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Abstract. Integrated applications running in multi-tenant environments are of-
ten subject to quality-of-service (QoS) requirements, such as resource and per-
formance constraints. It is hard to allocate resources between multiple users ac-
cessing these types of applications while meeting all QoS constraints, such as en-
suring users complete execution prior to deadlines. Although a processor cache
can reduce the time required for the tasks of a user to execute, multiple task ex-
ecution schedules may exist that meet deadlines but differ in cache utilization
efficiency. Determining which task execution schedules will utilize the processor
cache most efficiently and provide the greatest reductions in execution time is
hard without jeopardizing deadlines.
The work in this paper provides three key contributions to increasing the exe-
cution efficiency of integrated applications in multi-tenant environments while
meeting QoS constraints. First, we present cache-aware metascheduling, which
is a novel approach to modifying system execution schedulesto increase cache-hit
rate and reduce system execution time. Second, we apply cache-aware metaschedul-
ing to 11 simulated software systems to create 2 different execution schedules per
system. Third, we empirically evaluate the impact of using cache-aware metaschedul-
ing to alter task schedules to reduce system execution time.Our results show
that cache-aware metascheduling increases cache performance, reduces execu-
tion time, and satisfies scheduling constraints and safety requirements without
requiring significant hardware or software changes.

1 Introduction

Current trends and challenges.Multi-tenant environments, such as Software-as-a-
Service (SaaS) platforms and integrated avionics systems,are often subject to stringent
quality-of-service (QoS) requirements, such as resource requirements and performance
constraints [29]. To ensure that response time specified by service-level agreements
(SLAs) are upheld, execution time must be minimized. One approach to reduce execu-
tion time is to reduce the time spent loading data from memoryby efficiently utilizing
processor caches.

† This work was sponsored in part by the Air Force Research Lab.



Several research techniques utilize processor caches moreefficiently to reduce exe-
cution time. For example, Bahar et al. [5] examined several different cache techniques
for reducing execution time by increasing cache hit rate. Their experiments showed that
efficiently utilizing a processor cache can result in as muchas a 24% reduction in execu-
tion time. Likewise, Manjikian et al. [16] demonstrated a 25% reduction in execution
time as a result of modifying the source-code of the executing software to use cache
partitioning.

Fig. 1: Example of an Integrated Avionics Architecture

Many optimization techniques [21, 17, 27] increase cache hit rate by enhancing
source code to increasetemporal locality of data accesses, which defines the proximity
with which shared data is accessed in terms of time [13]. For example, loop interchange
and loop fusion techniques can increase temporal locality of accessed data by modi-
fying application source code to change the order in which application data is written
to and read from a processor cache [13, 16]. Increasing temporal locality increases the
probability that data common to multiple tasks persists in the cache, thereby reducing
cache-misses and software execution time [13, 16].

Open problem⇒ Increasing cache hit rate of integrated applications without
source code modifications.Integrated applications are a class of systems consisting of
a number of computing modules capable of supporting numerous applications of differ-
ing criticality levels [14]. Like other multi-tenant environments, integrated applications
prohibit data sharing between multiple concurrent users, while requiring that execution
completes within predefined deadlines.

Software architectures for integrated applications are built from separate compo-
nents that must be scheduled to execute in concert with one another. Prior work has
generally focused on source-code level modifications for individual applications in-
stead of integrated applications, which is problematic formulti-tenant environments
built from multiple integrated applications. Systems based on the integration of multi-
ple applications (such as the integrated avionics architecture shown in Figure 1) often



prohibit code-level modifications due to restricted accessto proprietary source code and
the potential to violate safety certifications [23] by introducing overflow or other faulty
behavior.

Solution approach→ Heuristic-driven schedule alteration of same-rate tasks
to increase cache hit rate.Priority-based scheduling techniques can help ensure soft-
ware executes without missing deadlines. For example, rate-monotonic scheduling [20]
is a technique for creating task execution schedules that satisfy timing constraints by as-
signing priorities to tasks based on the task periodicity and ensuring utilization bounds
are not exceeded. These tasks are then split into sets that contain tasks of the same
priority/rate.

Rate monotonic scheduling specifies that tasks of the same rate can be scheduled
arbitrarily [8] as long as priority inversions between tasks are not introduced. Fig-
ure 2 shows two different valid task execution schedules generated with rate monotonic
scheduling. Since task A2 and task B2 share the same priority, their execution order

Fig. 2: Valid Task Execution Schedules

can be swapped without violating timing constraints. This paper shows how to improve
cache hit rates for systems built from multiple integrated applications by intelligently
ordering the execution of tasks within the same rate to increase temporal locality of task
data accesses. We refer to this technique asmetascheduling, which involves no source
code modifications.

This paper presentscache-aware metascheduling, which is a novel scheduling op-
timization technique we developed to improve cache effectsof integrated applications
without violating scheduling constraints or causing priority inversions. Since this tech-
nique requires no source code modifications, it can be applied to integrated applications
without requiring source software permissions or completely invalidating safety certifi-
cations.

This paper provides the following contributions to R&D on scheduling optimiza-
tions to increase the cache hit rate of integrated applications:

• We present a metascheduling technique that satisfies scheduling constraints and
safety requirements, increases cache hits, and requires nonew hardware or software.

• To motivate the need for scheduling enhancements to improvecache hit rate in
integrated applications, we present an industry case studyof an integrated avionics sys-



tem in which modifications to its constituent applications are prohibitively expensive
due to safety (re)certification requirements.

•We present empirical results of 2 task execution schedules performance and demon-
strate that applying cache-aware metascheduling can result in increased cache-hit rates
and reduced system execution time.

Paper organization.The remainder of the paper is organized as follows: Section 2
examines an integrated avionics system designed to meet scheduling deadlines and as-
sure required safety constraints; Section 3 summarizes thechallenges of creating a met-
ric that predicts integrated application performance at design time and guides execution
schedule modifications; Section 4 describes a cache-aware metascheduling strategy for
increasing cache hit-rate and reducing execution time of anintegrated avionics system;
Section 5 analyzes empirical results that demonstrate the effectiveness of cache-aware
metascheduling for increasing cache hit-rate and reducingsystem execution time; Sec-
tion 6 compares our cache-aware metascheduling approach with related work; and Sec-
tion 7 presents concluding remarks.

2 Integrated Avionics System Case Study

This section presents a case study representative of an integration avionics system pro-
vided by Lockheed Martin that shows how integrated applications are configured in
modern aircraft, such as the one shown in Figure 1. This case study underscores the
similarity between multi-tenant environments and integrated applications in terms of
response time requirements and data sharing restrictions.It also shows how schedul-
ing methods for integrating applications can be applied to ensure safety constraints and
scheduling requirements are met. Section 5.2 describes modifications to this method
that increase the cache hit-rates of integrated application architectures.

In this architecture, task execution schedules are dividedinto frames in which a
subset of tasks execute. Two tasks are schedule to execute sequentially at the start of
each base frame. The task that executes at the base frame rateis scheduled to run,
followed by another task at a rate of lower frequency. For example, at Frame 0 the
scheduler will execute the software that runs at 75 Hz and thesoftware that executes
at 37.5 Hz, or half as frequently. This pattern continues repeatedly until the lowest rate
software in the system has completed. All scheduling of integrated application tasks in
the avionics system occurs in this manner.

One method for ensuring that tasks execute with a predetermined frequency is to
set a base execution rate and then set all other tasks to execute proportionately often.
The execution of the tasks can the be interleaved based on therelative execution rate,
as shown in Figure 3. Applications 1 and 2 both have tasks thatexecute at rates N,
N/2, and N/4. The rate N tasks from both applications always execute before any other
tasks in a given frame. Although it is not necessarily the case that all rate N tasks from
Application 1 will run before the rate N tasks from Application 2, our case study makes
this order repeatable,i.e., the interleaving A1/B2/A2 will not change from frame to
frame after it is established when the system starts.



Fig. 3: Interleaved Execution Order is Repeatable

3 Challenges of Analyzing and Optimizing Integrated Applications
for Cache Effects

This section presents the challenges faced by system integrators who attempt to opti-
mize integrated applications to improve cache hit rate. Systems are often subject to mul-
tiple design constraints, such as safety requirements and scheduling deadlines, that may
restrict which optimizations are applicable. This sectiondescribes three key challenges
that must be overcome to optimize application integration by improving the cache hit
rate of integrated applications.

Challenge 1: Altering application source code may invalidate safety certifica-
tion. Existing cache optimization techniques, such as loop fusion and data padding [12,
19], increase cache hit rate but requiring application source code modifications, which
may invalidate previous safety certifications by introducing additional faults, such as
overflow. Re-certification of integrated applications is a slow and expensive process,
which increases cost and delays deployment. Proprietary source code also may not be
accessible to integrators. Even if source code is available, moreover, integrators may not
have the expertise required to make reliable modifications.What is needed, therefore,
are techniques that improve cache hit rates without modifying integrated application
software.

Challenge 2: Optimization techniques must satisfy scheduling constraints. In-
tegrated applications are often subject to scheduling constraints and commonly use
priority-based scheduling methods, such as rate monotonicscheduling, to ensure that
software tasks execute predictably [28, 10]. These constraints prohibit many simple so-
lutions that ignore task priority, such as executing all task sets of each application,



that would greatly increase cache hit-rate. These techniques can cause integrated ap-
plications to behave unpredictably, with potentially catastrophic results due to missed
deadlines and priority inversions. What is needed, therefore, are techniques that can
be applied and re-applied when necessary to increase the cache hit-rate and decrease
integrated application execution time without violating timing constraints.

Challenge 3: System complexity and limited access to sourcecode.Current in-
dustry practice [3] for increasing cache hit rate require collecting detailed, instruction-
level information that describe integrated application behavior with respect to the mem-
ory subsystem and data structure placement. Obtaining information of this granularity,
however, can be an extremely laborious and time consuming for large-scale systems,
such as integrated avionics systems containing millions oflines of codes and dozens of
integrated applications. Moreover, these large-scale systems may be so complex that it
is not feasible to collect this information.

System integrators can more easily obtain higher level information, such as the per-
centage of total memory accesses made by a given task. What isneeded, therefore,
are techniques that allow system integrators to increase the cache hit rate of integrated
applications without requiring intricate, low-level system knowledge.

4 Improving Cache Hit Rate Via Cache-aware Metascheduling

This section presents cache-aware metascheduling, which is a technique we devel-
oped to increase cache hit rate through re-ordering the execution schedule of same-
rate tasks of integrated applications. Cache-ware metascheduling can potentially in-
crease the cache hit-rate and reduce execution time of systems in which resources are
not shared between concurrent executions, such as multi-tenant environments and inte-
grated avionics systems.

4.1 Re-ordering Same-rate Tasks with Cache-aware Metascheduling

Rate monotonic scheduling can be used to create task execution schedules for integrated
applications that ensure scheduling deadlines are met. This technique, however, allows
the definition of additional rules to determine the scheduleof same-rate tasks [18, 4,
15]. As shown in Figure 4, reordering same-rate tasks, or metascheduling, can produce
multiple valid execution schedules.

For example, Figure 4 shows how Task A1 can execute before or after Task B1. Ei-
ther ordering of these same rate tasks meets scheduling constraints. Since the original
schedule satisfies constraints and reordering same rate tasks does not introduce priority
inversions, schedules generated by metascheduling are valid. Moreover, metaschedul-
ing does not require alterations to application source codeor low-level system knowl-
edge.

The motivation behind metascheduling is that although different execution orders of
same-rate tasks do not violate scheduling constraints, they can impact the cache hit-rate.
For example, if two same-rate tasks that share a large amountof data execute sequen-
tially, then the first task may “warm up” the cache for the second task by preloading



data needed by the second task. This type of cache warming behavior can improve the
cache hit rate of the second task.

Same-rate task orderings can also negatively affect cache hit rate. For example, tasks
from integrated applications often run concurrently on thesame processor. These tasks
may be segregated into different processes, however, preventing tasks from different
applications from sharing memory. If two tasks do not share memory there is no cache
warmup benefit. Moreover, the first task may write a large amount of data to the cache
and evict data needed by the second task from the cache, reducing the cache hit rate of
the second task.

Cache-aware metascheduling is the process of reordering the execution of same-rate
tasks to increase beneficial cache effects, such as cache warm up, and reduce negative
effects, such as requiring reading data from main memory. Cache-aware metaschedul-
ing is relatively simple to implement, does not require in-depth knowledge of the in-
struction level execution details and memory layout of a large-scale system, and can
be achieved without source code modifications to tasks, making it ideal for increasing
the performance of existing integrated architectures and multi-tenant systems. Section 5
shows that reordering same-rate tasks does improve cache hit rates and reduce execution
time. A key question, however, is what formal metric can be used to choose between
multiple potential same-rate task execution schedules.

4.2 Deciding Between Multiple Metaschedules

While cache-aware metascheduling can be used to produce multiple valid same-rate
task execution schedules, it is not always apparent which schedule will produce the
overall best hit-rate and application performance. For example, Figure 4 shows a sched-
ule generated with rate monotonic scheduling and two additional valid schedules cre-
ated by permuting the ordering of same-rate tasks for a flightcontroller (FC) application
and a targeting system (TS) application. The only difference between the task execution
schedules are the order in which tasks of the same-rate are executed.

It is not obvious which task execution schedule shown in Figure 4 will produce the
best cache hit-rate. For example, Metaschedule 2 in Figure 4shows 2 tasks of Applica-
tion FC executing sequentially, while no tasks of Application TS execute sequentially.
If the tasks in Application FC share a large amount of data temporal locality should
increase compared to the original schedule since the cache is “warmed up” for the exe-
cution of FC1 by FC2.

In Metaschedule 1, however, 2 tasks of Application TS execute sequentially while
no tasks of Application FC execute sequentially. If Application TS shares more data
than Application FC, Metaschedule 1 will yield greater temporal locality than both the
original schedule and schedule FC since the cached will be warmed up with more data.
It may also be the case that no data is shared between any tasksof any application, in
which case all three schedules would yield similar temporallocality and cache hit rates.

Figure 4 shows it is hard to decide which schedule will yield the highest cache hit
rate. Constructing a metric for estimating temporal locality of a task execution sched-
ules could provide integrated application developers witha mechanism for comparing
multiple execution schedules and choosing which one would most yield the highest



Fig. 4: Multiple Execution Schedules

cache hit rate. It is hard to estimate temporal locality, however, due to several factors,
such as the presence and degree of data sharing between tasks.

4.3 Using Cache-Half life to Drive Cache-aware Metascheduling

While metascheduling can be used to produce new execution schedules that continue to
meet scheduling constraints, many of these schedules will not improve, and may even
reduce the cache-hit rate and increase execution time of thesystem. We define a new
heuristic, referred to as the cache half-life that can be used to drive the metascheduling
process.

Cache Half-Life. We now explain the key factors that impact cache hit rate in inte-
grated architectures and multi-tenant systems. A beneficial effect occurs when task T1
executes before task T2 and loads data needed by T2 into the cache. The beneficial ef-
fect can occur if T1 and T2 execute sequentially or if any intermediate task executions
do not clear out the data that T1 places into the cache that is used by T2. Thecache
half-life is this window of time between which T1 and T2 can execute before the shared
data is evicted from the cache by data used for intermediate task executions. While this
model is simpler than the actual complex cache data replacement behavior, it is effective
enough to give a realistic representation of cache performance [22].

For example, assume there are 5 applications, each consisting of 2 tasks, with each
task consuming 20 kilobytes of memory in a 64k cache. The hardware uses aLeast
Recently Used (LRU) replacement policy, which replaces the cache line that remained
the longest without being read when new data is written to thecache. The cache half-life
formulation will differ for other cache replacement policies.



Fig. 5: Using Cache Half-life to Drive Cache-aware Metascheduling

Executing the tasks will require writing up to 200 kilobytesto cache. Since the cache
can only store 64 kilobytes of data, all data from all applications cannot persist in the
cache simultaneously. Assuming the cache is initially empty, it would take a minimum
of 4 task executions writing 20 kilobytes each before any data written by the first task
potentially becomes invalidated. This system would therefore have a cache half-life of
4.

Our cache-aware metascheduling algorithm uses the cache half-life to increase the
cache hit-rate and reduce system execution time. We attemptto maximize the number
of tasks of the same application that execute before the cache half-life of the initial
execution task expires.

For example, as shown in Figure 5 task A1 of Application ’A’ executes at timestamp
0. The cache half-life of task A1 is 3 timestamps. As a result,for at least timestamps
2-4 data from Application ’A’ will persist in the cache. Any tasks that share data with
task A1 could use the data stored in the cache rather than accessing the data from main
memory, resulting in a cache hit and reducing system execution time.

In this example, moving Task A2 from timestamp 5 to timestamp3 will give Task
A2 the opportunity to take advantage of the data cached by Task A1, resulting in a
potentially higher cache hit-rate without violating scheduling constraints. Conversely,
moving Task A2 to timestamp 4 will not increase the cache hit-rate as most or all of
the data written by Task A1 to the cache will have been overwritten by this point due to
tasks of other applications executing.

5 Empirical Results

This section analyzes the results of a performance analysisof integrated applications
in multiple systems with different execution schedules generated through metaschedul-
ing. These systems also differ in the amount of memory sharedbetween tasks. We
investigate the impact of cache-aware metascheduling on L1cache misses and runtime
reductions for each system.



5.1 Overview of the Hardware and Software Testbed

To examine the impact of cache-aware metascheduling on integrated application perfor-
mance, we collaborated with members of the Lockheed Martin Corporation to gener-
ated multiple systems that mimic the scale, execution schedule and data sharing of mod-
ern flight avionics systems. We specified the number of integrated applications, number
of tasks per application, the distribution of task priority, and the maximum amount of
memory shared between each task for each system. Together these integrated applica-
tions comprise a representative avionics system. We also developed a Java-based code
generator to synthesize C++ system code that possessed these characteristics.

Figure 6 shows how the generated systems included a priority-based scheduler and
multiple sample integrated applications that consisted ofa variable number of periodic
avionic tasks. Rate monotonic scheduling was used to createa deterministic priority

Fig. 6: System Creation Process

based schedule for the generated tasks that adheres to rate monotonic scheduling re-
quirements. The systems then were compiled and executed on aDell Latitude D820
with a 2.16Ghz Intel Core 2 processor with 2 x 32kb L1 instruction caches, 2 x 32 kb
write-back data caches, a 4 MB L2 cache and 4GB of RAM running Windows Vista.

For each experiment, every system was executed 50 times to obtain an average
runtime. The cache performance of these executions were profiled using the Intel VTune
Amplifier XE 2011. VTune is a profiling tool that is capable of calculating the total
number of times an instruction is executed by a processor.



For example, to determine the L1 cache misses of System A, we compiled and
then executed it with VTune configured to return the total times that the instruction
MEM_LOAD_REQUIRED.L1D_MISS is called. The data sharing and memory usage
of these integrated applications, as well as the metacheduling strategy, are all parame-
terized and varied to generate a range of test systems. We usethese simulated systems
to validate cache-aware metascheduling by showing that taking into account data shar-
ing when selecting a metaschedule performance in terms of execution time and cache
misses.

System Size vs. Cache Size.The amount of memory required for the system has a
major impact on the caching efficiency of the system. For example, consider a system
that requires 6 kilobytes of memory executing on a processorwith an L1 cache of 60
kilobytes. Assuming this is the sole executing system, all of data can be stored in the
cache, leaving 90% of the cache free. The cache effects wouldtherefore be the same
for any system that does not require memory that exceeds the available memory in the
cache.

Cache-aware metascheduling currently does not take into account available cache
size since this may vary drastically from platform to platform. For our experiments,
we require that memory requirements of all generated software systems exceed the
memory available in the cache. Otherwise, the cache could store all of the data used
by all applications simultaneously, removing any contention for cache storage space,
which is unrealistic in industry systems.

Data Sharing Characteristics. The data shared between applications and shared be-
tween tasks of the same integrated application can greatly impact the cache effective-
ness of a system. For example, the more data shared between two applications, the
more likely the data in the cache can be utilized by tasks of the applications, resulting
in reduced cache misses and faster system runtime. The system described in Section 2
prohibits data sharing between tasks of different integrated applications.

All systems profiled in this section are also restricted to sharing data between tasks
of the same application. Integrated applications that exchange a great deal of common
message data, however, are likely to share memory. To account for this sharing, our
future work is examining cache-aware metascehduling strategies that account for these
architectures.

Task Execution Schedule.The execution schedule of the software tasks of the system
can potentially affect system performance. For example, assume there are two inte-
grated applications named App1 and App2 that do not share data. Each application
contains 1,000 task methods, with tasks of the same application sharing a large amount
of data. The execution of a single task stores enough memory to completely overwrite
any data in the cache, resulting in a cache half-life of 1.

When a task from App1 executes it completely fills the cache with data that is only
used by App1. If the same or another task from App1 executes next, data could reside in
the cache that could potentially result in a cache hit. Sinceno data is shared with App2,



however, executing a task from App2 could not result in a cache hit and would over-
write all data used by App1 in the class. We predict that multiple execution schedules
therefore effect performance differently in terms of cachehit-rate and execution time.

5.2 Experiments: Determining the Impact of Cache-aware Metascheduling on
Cache Hit-rate and Runtime Reductions

Experiment design.The execution schedule of tasks can potentially impact boththe
runtime and number of cache misses of a system. We manipulated the execution order
of a single software system with 20% shared data probabilitybetween 5 applications
consisting of 10 tasks each to create 2 new execution schedules. First, rate monotonic

Fig. 7: Execution Schedules vs L1 Cache Misses

scheduling was use to create the baseline schedule. This cache-aware metascheduling
was then applied to reorder same rate tasks to increase the temporal proximity between
executions of tasks that share data to the Optimized schedule.

Experiment 1: Using Cache-Aware Metascheduling to Reduce Cache Misses.This
experiment measures the impact of applying cache-aware metascheduling on the total
L1D cache misses generated by an execution schedule.

Hypothesis: Increasing temporal locality through cache-aware metaschedul-
ing will result in less cache misses.Altering the task execution schedule can raise
or lower the temporal locality of a sequence of data accesses. This change in tempo-
ral locality could potential affect the cache hit-rate resulting from executing a specific
schedule. One way to potentially raise temporal locality isto increase the instances in



which a task executes before the cache half-life of a previous task with which it shares
memory expires. We hypothesize that increasing temporal locality through cache-aware
metascheduling will result in less cache misses.

Experiment 1 Results.We hypothesized that using cache-aware metascheduling to
increase temporal locality would reduce the number of cachemisses. Figure 7 shows
the L1 cache misses for both execution schedules. The baseline execution schedule
resulted in 3.5076x109 L1 cache misses while the Optimized execution schedule gen-
erated 3.484x109 cache misses. Therefore, this data validates our hypothesis that cache
miss rates can be reduced by using cache-aware metascheduling to increase temporal
locality.

Experiment 2: Reducing Execution Time with Cache-Aware Metascheduling.This
experiment measures and compares the total execution time of a system execution
schedule generated with rate monotonic scheduling and the schedule resulting from
applying cache-aware metascheduling.

Hypothesis: Using cache-aware metascheduling to increasetemporal locality of
schedule will reduce execution time.While Experiment 1 showed that applying cache-
aware metascheduling can reduce cache misses, the impact ofcache-aware metaschedul-
ing on system execution time remains unclear. We hypothesize that the schedule gener-
ated with cache-aware metascheduling will execute faster than the schedule generated
with normal rate monotonic scheduling.

Experiment 2 Results.Figure 8 shows the average runtimes for the different exe-
cution schedules. As shown in this figure, the task executionorder can have a large im-

Fig. 8: Runtimes of Various Execution Schedules



pact on runtime. The baseline execution schedule executed in 3,374 milliseconds. The
Optimized execution schedule completed in 3,299 milliseconds, which was an 2.22%
reduction in execution time from the baseline execution schedule. These results demon-
strate that applying cache-aware metascheduling can reduce the total execution time of
a schedule.

Experiment 3: Impact of Data Sharing on Cache-Aware Metascheduling Effective-
ness.This experiment measures the impact of data sharing on execution time reductions
due to cache-aware metascheduling.

Hypothesis: Applying cache-aware metascheduling will reduce execution time
for all levels of data sharing.

Figure 8 shows the execution time of two execution schedulesat only 20% data shar-
ing. Data sharing of industry systems, however, may vary to alarge extent. Therefore,
we created 10 other systems with different data sharing characteristics. We hypothesize
that cache-aware metascheduling will lead execution time reductions regardless of the
amount of data shared between tasks.

Experiment 3 Results.The execution time for the baseline and Optimized sched-
ules is shown in Figure 9. The Optimized schedule consistently executed faster than the
baseline schedule with an average execution time reductionof 2.54% without requiring
alteration to application source-code and without violating real-time constraints. More-
over, this reduction required no purchasing nor implementing of any additional hard-
ware or software or obtaining any low-level knowledge of thesystem. These results
demonstrate that cache-aware metascheduling can be applied to reduce the execution
time of an array of systems, such as integrated avionics systems, regardless of cost con-
straints, restricted access to software source code, real-time constraints, or instruction
level-knowledge of the underlying architecture.

6 Related Work

This section compares the cache-aware metascheduling and its use for cache optimiza-
tion with other techniques for optimizing cache hits and system performance, including
(1) software cache optimization techniques and (2) hardware cache optimization tech-
niques.

Software cache optimization techniques.Many techniques change the order in
which data is accessed to increase the effectiveness of processor caches by altering
software at the source code level. These optimizations, known as data access optimiza-
tions [13], focus on changing the manner in which loops are executed. One technique,
known as loop interchange [30], can be used to reorder multiple loops to maximize the
data access of common elements in respect to time, referred to astemporal locality [2,
31, 30, 24].

Another technique, known as loop fusion [25], is often applied to further increase
cache effectiveness. Loop fusion maximizes temporal locality by merging multiple
loops into a single loop and altering data access order [25, 12, 6]. Yet another technique
for improving software cache effectiveness is to utilizeprefetch instructions, which



Fig. 9: Runtimes of Multiple Levels of Data Sharing

retrieves data from memory into the cache before the data is requested by the applica-
tion [13]. Prefetch instructions inserted manually into software at the source code level
can significantly reduce memory latency and/or cache miss rate [7, 9].

While these techniques can increase the effectiveness of software utilizing processor
caches, they all require source code optimizations. Many systems, such as the avionic
system case study described in Section 2, are safety critical and must undergo expensive
certification and rigorous development techniques. Any alteration to these applications
can introduce unforeseen side effects and invalidate the safety certification. Moreover,
developers may not have source code proprietary applications that are purchased. These
restrictions prohibit the use of any code-level modifications, such as those used in loop
fusion and loop interchange, as well as manually adding prefetch instructions.

These techniques, however, demonstrate the effects of increasing temporal local-
ity on cache effectiveness and performance. cache-aware metascheduling can be used
as a heuristic to change the execution order of the software tasks to increase cache
effectiveness and performance by ordering the tasks in sucha way that temporal lo-
cality is increased. The fundamental difference, however,between using cache-aware
metascheduling for cache optimization and these methods isthat no modifications are
required to the underlying software that is executing on thesystem, thereby achiev-
ing performance gains without requiring source code accessor additional application
re-certification.

Hardware cache optimization techniques.Several techniques alter systems at the
hardware level to increase the effectiveness of processor caches. One technique is to



alter thecache replacement policy processors use to determine which line of cache is
replaced when new data is written to the cache. Several policies exist, such as Least
Recently Used (LRU), Least Frequently Used (LRU), First In First Out (FIFO), and
random replacement [1, 11].

The cache replacement policy can substantially influence DRE system performance.
For example, LRU is effective for systems in which the same data will likely be ac-
cessed again before enough data has been written to the cacheto completely overwrite
the cache. Performance gains will be minimal, however, if enough new data is written
to the cache such that previously cached data is always overwritten before it can be
accessed [26]. In these cases, a random replacement policy may yield the most cache
effectiveness [26].

Moreover, certain policies are shown to work better for different cache levels [1],
with LRU performing well for L1 cache levels, but not as well for large data sets that
may completely exhaust the cache. Unfortunately, it is hard—and often impossible
for users—to alter the cache policy of existing hardware. Cache replacement policies
should therefore be considered when choosing hardware to maximize the effects of
cache optimizations made at the software or execution schedule level.

Cache-aware metascheduling does not alter the cache replacement policy of hard-
ware since altering the hardware could invalidate previoussafety certifications, similar
to altering software at the source code level. Moreover, cache-aware metascheduling
can be used a heuristic to increase temporal locality by altering the task execution or-
der schedule. While many replacement policies exist, the metascheduling strategies we
apply assumes an LRU replacement policy. Our future work is examining the impact
of cache replacement policy on the performance gains of schedules altered via cache-
aware metascheduling.

7 Concluding Remarks
Processor data caching can substantially increase performance of systems (such as in-
tegrated applications and other multi-tenant environments) in which SLAs provide re-
sponse time assurance and QoS policies that restrict resource sharing. It is hard, how-
ever, to create valid task execution schedules that increase cache effects and satisfy
timing constraints. Metascheduling can be used to generatemultiple valid execution
schedules with various levels of temporal locality and different cache hit rates.

This paper presents a cache-aware metascheduling to increase the performance
gains due to processor caching of integrated applications.We empirically evaluated
four task execution schedules generated with cache-aware metascheduling in terms of
L1 cache misses and execution time. We learned the followinglessons from increasing
cache hit-rate with cache-aware metascheduling:

• Cache-aware metascheduling increases cache hit rate of integrated applica-
tions. Using cache-aware metascheduling led to runtime reductions of as much as 5%
without requiring code-level modifications, violating scheduling constraints or imple-
menting any additional hardware, middleware, or software,and thus can be applied to
broad range of systems.

• Relatively minor system knowledge yields effective metascheduling strategies
for increasing cache performance.Developing cache-aware metascheduling strate-



gies does not require an expert understanding of the underlying software. Reasonable
estimates of data sharing and knowledge of the executing software tasks are all that is
required to determine schedules that yield effective reductions in computation time.

•Algorithmic techniques to maximize cache-hit rate improvements due to cache-
aware metascheduling should be developed.The task execution schedule was shown
to have a large impact on system performance. Our future workis examining algorith-
mic techniques for optimizing cache-aware metaschedulingto determine the optimal
execution order for tasks in specific systems (such as multi-tenant environments) to
maximize cache hit rate.

• Cache-aware metascheduling should be applied to cloud-based multi-tenant
environments. Given the similarities (such as response time requirementsand data
sharing restrictions) between integration applications and multi-tenant environments,
we expect cache-aware metascheduling to also increase the efficiency of multi-tenant
cloud environments. In future work, we will apply cache-aware metascheduling to
multi-tenant clouds to determine what degree of performance enhancements can be
achieved.

The source code simulating the integrated avionics system discussed in Section 5
can be downloaded atascent-design-studio.googlecode.com.
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