Designing Reuseable Classes

Ralph E. Johnson

Brian Foote

Department of Computer Science
University of Illinois, Urbana-Champaign
Journal of Object-Oriented Programming

June/July 1988

August 26, 1991

Abstract

Object-oriented programming is as much a different way of designing
programs as it is a different way of designing programming languages.
This paper describes what it is like to design systems in Smalltalk. In
particular, since a major motivation for object-oriented programming is
software reuse, this paper describes how classes are developed so that
they will be reuseable.

1 Introduction

Object-oriented programming is often touted as promoting software reuse[Fis87].
Languages like Smalltalk are claimed to reduce not only development time but
also the cost of maintenance, simplifying the creation of new systems and of
new versions of old systems. This is true, but object-oriented programming is
not a panacea. Program components must be designed for reuseability. There
is a set of design techniques that makes object-oriented software more reuse-
able. Many of these techniques are widely used within the object-oriented
programming community, but few of them have ever been written down. This

OAuthors’ address: Department of Computer Science, 1304 West Springfield Ave., Urbana
IL 61801
OTelephone: (217) 244-0093, (217) 333-3411

Ye-mail: johnson@ecs.uiuc.edu, foote@cs.uiuc.edu

article describes and organizes these techniques. It uses Smalltalk vocabu-
lary, but most of what it says applies to other object-oriented languages. It
concentrates on single inheritance and says little about multiple inheritance.

The first second of the paper describes the attributes of object-oriented
languages that promote reusable software. Data abstraction encourages mod-
ular systems that are easy to understand. Inheritance allows subclasses to
share methods defined in superclasses, and permits programming-by-difference.
Polymorphism makes it easier for a given component to work correctly in a wide
range of new contexts. The combination of these features makes the design of
object-oriented systems quite different from that of conventional systems.

The middle section of the paper discusses frameworks, toolkits, and the
software lifecycle. A framework is a set of classes that embodies an abstract
design for solutions to a family of related problems, and supports reuses at a
larger granularity than classes. During the early phases of a system’s history,
a framework makes heavier use of inheritance and the software engineer must
know how a component is implemented in order to reuse it. As a framework
becomes more refined, it leads to ”black box” components that can be reused
without knowing their implementations.

The last section of the paper gives a set of design rules for developing better,
more reusable object-oriented programs. These rules can help the designer
create standard protocols, abstract classes, and object-oriented frameworks.

As with any design task, designing reusable classes requires judgement, ex-
perience, and taste. However, this paper has organized many of the design
techniques that are widely used within the object-oriented programming com-
munity so that new designers can acquire those skills more quickly.

2 Object-Oriented Programming

An object is similar to a value in an abstract data type—it encapsulates both
data and operations on that data. Thus, object-oriented languages provide
modularity and information-hiding, like other modern languages. Too much is
made of the similarities of data abstraction languages and object-oriented lan-
guages. In our opinion, all modern languages should provide data abstraction
facilities. It is therefore more important to see how object-oriented languages
differ from conventional data abstraction languages.

There are two features that distinguish an object-oriented language from
one based on abstract data types: polymorphism caused by late-binding of
procedure calls and inheritance. Polymorphism leads to the idea of using the
set of messages that an object understands as its type, and inheritance leads
to the idea of an abstract class. Both are important.

2.1 Polymorphism

Operations are performed on objects by “sending them a message”!. Messages
in a language like Smalltalk should not be confused with those in distributed
operating systems. Smalltalk messages are just late-bound procedure calls. A
message send is implemented by finding the correct method (procedure) in the
class of the receiver (the object to which the message is sent), and invoking that
method. Thus, the expression a + b will invoke different methods depending
upon the class of the object in variable a.

Message sending causes polymorphism. For example, a method that sums
the elements in an array will work correctly whenever all the elements of the
array understand the addition message, no matter what classes they are in.
In fact, if array elements are accessed by sending messages to the array, the
procedure will work whenever it is given an argument that understands the
array accessing messages.

Polymorphism is more powerful than the use of generic procedures and
packages in Ada[Sei8T7]. A generic can be instantiated by macro substitution,
and the resulting procedure or package is not at all polymorphic. On the
other hand, a Smalltalk object can access an array in which each element
is of a different class. As long as all the elements understand the same set
of messages, the object can interact with the elements of the array without
regard to their class. This is particularly useful in windowing systems, where
the array could hold a list of windows to be displayed. This could be simulated
in Ada using variant records and explicitely checking the tag of each window
before displaying it, thus ensuring that the correct display procedure was called.
However, this kind of programming is dangerous, because it is easy to forget a
case. It leads to software that is hard to reuse, since minor modifications are
likely to add more cases. Since the tag checks will be widely distributed through
the program, adding a case will require wide-spread modifications before the
program can be reused.

2.2 Protocol

The specification of an object is given by its protocol, i.e. the set of messages
that can be sent to it. The type of the arguments of each message is also
important, but “type” should be thought of as protocol and not as class. For a
discussion of types in Smalltalk, see [Joh86]. Objects with identical protocol are
interchangeable. Thus, the interface between objects is defined by the protocols
that they expect each other to understand. If several classes define the same

!The object-oriented programming community does not have a standardized vocabulary.
While “sending a message” is the most common term, and is used in the Smalltalk and Lisp
communities, C4+4 programmers refer to this as “calling a virtual function”.

protocol then objects in those classes are “plug compatible”. Complex objects
can be created by interconnecting objects from a set of compatible components.
This gives rise to a style of programming called building tool kits, of which more
will be said later.

Although protocols are important for defining interfaces within programs,
they are even more important as a way for programmers to communicate with
other. Shared protocols create a shared vocabulary that programmers can
reuse to ease the learning of new classes. Just as mathematicians reuse the
names of arithmetic operations for matrices, polynomials, and other algebraic
objects, so Smalltalk programmers use the same names for operations on many
kinds of classes. Thus, a programmer will know the meaning of many of the
components of a new program the first time it is read.

Standard protocols are given their power by polymorphism. Languages
with no polymorphism at all, like Pascal, discourage giving different procedures
the same name, since they then cannot be used in the same program. Thus,
many Pascal programs use a large number of slightly different names, such as
MatrixPlus, ComplexPlus, PolynomialPlus, etc. Languages that use generics
and overloading to provide a limited form of polymorphism can benefit from
the use of standard protocols, but the benefits do not seem large enough to
have forced wide use of them.? In Smalltalk, however, there are a wide number
of well-known standard protocols, and all experienced programmers use them
heavily.

Standard protocols form an important part of the Smalltalk culture. A new
programmer finds it much easier to read Smalltalk programs once standard
protocols are learned, and they form a standard vocabulary that ensures that
new components will be compatible with old.

2.3 Inheritance

Most object-oriented programming languages have another feature that differ-
entiates them from other data abstraction languages; class inheritance. Each
class has a superclass from which it inherits operations and internal struc-
ture. A class can add to the operations it inherits or can redefine inherited
operations. However, classes cannot delete inherited operations.

Class inheritance has a number of advantages. One is that it promotes
code reuse, since code shared by several classes can be placed in their common
superclass, and new classes can start off having code available by being given a
superclass with that code. Class inheritance supports a style of programming
called programming-by-difference, where the programmer defines a new class by
picking a closely related class as its superclass and describing the differences

2Booch shows how standard protocols might be used in Ada.[Boo87]

between the old and new classes. Class inheritance also provides a way to
organize and classify classes, since classes with the same superclass are usually
closely related.

One of the important benefits of class inheritance is that it encourages the
development of the standard protocols that were earlier described as making
polymorphism so useful. All the subclasses of a particular class inherit its
operations, so they all share its protocol. Thus, when a programmer uses
programming-by-difference to rapidly build classes, a family of classes with
a standard protocol results automatically. Thus, class inheritance not only
supports software reuse by programming-by-difference, it also helps develop
standard protocols.

Another benefit of class inheritance is that it allows extensions to be made
to a class while leaving the original code intact. Thus, changes made by one
programmer are less likely to affect another. The code in the subclass defines
the differences between the classes, acting as a history of the editing operations.

Not all object-oriented programming languages allow protocol and inher-
itance to be separated. Languages like C++4[Str86] that use classes as types
require that an object have the right superclass to receive a message, not just
that it have the right protocol. Of course, languages with multiple inheritance
can solve this problem by associating a superclass with every protocol.

2.4 Abstract Classes

Standard protocols are often represented by abstract classes [GR83]. An ab-
stract class never has instances, only its subclasses have instances. The roots of
class hierarchies are usually abstract classes, while the leaf classes are never ab-
stract. Abstract classes usually do not define any instance variables. However,
they define methods in terms of a few undefined methods that must be imple-
mented by the subclasses. For example, class Collection is abstract, and de-
fines a number of methods, including select:, collect:, and inject:into:,
in terms of an iteration method, do:. Subclasses of Collection, such as Array,
Set, and Dictionary, define do: and are then able to use the methods that
they inherited from Collection. Thus, abstract classes can be used much like
program skeletons, where the user fills in certain options and reuses the code
in the skeleton.

A class that is not abstract is concrete. In general, it is better to inherit
from an abstract class than from a concrete class. A concrete class must
provide a definition for its data representation, and some subclasses will need
a different representation. Since an abstract class does not have to provide a
data representation, future subclasses can use any representation without fear
of conflicting with the one that they inherited.

Creating new abstract classes is very important, but is not easy. It is always
easier to reuse a nicely packaged abstraction than to invent it. However, the
process of programming in Smalltalk makes it easier to discover the important
abstractions. A Smalltalk programmer always tries to create new classes by
making them be subclasses of existing ones, since this is less work than creating
a class from scratch. This often results in a class hierarchy whose top-most
class is concrete. The top of a large class hierarchy should almost always be an
abstract class, so the experienced programmer will then try to reorganize the
class hierarchy and find the abstract class hidden in the concrete class. The
result will be a new abstract class that can be reused many times in the future.

An example of a Smalltalk class that needs to be reorganized is View, which
defines a user-interface object that controls a region of the screen. View has
27 subclasses in the standard image, but is concrete. A careful examination
reveals a number of assumptions made in View that most of its subclasses do
not use. The most important is that each view will have subviews. In fact,
most subclasses of View implement views that can never have subviews. Quite
a bit of code in View deals with adding and positioning subviews, making it
very difficult for the beginning programmer to understand the key abstractions
that View represents. The solution is simple: split View into two classes, one
(View) of which is the abstract superclass and the other (ViewWithSubviews)
of which is a concrete subclass that implements the ability to have subviews.
The result is much easier to understand and to reuse.

2.5 Inheritance vs. decomposition

Since inheritance is so powerful, it is often overused. Frequently a class is
made a subclass of another when it should have had an instance variable of
that class as a component. For example, some object-oriented user-interface
systems make windows be a subclass of Rectangle, since they are rectangular
in shape. However, it makes more sense to make the rectangle be an instance
variable of the window. Windows are not necessarily rectangular, rectangles
are better thought of as geometric values whose state cannot be changed, and
operations like moving make more sense on a window than on a rectangle.
Behavior can be easier to reuse as a component than by inheriting it. There
are at least two good examples of this in Smalltalk-80. The first is that a
parser inherits the behavior of the lexical analyzer instead of having it as a
component. This caused problems when we wanted to place a filter between
the lexical analyzer and the parser without changing the standard compiler.
The second example is that scrolling is an inherited characteristic, so it is
difficult to convert a class with vertical scrolling into one with no scrolling or
with both horizontal and vertical scrolling. While multiple inheritance might

solve this problem, it has problems of its own. Moreover, this problem is easy
to solve by making scrollbars be components of objects that need to be scrolled.

Most object-oriented applications have many kinds of hierarchies. In ad-
dition to class inheritance hierarchies, they usually have instance hierarchies
made up of regular objects. For example, a user-interface in Smalltalk consists
of a tree of views, with each subview being a child of its superview. Fach com-
ponent is an instance of a subclass of View, but the root of the tree of views is
an instance of StandardSystemView. As another example, the Smalltalk com-
piler produces parse trees that are hierarchies of parse nodes. Although each
node is an instance of a subclass of ParseNode, the root of the parse tree is an
instance of MethodNode, which is a particular subclass. Thus, while View and
ParseNode are the abstract classes at the top of the class hierarchy, the objects
at the top of the instance hierarchy are instances of StandardSystemView and
MethodNode.

This distinction seems to confuse many new Smalltalk programmers. There
is often a phase when a student tries to make the class of the node at the top
of the instance hierarchy be at the top of the class hierarchy. Once the disease
is diagnosed, it can be easily cured by explaining the differences between the
instance and class hierarchies.

3 Software reuse

One of the reasons that object-oriented programming is becoming more popular
is that software reuse is becoming more important. Developing new systems is
expensive, and maintaining them is even more expensive. A recent study by
Wilma Osborne of the National Bureau of Standards suggests that 60 to 85
percent of the total cost of software is due to maintenance [L.S80]. Clearly, one
way to reuse a program is to enhance it, so maintainance is a special case of
software reuse. Both require programmers to understand and modify software
written by others. Both are difficult.

Evolutionary lifecycles are the rule rather than the exception. Software
maintenance can be categorized as corrective, adaptive, and perfective. Correc-
tive maintenance is the process of diagnosing and correcting errors. Adaptive
maintenance consists of those activities that are needed to properly integrate
a software product with new hardware, peripherals, etc. Perfective mainte-
nance is required when a software product is successful. As such a product
is used, pressure is brought to bear on the developers to enhance and extend
the functionality of that product. Osborne reports that perfective maintenance
accounts for 60 percent of all maintenance, while adaptive and corrective main-
tenance each account for about 20 percent of maintenance. Since 60% of main-
tenance activity is perfective, an evolutionary phase is an important part of

the lifecycle of a successful software product.

We have already seen that object-oriented programming languages encour-
age software reuse in a number of ways. Class definitions provide modularity
and information hiding. Late-binding of procedure calls means that objects
require less information about each other, so objects need only to have the
right protocol. A polymorphic procedure is easier to reuse than one that is not
polymorphic, because it will work with a wider range of arguments. Class in-
heritance permits a class to be reused in a modified form by making subclasses
from it. Class inheritance also helps form the families of standard protocols
that are so important for reuse.

These features are also useful during maintenance. Modularity makes it
easier to understand the effect of changes to a program. Polymorphism reduces
the number of procedures, and thus the size of the program that has to be
understood by the maintainer. Class inheritance permits a new version of a
program to be built without affecting the old.

Many of the techniques for reusing software written in conventional lan-
guages are paralleled by object-oriented techniques. For example, program
skeletons are entirely subsumed by abstract classes. Copying and editing a
program is subsumed by inheriting a class and overriding some of its methods.
The object-oriented techniques have the advantage of giving the new class only
the differences between it and the old, making it easier to determine how a new
program differs from the old. Thus, a set of subclasses preserves the history of
changes made to the superclass by its subclasses. Conditionalizing a program
by adding flag parameters or variant tag tests can almost always be replaced
by making a subclass for each variant and having the subclasses override the
methods making the tests.

Software reuse does not happen by accident, even with object-oriented pro-
gramming languages. System designers must plan to reuse old components
and must look for new reuseable components. The Smalltalk community prac-
tices reuse very successfully. The keys to successful software reuse are attitude,
tools, and techniques.

Smalltalk programmers have a different attitude than other programmers.
There is no shame in borrowing system classes or classes invented by other
progammers. Rewriting an old class to make it easier to reuse is as important
as inventing a new class[CB86]. A new class that is not compatible with old
classes is looked down upon. Smalltalk programmers expect to spend as much
time reading old code to see how to reuse it as writing new code. In fact,
writing a Smalltalk program is very similar to maintaining programs written
in other languages, in that it is just as important for the new software to fit in
as it is for it to be efficient and easy to understand.

The most important attitude is the importance given to the creation of

reuseable abstractions. Kent Beck describes the difficulty in finding reuse-
able abstractions and the importance placed on them by saying “Even our
researchers who use Smalltalk every day do not often come up with generally
useful abstractions from the code they use to solve problems. Useful abstrac-
tions are usually created by programmers with an obsession for simplicity, who
are willing to rewrite code several times to produce easy-to-understand and
easy-to-specialize classes.” Later he states: “Decomposing problems and pro-
cedures is recognized as a difficult problem, and elaborate methodologies have
been developed to help programmers in this process. Programmers who can
go a step further and make their procedural solutions to a particular problem
into a generic library are rare and valuable.”[OBHS86]

The Smalltalk programming environment includes a number of tools that
make it easier to reuse classes. There is a browser for examining and organizing
classes, cross reference tools, and a tool for change management and detecting
conflicts between versions[Gol84]. Although experience has shown the need
for improvements to these tools and has generated ideas for new tools[Roc86,
BC86b, BC86a, GB31], the existing tools greatly aid reuse in Smalltalk.

Techniques that improve reuse in Smalltalk can be divided into the coding
rules and the design rules. Rochat discusses coding rules for Smalltalk that
make programs easier to understand and reuse[Roc86]. The sixth section of
this article describes design rules. These rules are based on the fact that useful
abstractions are usually designed from the bottom up, i.e. they are discovered,
not invented. We create new general components by solving specific problems,
and then recognizing that our solutions have potentially broader applicability.
The design rules in this paper are a way of converting specific solutions into
reuseable abstractions, not a way of deducing abstractions from first principles.

4 Toolkits and Frameworks

One of the most important kinds of reuse is reuse of designs. A collection of
abstract classes can be used to express an abstract design. The design of a
program is usually described in terms of the program’s components and the
way they interact. For example, a compiler can be described as consisting of a
lexer, a parser, a symbol table, a type checker, and a code generator.

An object-oriented abstract design, also called a framework, consists of an
abstract class for each major component.® The interfaces between the compo-
nents of the design are defined in terms of sets of messages. There will usually
be a library of subclasses that can be used as components in the design. A
compiler framework would probably have some concrete symbol table classes

3Apparently the name for frameworks at Xerox Information Systems is “teams”.

and some classes that generate code for common machines. In theory, code
generators could be mixed with many different parsers. However, parsers and
lexers would be closely matched. Thus, some parts of a framework place more
constraints on each other than others.

MacApp is a framework for Macintosh applications[Sch86]. An abstract
MacApp application consists of one or more windows, one or more documents,
and an application object. A window contains a set of views, each of which
displays part of the state of a document. MacApp also contains commands,
which automate the undo/redo mechanism, and printer handlers, which provide
device independent printing. Most application classes do little besides define
the class of their document. They inherit a command interpreter and menu
options. Most document classes do little besides define their window and how
to read and write documents to disk. They inherit menu options for saving the
documents and tools for selecting which document to open next. An average
programmer rarely makes new window classes, but usually has to define a
view class that renders an image of a document. MacApp not only ensures
that programs meet the Macintosh user-interface standard, but makes it much
easier to write interactive programs.

Other frameworks include the Lisa Toolkit[AC84], which was used to build
applications for the Lisa desktop environment, and the Smalltalk Model /View /Controller
(MVC), which is a framework for constructing Smalltalk-80 user interfaces[Gol84].
Although these frameworks are concerned primarily with implementing a stan-
dard user interface, frameworks are by no means limited to the user interface.
For example, the Battery Simulation[Foo88] is a framework for constructing
realtime psychophysiological experiments.

Frameworks are useful for reusing more than just mainline application code.
They can also describe the abstract designs of library components. The ability
of frameworks to allow the extension of existing library components is one of
their principal strengths.

Frameworks are more than well written class libraries. A good example of
a set of library utility class definitions is the Smalltalk Collection hierarchy.
These classes provide ways of manipulating collections of objects such as Ar-
rays, Dictionaries, Sets, Bags, and the like. In a sense, these tools correspond
to the sorts of tools one might find in the support library for a conventional
programming system. Fach component in such a library can serve as a dis-
crete, stand-alone, context independent part of a solution to a large range of
different problems. Such components are largely application independent.

A framework, on the other hand, is an abstract design for a particular kind
of application, and usually consists of a number of classes. These classes can
be taken from a class library, or can be application-specific.

Frameworks can be built on top of other frameworks by sharing abstract

10

classes. FOIBLE is a framework for building “device programming” systems
in Smalltalk[Eri87]. It lets the user edit a picture consisting of a collection of
interconnected devices. These devices have computational meaning, so editing
the picture is a form of programming. FOIBLE uses the MVC framework to
implement the editor, but adds Tools and Foibles to implement the semantics
of the picture and the visual representation of components. Thus, FOIBLE is
built on top of MVC.

Frameworks provide a way of reusing code that is resistant to more con-
ventional reuse attempts. Application independent components can be reused
rather easily, but reusing the edifice that ties the components together is usu-
ally possible only by copying and editing it. Unlike skeleton programs, which
is the conventional approach to reusing this kind of code, frameworks make it
easy to ensure the consistency of all components under changing requirements.

Since frameworks provide for reuse at the largest granularity, it is no sur-
prise that a good framework is more difficult to design than a good abstract
class. Frameworks tend to be application specific, to interlock with other frame-
works by sharing abstract classes, and to contain some abstract classes that
are specialized for the framework. Designing a framework requires a great deal
of experience and experimentation, just like designing its component abstract
classes.

4.1 White-box vs. Black-box Frameworks

One important characteristic of a framework is that the methods defined by
the user to tailor the framework will often be called from within the frame-
work itself, rather than from the user’s application code. The framework often
plays the role of the main program in coordinating and sequencing applica-
tion activity. This inversion of control gives frameworks the power to serve
as extensible skeletons. The methods supplied by the user tailer the generic
algorithms defined in the framework for a particular application.

A framework’s application specific behavior is usually defined by adding
methods to subclasses of one or more of its classes. Each method added to
a subclass must abide by the internal conventions of its superclasses. We call
these white-box frameworks because their implementation must be understood
to use them.

A good example is the MVC Controller class, which maps user actions into
messages to the application. When the mouse moves into the region of a con-
troller, it is sent the startUp message, which causes the controller to be sent the
controlInitialize, controlLoop, and controlTerminate messages, in that
order. The behavior of a controller when it is selected and deselected is changed
by redefining controlInitialize and controlTerminate. The default behav-

11

ior of controlLoop is to repeatedly send the controller the controlActivity
message until the mouse moves out of the region of the controller. Thus, the
reaction of a controller to mouse movement, mouse button clicks, and keyboard
events is determined by the definition of the controlActivity.

The major problem with such a framework is that every application requires
the creation of many new subclasses. While most of these new subclasses are
simple, their number can make it difficult for a new programmer to learn the
design of an application well enough to change it.

A second problem is that a white-box framework can be difficult to learn
to use, since learning to use it is the same as learning how it is constructed.

Another way to customize a framework is to supply it with a set of compo-
nents that provide the application specific behavior. Each of these components
will be required to understand a particular protocol. All or most of the com-
ponents might be provided by a component library. The interface between
components can be defined by protocol, so the user needs to understand only
the external interface of the components. Thus, this kind of a framework is
called a black-box framework.

There is a set of black-box components of MVC called the pluggable views.
These components were designed with the realization that the majority of
MVC classes that were created were controllers with a customized menu. The
pluggable views let controllers take the menus as parameters, thus greatly
reducing the need to create new controller classes. Most of the programming
tools in the latest versions of Smalltalk-80, such as the browser, file tool, and
debugger, use pluggable views and do not require any new user interface classes.
The method that invokes a tool will create instances of the various components,
send messages to them to customize them for the tool, and connect them
together.

Black-box frameworks like the pluggable views are easier to learn to use
than white-box frameworks, but are less flexible. Pluggable views are usu-
ally sufficient to describe user interfaces that display only text, but the user
who wants a more graphical user interface will have to use the original MVC
framework. Fortunately, pluggable views fit into the MVC framework well, so
the user only has to create components to handle the graphical aspects of the
interface.

One way of characterizing the difference between white-box and black-box
frameworks is to observe that in white-box frameworks, the state of each in-
stance is implicitly available to all the methods in the framework, much as
the global variables in a Pascal program are. In a black-box framework, any
information passed to constituents of the framework must be passed explicitly.
Hence, a white-box framework relies on the intra-object scope rules to allow
it to evolve without forcing it to subscribe to an explicit, rigid protocol that

12

might constrain the design process prematurely.

A framework becomes more reuseable as the relationship between its parts
is defined in terms of a protocol, instead of using inheritance. In fact, as the
design of a system becomes better understood, black-box relationships should
replace white-box ones. Black-box relationships are an ideal towards which a
system should evolve.

4.2 Toolkits

An object-oriented application construction environment, or toolkit, is a collec-
tion of high level tools that allow a user to interact with an application frame-
work to configure and construct new applications. Examples of toolkits are
Alexander’s Glazier system for constructing Smalltalk-80 MVC applications[Ale87],
and Smith’s Alternate Reality Kit[Smi87]. All toolkits are based on one or more
frameworks.

One of the advantages of black-box frameworks is that they are better at
serving as the foundation of a toolkit. It is easy to build a tool that lets a
user choose prebuilt components and connect them together, and a successtul
black-box framework permits most applications to be constructed that way. An
example of such a tool is Glazier[Ale87], which builds an application within the
Model /View /Controller framework using pluggable views.

Frameworks make it easier to define specialized programs for constructing
classes. For example, a compiler might provide tools for building parsers,
lexers, and code generators. It is easier to build a tool for constructing classes
with well defined interfaces than it is to build a general purpose automatic
programming system.

5 Lifecycle

The lifecycle of a Smalltalk application is not necessarily different from that
of other programs developed using rapid prototyping. However, the lifecycle
of classes differs markedly from that of program components in conventional
languages, since classes may be reused in many applications.

Classes usually start out being application dependent. It is always worth-
while to examine a nearly-complete project to see if new abstract classes and
frameworks can be discovered. They can probably be reused in later projects,
and their presence in the current project will make later enhancements much
easier. Thus, creating abstract classes and frameworks is both a way of scav-
enging components for later reuse and a way of cleaning up a design. The final
class hierarchy is a description of how the system ought to have been designed,
though it may bear little relation to the original design.

13

One of the reasons that Smalltalk is good for prototyping is that the pro-
grammer can borrow code from anywhere in the system. However, this should
never be mistaken for good design. It is almost always necessary at the end
of a project to reorganize the class hierarchy. Unfortunately, few tools help
this task. Section 6 will discuss how to recognize class hierarchies that need
to be reorganized. Suggestions for tools to aid reorganization will appear in
Section 7.

One sign that a good abstraction has been found is that code size decreases,
indicating that code is being reused. Many Smalltalk projects have periods in
which the size of the code increases at a steady rate, followed by periods in
which little change occurs to the code, followed by a sharp decrease in the
size of the code. Code size increases as the programmers add new classes and
new methods to old classes. Eventually the programmers realize that they
need to rearrange the class hierarchy. They spend a bit of time in debate
and experimentation and then make the necessary changes, usually creating a
new abstract class or two. Since Smalltalk programs tend to be compact, it
is feasible to rewrite a system many times during its development. The result
is much easier to understand and maintain than typical nonobject-oriented
systems.

There are many ways that classes can be reorganized. Big, complex classes
can be split into several smaller classes. A common superclass can be found
for a set of related classes. Concrete superclasses can be made abstract. An
white-box framework can be converted into a black-box framework. All these
changes make classes more reuseable and maintainable.

Every class hierarchy offers the possibility of becoming a framework. Since a
white-box framework is just a set of conventions for overriding methods, there
is no fine line between a white-box framework and a simple class hierarchy.
In its simplest form, a white-box framework is a program skeleton, and the
subclasses are the additions to the skeleton.

Ideally, each framework will evolve into a black-box framework. However,
it is often hard to tell in advance how an white-box framework will evolve into
a black-box framework, and many frameworks will not complete the journey
from skeleton to black-box frameworks during their lifetimes.

White-box inheritance frameworks should be seen as a natural stage in the
evolution of a system. Because they are a middle ground between a particu-
lar application and an abstract design, white-box inheritance frameworks pro-
vide an indispensable path along which applications may evolve. A white-box
framework will sometime be a waystation in the evolution of a loose collection
of methods into a discrete set of components. At other times, a white-box
framework will be a finished product. A useful design strategy is to begin with
a white-box approach. White-box frameworks, as a result of their internal

14

informality, are usually relatively easy to design. As the system evolves, the
designer can then see if additional internal structure emerges.

Barbara Liskov, in a keynote address given at the OOPSLA 87 confer-
ence in Orlando, distinguished between inheritance as an implementation aid
(which she dismissed as unimportant) and inheritance for extending the ab-
stract functionality of an object [Lis87]. Liskov claims that in the later case,
only the abstract specification, and not the internal representation of the par-
ent object, should be inherited. She was in effect advocating that only the
black-box framework style should be employed. Such a perspective ignores the
value of white-box frameworks. Prohibiting white-box frameworks ignores both
their value in their own rights, and their value as the progenitors of mature
components.

Finding new abstractions is difficult. In general, it seems that an abstrac-
tion is usually discovered by generalizing from a number of concrete examples.
An experienced designer can sometimes invent an abstract class from scratch,
but only after having implemented concrete versions for several other projects.

This is probably unavoidable. Humans think better about concrete exam-
ples then about abstractions. We can think well about abstractions such as
integers or parsers only because we have a lot of experience with them. How-
ever, new abstractions are very important. A designer should be very happy
whenever a good abstraction is found, no matter how it was found.

6 Design methodology

The product of an object-oriented design is a list of class definitions. Fach
class has a list of operations that it defines and a list of objects with which
its instances communicate. In addition, each operation has a list of other
operations that it will invoke. A design is complete when every object that is
referenced has been defined and every operation is defined. The design process
incrementally extends an incomplete design until it is complete.

Object-oriented design starts with objects. Booch suggests that the de-
signer start with a natural language description of the desired system and use
the nouns as a starting point for the classes of objects to be designed[Boo86].
Each verb is an operation, either one implemented by a class (when the class is
the direct object) or one used by the class (when the class is the subject). The
resulting list of classes and operations can be used as the start of the design
process.

Operations on an object are always thought about from the object’s point
of view. Thus, instead of displaying an object, an object is asked to dis-
play itself. Methods are receiver-centric—many of the comments in the stan-
dard Smalltalk-80 image use the word “I” to refer to the receiver. This is in

15

stark contrast to other ways of programming, where “The use of anthropomor-
phic terminology when dealing with computer systems is a sign of professional
immaturity” [Dij82].

Booch’s design methodology defines classes for objects in the problem do-
main. However, classes are often needed for operations in the problem domain.
For example, compiling a program can be thought of as an operation on pro-
grams. However, because compilation is so complex, it is best to have separate
compiler objects to represent compilation. The compile operation on programs
would make a new compiler object and use it to make a compiled version of
the program.

It can be difficult to decide whether an operation should be implemented
as a method in a class or as a separate class. Halbert and O’Brien discuss this
problem at length[HO87]. In general, there is no absolute way to decide, but
positive answers to the following questions all indicate that a new class should
be created.

1. Is the operation a meaningful abstraction?

2. Is the operation likely to be shared by several classes?

3. Is the operation complex?

4. Does the operation make little use of the representation of its operands?
5. Will relatively few users of the class want to use the operation?

The compiler example shows that it is possible to make an operation both a
class and a method by having the method make an object of the class. This
separates the implementation of the operation from that of the class and makes
it more reuseable, but permits the user to continue to think of the operation
as a method.

It can also be difficult to decide which class should implement an operation.
Operations with several arguments can frequently be implemented as methods
in the classes of any of its arguments. The rules listed above can also be used
to make this decision. For example, if an operation does not send messages to
an object or access its instance variables then it should not be in the object’s
class.

We are not implying that classes can be reorganized mechanically. A class
should represent a well-defined abstraction, not just a bundle of methods and
variable definitions. Human judgement is needed to decide when and how
a class hierarchy is to be reorganized. Nevertheless, the following rules will
frequently point out the need for a reorganization and suggest how it is to be
accomplished.

16

6.1 Rules for Finding Standard Protocols

It is very important that the design process result in standard protocols. In
other words, many of the classes should have nearly identical external interfaces
and there should be sets of operations that many classes implement.

Standard protocols are developed by choosing names carefully. The need for
standard protocols is one reason why it takes a long time to become an expert
Smalltalk programmer. Many of the more important protocols are described in
the Blue Book|GR83], but just as many are not documented anywhere except
in the source code. Thus, the only way to learn these protocols is by experience.

There are a number of rules of thumb that will help develop standard
protocols. A programmer practicing these rules is more likely to keep from
giving different names to the same operation in different classes. These rules
help minimize the number of different names and maximize the number of
names shared by a set of classes.

Rule 1 Recursion introduction.

If one class communicates with a number of other classes, its interface to each
of them should be the same. If an operation X is implemented by performing a
similar operation on the components of the receiver, then that operation should
also be named X. Even if the name of the operation has to be changed to add
more arguments,* it makes sense to make the names similar so that readers
of the program will note the connection. The result is that a method for a
message sends that same message to other objects. If the other objects are
in the same class as the sender then the method is recursive. Even if no real
recursion exists, the method appears recursive, so we call this rule recursion
introduction.

Recursion introduction can help decide the class in which an operation
should be a method. Consider the problem of converting a parse tree into
machine language. In addition to an object representing the parse tree, there
will be an object representing the final machine language procedure. The
“generate code” message could be sent to either object. However, the best
design is to implement the generate code message in the parse tree class, since
a parse tree will consist of many parse nodes, and a parse node will generate
machine code for itself by recursively asking its subtrees to generate code for
themselves.

Rule 2 Eliminate case analysis.

It is almost always a mistake to explicitly check the class of an object. Code
of the form

4Smalltalk message names indicate the number of arguments to the message.

17

anObject class == ThisClass ifTrue: [anObject foo]
ifFalse: [anObject fee]

should be replaced with a message to the object whose class is being checked.
Methods will have to be created in the various possible classes of the object to
respond to the message, and each method will contain one of the cases that is
being replaced.

Case analysis of the values of variables is usually a bad idea, too. For exam-
ple, a parse tree might contain nodes that represent instance variables, global
variables, method arguments, and temporary variables. The Smalltalk-80 com-
piler uses one class to represent all these kinds of variables and differentiates
between them on the value of an instance variable. It would be better to have
a separate class for each kind of variable.

Eliminating case analysis is more difficult when the cases are accessing in-
stance variables, but it is no less important. If instance variables are being
accessed then self will need to be an argument to the message and more mes-
sages may need to be defined to access the instance variables.

Rule 3 Reduce the number of arguments.

Messages with half a dozen or more arguments are hard to read. Except for
instance creation messages, a message with this many arguments should be
redefined. When a message has a smaller number of arguments it is more
likely to be similar to some other message, thus increasing the possibility of
giving them the same name.

The number of arguments can be reduced by breaking a message into sev-
eral smaller messages or by creating a new class that represents a group of
arguments. Frequently there will be several kinds of messages that pass the
same set of objects around. This set of objects is essentially a new object, and
the design can be changed to reflect that fact by replacing the set of objects
with an object that contains them.

Rule 4 Reduce the size of methods.

Well-designed Smalltalk methods are almost always small. It is easier to sub-
class a class with small methods, since its behavior can be changed by redefining
a few small methods instead of modifying a few large methods. A thirty line
method is large and probably needs to be broken into pieces. Often a method
in a superclass is split when a subclass is made. Most of the inherited method
is correct, but one part needs to be changed. Instead of rewriting the entire
method, it is split into pieces and the one piece that has changed is redefined.
This change leaves the superclass even easier to subclass.

18

Figure 1:

These design rules are all related, since eliminating cases reduces the size
of methods, beaking a method into pieces is likely to reduce the number of
arguments that any one method needs, and reducing the number of arguments
is likely to create more methods with the same name.

6.2 Rules for Finding Abstract Classes

Rule 5 Class hierarchies should be deep and narrow.

A well developed class hierarchy should be several layers deep. A class hierarchy
consisting of one superclass and 27 subclasses is much too shallow. A shallow
class hierarchy is evidence that change is needed, but does not give any idea
how to make that change.

An obvious way to make a new superclass is to find some sibling classes
that implement the same message and try to migrate the method to a common
superclass. Of course, the classes are likely to provide different methods for
the message, but it is often possible to break a method into pieces and place
some of the pieces in the superclass and some in the subclasses. For example,
displaying a view consists of displaying its border, displaying its subviews, and
displaying its contents. The last part must be implemented by each subclass,
but the others are inherited from View.

Rule 6 The top of the class hierarchy should be abstract.

Inheritance for generalization or code sharing usually indicates the need for a
new subclass. If class B overrides a method z that it inherits from class A then
it might be better to move the methods in A that B does inherit to C, a new
superclass of A, as shown in Figure 1. C will probably be abstract. B can then
become a subclass of C, and will not have to redefine any methods. Instance
variables or methods defined in A that are used by B should be moved to C.

Rule 7 Minimize accesses to variables.

Since one of the main differences between abstract and concrete classes is the
presence of data representation, classes can be made more abstract by elim-
inating their dependence on their data representation. One way this can be

19

done is to access all variables by sending messages. The data representation
can be changed by redefining the accessing messages.

Rule 8 Subclasses should be specializations.

There are several different ways that inheritance can be used[HO87]. Special-
ization is the ideal that is usually described, where the elements of the subclass
can all be thought of as elements of the superclass. Usually the subclass will
not redefine any of the inherited methods, but will add new methods. For ex-
ample, a two dimensional array is a subclass of Array in which all the elements
are arrays. It might have new messages that use two indexes, instead of just
one.

An important special case of specialization is making concrete classes. Since
an abstract class is not executable, making a subclass of an abstract class
is different from making a subclass of a concrete class. The abstract class
requires its subclasses to define certain operations, so making a concrete class
is similar to filling in the blanks in a program template. An abstract class
may define some operations in an overly general fashion, and the subclass may
have to redefine them. For example, the size operation in class Collection is
implemented by iterating over the collection and counting its elements. Most
subclasses of Collection have an instance variable that contains the size, so size
is redefined in those subclasses to return that instance variable.

There are a couple of ways that a designer can tell whether a subclass is
a specialization of a superclass. An abstract definition is that anywhere the
superclass is used, the subclass can be used. Thus, a subclass has a superset
of the behavior of its superclass. A more concrete definition is given by the
subtype compatibility rules of Trellis/Owl[SCB*86]. Of course, it is difficult to
check type compatibility rules in an untyped language like Smalltalk, but they
can be checked by hand.

In the middle of a project, it may be useful for a designer to make subclasses
that are not specializations of their superclasses. If the superclasses are poorly
designed, it might take a great deal of work to determine the proper design of
the class hierarchy. It is better to forge ahead and then to later reorganize the
classes. Thus, a subclass might be more general than its superclass or might
have little relationship to its superclass other than borrowing code from it.

6.3 Rules for Finding Frameworks

Large classes are frequently broken into several small classes as they grow,
leading to a new framework. A collection of small classes can be easier to learn
and will almost always be easier to reuse than a single large class. A collection
of class hierarchies provides the ability to mix and match components while a

20

single class hierarchy does not. Thus, breaking a compiler into a parsing phase
and a code generation phase permits a new language to be implemented by
building only a new parser, and a new machine to be supported by building
only a new code generator.

Rule 9 Split large classes.

A class is supposed to represent an abstraction. If a class has 50 to 100 methods
then it must represent a complicated abstraction. It is likely that such a class is
not well defined and probably consists of several different abstractions. Large
classes should be viewed with suspicion and held to be guilty of poor design
until proven innocent.

Rule 10 Factor implementation differences into subcomponents.

If some subclasses implement a method one way and others implement it an-
other way then the implementation of that method is independent of the su-
perclass. It is likely that it is not an integral part of the subclasses and should
be split off into the class of a component.

Multiple inheritance can also be used to solve this problem. However, if an
algorithm or set of methods is independent of the rest of the class then it is
cleaner to encapsulate it in a seperate component.

Rule 11 Separate methods that do not communicate.

A class should almost always be split when half of its methods access half of
its instance variables and the other half of its methods access the other half of
its variables. This sometimes occurs when there are several different ways to
view objects in the class

For example, a complex graphical object may cache its image as a bitmap,
but the image is derived from the complex structure of the object, which con-
sists of a number of simple graphical objects. When the object is asked to
display itself, it displays its cached image if it is valid. If the image is not
valid, the object recalculates the image and displays it. However, the graph-
ical object can also be considered a collection of (graphical) objects that can
be added or removed. Changing the collection invalidates the image.

This graphical object could be implemented as a subclass of bitmapped
images, or it could be a subclass of Collection. A system with multiple inheri-
tance might make both be superclasses. However, it is best to make both the
bitmap and the collection of graphical objects be components, since each of
them could be implemented in a number of different ways, and none of those
ways are critical to the implementation of the graphical object. Separating the
bitmap class will make it easier to port the graphical object to a system with
different graphics primitives, and separating the collection class will make it
easier to make the graphical object be efficient even when very large.

21

Rule 12 Send messages to components instead of to self.

An inheritance-based framework can be converted into a component-based
framework black box structure by replacing overridden methods by message
sends to components. Examples of such frameworks in conventional systems
are sorting routines that take procedural parameters. Programs should be
factored in this fashion whenever possible. Reducing the coupling between
framework components so that the framework works with any plug-compatible
object increases its cohesion and generality.

Rule 13 Reduce implicit parameter passing.

Sometimes it is hard to split a class into two parts because methods that should
go in different classes access the same instance variable. This can happen
because the instance variable is being treated as a global variable when it
should be passed as a parameter between methods. Changing the methods to
explicitly pass the parameter will make it easier to split the class later.

7 Object-Oriented Programming Tools

There are at least two new kinds of tools needed for the style of programming
we have just described. One kind helps the programmer reorganize class hierar-
chies and the other helps the programmer build applications from frameworks.
Other tools would also be helpful, such as tools to help a programmer find
components in libraries, but these will not be discussed.

It takes a great deal of inspiration to construct a good class hierarchy. How-
ever, it is possible to build tools that would let a programmer know that a class
hierarchy had problems. These tools would be like the English style tools in
the Unix writer’s workbench. They would complain about perceived problems
but would let the programmer decide whether the complaints were valid and
how to fix them. Other tools could help reorganize the class hierarchy once a
problem was diagnosed. For example, if a method of a superclass is ignored by
its subclass then some abstractions in the superclass are not being inherited
by the subclass. This is probably a case of subclassing for generalization or
code sharing. It might be best to break the superclass into two classes, one a
subclass of the other. The new subclass would have all the methods that are
unused by the old subclasses. Similarly, a sign of inheritance for code sharing
is that many of a superclass’s methods are redefined. Perhaps some of these
redefined methods should be in a concrete subclass, making the superclass
abstract.

Reorganizing a class hierarchy is not difficult in Smalltalk, since it is easy
to change the superclass of a class and to add and remove instance variables.

22

It is difficult to copy a class, but copying is rarely needed. A more important
problem is that the lack of type checking in Smalltalk means that if a method
inherited by two subclasses is moved into one of the subclasses then no warn-
ing will be given until runtime. It is virtually impossible to reorganize class
hierarchies without creating a few missing methods, though these are fortu-
nately easy to fix. However, it is very difficult to change core class hierarchies,
since any mistake will crash the system. It would be good to have tools for
building reorganization plans and for inspecting the results of applying these
plans. Consistency checks could help ensure that the plans would result in
class hierarchies with the same behavior as the original ones.

Much Smalltalk programming consists of combining existing components
within a black-box framework. It seems unnecessarily complex to do this by
writing a program—it would be much simpler to use graphical tools to select
components and attach them to each other. This would make a system like
Smalltalk much more useful to nonprogrammers. Such a system could also
check to make sure that the components were compatible with each other.
While special purpose tools like Glazier are valuable, ideally there could be
general purpose tools that would work for any framework.

The interfaces between components in a framework are not fixed but depend
on the classes of the components. A particular component may place more
restrictions on the other components. For example, if a scroll controller is used
in a MVC triad then the view will have to be able to respond to scrolling
messages. This requirement is evidenced by the fact that the controller will
send some specialized messages to the view and so not every view will be
compatible with it.

The set of messages that an object can understand is essentially its type.
In fact, determining which classes can be used in a framework is the same
thing as determining type compatibility. Use of type constraint propagation
can be used to determine the set of classes that can be used as components
given that some components have already been chosen. If there were some way
to describe an abstract framework and a database of classes that could serve
as components, it should be possible to let the programmer pick components
from a menu, only allowing consistent choices of components.

& Conclusion

Smalltalk programmers often tell stories of how they built a complicated appli-
cation in a few days. These experiences can occur only because the program-
mers are able to reuse so many software components and abstract designs.
Building reuseable components and designs takes much more time. However,
it is time that pays off handsomely in the long run.

23

A number of factors account for the high reusability of object-oriented com-
ponents. Polymorphism increases the likelyhood that a given component will
be usable in new contexts. Inheritance promotes the emergence of standard
protocols, and allows existing components to be customized. Inheritance also
promotes the emergence of abstract classes. Frameworks allow a collection of
objects to serve as a template solution to a class of problems. Using frame-
works, algorithms and control code, as well as individual components, can be
reused.

Object-oriented techniques offer us an alternative to writing the same pro-
grams over and over again. We may instead take the time to craft, hone, and
perfect general components, with the knowledge that our programming envi-
ronment gives us the ability to reexploit them. If designing such components
is a time consuming experience, it is also one that is aesthetically satisfying. If
my alternatives are to roll the same rock up the same hill every day, or leave a
legacy of polished, tested general components as the result of my toil, I know
what my choice will be.

References

[AC84] Inc. Apple Computer. Lisa Toolkit 3.0. Apple Computer, Cuper-
tino, CA, 1984.

[Ale87] James H. Alexander. Paneless panes for smalltalk windows. In

OOPSLA 87, 1987.

[BC86a] Kent Beck and Ward Cunningham. The Literate Program Browser.
Technical Report, Tektronix, 1986.

[BC86b] Kent Beck and Ward Cunningham. Using the Diagramming Debug-
ger. Technical Report, Tektronix, 1986.

[Boo86] Grady Booch. Software Engineering with Ada. Ben-
jamin/Cummings, Menlo Park, CA, 1986.

[Boo87] Grady Booch. Software Components with Ada: Structures, Tools,
and Subsystems. Benjamin/Cummings, Menlo Park, CA, 1987.

[CB86] Ward Cunningham and Kent Beck. ScrollController Explained: An
Example of Literate Programming in Smalltalk. Technical Report,
Tektronix, 1986.

[Dij82] Edsger W. Dijkstra. How Do We Tell Truths that Might Hurt?,
pages 129-131. Springer-Verlag, New York, NY, 1982.

24

[Eri87]

[Fis87]

[Foo88]

[GBS1]

[Gol34]

[GRS3]

[HOST]

[Johs6]

[Lis87]

[L.S80]

[OBHSS6]

Stewart Ericson. FOIBLE: A Framework for Object-Oriented In-
teractive Box and Line Environments. Master’s thesis, University
of Illinois at Urbana-Champaign, 1987.

Gerhard Fischer. Cognitive view of reuse and redesign. IEEFE Soft-
ware, 4(4):60-72, 1987.

Brian Foote. Designing to Facilitate Change with Object-Oriented
Frameworks. Master’s thesis, University of Illinois at Urbana-

Champaign, 1988.

Ira P. Goldstein and Daniel G. Bobrow. PIE: An Fzrperimental
Personal Information Environment. Technical Report CSL-81-4,
Xerox Palo Alto Research Center, 1981.

Adele Goldberg. Smalltalk-80: The Interactive Programming Envi-
ronment. Addison-Wesley, Reading, Massachusetts, 1984.

Adele Goldberg and David Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, Reading, Massachusetts,
1983.

Daniel C. Halbert and Patrick D. O’Brien. Using types and in-
heritance in object-oriented programs. [EEFE Software, to appear,

1987.

Ralph E. Johnson. Type-checking Smalltalk. In Proceedings of
OOPSLA ‘86, Object-Oriented Programming Systems, Languages
and Applications, pages 315-321, November 1986. printed as SIG-
PLAN Notices, 21(11).

Barbara Liskov Keynote Address. Data Abstraction and Hierarchy.
In OOPSLA ‘87 Addendum to the Proceedings, pp. 17-34 October
1987 (printed as SIGPLAN Notices 23(5)).

Ware Meyers. Interview with Wilma Osborne. IEEE Software 5(3):
104-105, 1988

Tim O’Shea, Kent Beck, Dan Halbert, and Kurt J. Schmucker.
Panel on: the learnability of object-oriented programming systems.
In Proceedings of OOPSLA ‘86, Object-Oriented Programming Sys-
tems, Languages and Applications, pages 502-504, November 1986.
printed as SIGPLAN Notices, 21(11).

25

[Roc86]

[SCB*86]

[Sch86]

[Sei8T]

[Smi87]

[Str86]

Roxanna Rochat. In Search of Good Smalltalk Programming Style.
Technical Report CR-86-19, Tektronix, 1986.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and
Carrie Wilpolt. An introduction to trellis/owl. In Proceedings of
OOPSLA ‘86, Object-Oriented Programming Systems, Languages
and Applications, pages 9-16, November 1986. printed as SIGPLAN
Notices, 21(11).

Kurt J. Schmucker. Object-Oriented Programming for the Macin-
tosh. Hayden Book Company, 1986.

Ed Seidewitz. Object-oriented programming in smalltalk and ada.
In Proceedings of OOPSLA ‘87, Object-Oriented Programming Sys-
tems, Languages and Applications, pages 202-213, December 1987.
printed as SIGPLAN Notices, 22(12).

Randall B. Smith. Experience with the alternate reality kit: an
example of the tension between literalism and magic. In Proceedings

of CHI 87, pages 6168, April 1987.

Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley Publishing Co., Reading, MA, 1986.

26

Figure 1

