(HPDC'02), Edinburgh, UK

19. Sloane, A.: Modeling Deployment and Configuration of CORBA Systems with
UML. In: Proceedings of the 22nd International Conference on Software Engi-
neering (ICSE’00)

	2.1 Ant Hill

