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Abstract. Integrated applications running in multi-tenant envir@mis are of-
ten subject to quality-of-service (QoS) requirementshsag resource and per-
formance constraints. It is hard to allocate resources dmtwnultiple users ac-
cessing these types of applications while meeting all QufStcaints, such as en-
suring users complete execution prior to deadlines. Aljhoa processor cache
can reduce the time required for the tasks of a user to exerutéple task ex-
ecution schedules may exist that meet deadlines but diffeache utilization
efficiency. Determining which task execution scheduleswtilize the processor
cache most efficiently and provide the greatest reductiorexecution time is
hard without jeopardizing deadlines.

The work in this paper provides three key contributions wreasing the exe-
cution efficiency of integrated applications in multi-tebh@nvironments while
meeting QOS constraints. First, we present cache-awarasoietduling, which
is a novel approach to modifying system execution schedoli@srease cache-hit
rate and reduce system execution time. Second, we applg-@ehre metaschedul-
ing to 11 simulated software systems to create 2 differest@tion schedules per
system. Third, we empirically evaluate the impact of usiaghe-aware metaschedul-
ing to alter task schedules to reduce system execution {Bue.results show
that cache-aware metascheduling increases cache penfemaduces execu-
tion time, and satisfies scheduling constraints and saégyirements without
requiring significant hardware or software changes.

1 Introduction

Current trends and challenges.Multi-tenant environments, such as Software-as-a-
Service (SaaS) platforms and integrated avionics sys@m®ften subject to stringent
quality-of-service (QoS) requirements, such as resowgeirements and performance
constraints [29]. To ensure that response time specifiedehyice-level agreements
(SLASs) are upheld, execution time must be minimized. One@gugh to reduce execu-
tion time is to reduce the time spent loading data from merbgrgfficiently utilizing
processor caches.

T This work was sponsored in part by the Air Force Research Lab.



Several research techniques utilize processor cachesefiiaiently to reduce exe-
cution time. For example, Bahar et al. [5] examined sevéftdrént cache techniques
for reducing execution time by increasing cache hit rateiéxperiments showed that
efficiently utilizing a processor cache can resultin as masch 24% reduction in execu-
tion time. Likewise, Manijikian et al. [16] demonstrated a%2Beduction in execution
time as a result of modifying the source-code of the exeguibftware to use cache
partitioning.
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Fig. 1: Example of an Integrated Avionics Architecture

Many optimization techniques [21,17,27] increase cacheadie by enhancing
source code to increasamporal locality of data accesses, which defines the proximity
with which shared data is accessed in terms of time [13]. kample, loop interchange
and loop fusion techniques can increase temporal localigcoessed data by modi-
fying application source code to change the order in whigtlieation data is written
to and read from a processor cache [13, 16]. Increasing tehlocality increases the
probability that data common to multiple tasks persisthmdache, thereby reducing
cache-misses and software execution time [13, 16].

Open problem = Increasing cache hit rate of integrated applications withait
source code modificationslntegrated applicationsare a class of systems consisting of
a number of computing modules capable of supporting nunsaapplications of differ-
ing criticality levels [14]. Like other multi-tenant en@nments, integrated applications
prohibit data sharing between multiple concurrent usehiewequiring that execution
completes within predefined deadlines.

Software architectures for integrated applications aii& irom separate compo-
nents that must be scheduled to execute in concert with oothem Prior work has
generally focused on source-code level modifications fdividual applications in-
stead of integrated applications, which is problematicrfaiti-tenant environments
built from multiple integrated applications. Systems ltbse the integration of multi-
ple applications (such as the integrated avionics arduitecshown in Figure 1) often



prohibit code-level modifications due to restricted actegsoprietary source code and
the potential to violate safety certifications [23] by irdting overflow or other faulty
behavior.

Solution approach — Heuristic-driven schedule alteration of same-rate tasks
to increase cache hit rate Priority-based scheduling techniques can help ensure soft
ware executes without missing deadlines. For examplejnateotonic scheduling [20]
is atechnique for creating task execution schedules ttiafyseming constraints by as-
signing priorities to tasks based on the task periodicity@msuring utilization bounds
are not exceeded. These tasks are then split into sets th&tictdasks of the same
priority/rate.

Rate monotonic scheduling specifies that tasks of the sammeaa be scheduled
arbitrarily [8] as long as priority inversions between taske not introduced. Fig-
ure 2 shows two different valid task execution schedulegggad with rate monotonic
scheduling. Since task A2 and task B2 share the same pritirétiy execution order
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Fig. 2: Valid Task Execution Schedules

can be swapped without violating timing constraints. Tlapgr shows how to improve
cache hit rates for systems built from multiple integratpgdlations by intelligently
ordering the execution of tasks within the same rate to asg¢éemporal locality of task
data accesses. We refer to this techniquanetascheduling, which involves no source
code modifications.

This paper presentsache-aware metascheduling, which is a novel scheduling op-
timization technique we developed to improve cache effetistegrated applications
without violating scheduling constraints or causing ptjoinversions. Since this tech-
nique requires no source code modifications, it can be apfistegrated applications
without requiring source software permissions or compjetevalidating safety certifi-
cations.

This paper provides the following contributions to R&D orhnseduling optimiza-
tions to increase the cache hit rate of integrated appdinati

e We present a metascheduling technique that satisfies dafgedanstraints and
safety requirements, increases cache hits, and requinesmbardware or software.

e To motivate the need for scheduling enhancements to imprawke hit rate in
integrated applications, we present an industry case stialy integrated avionics sys-



tem in which modifications to its constituent applicatiome prohibitively expensive
due to safety (re)certification requirements.

o We present empirical results of 2 task execution schedeldsimance and demon-
strate that applying cache-aware metascheduling cart irsntreased cache-hit rates
and reduced system execution time.

Paper organization.The remainder of the paper is organized as follows: Section 2
examines an integrated avionics system designed to mesdsliing deadlines and as-
sure required safety constraints; Section 3 summarized&nges of creating a met-
ric that predicts integrated application performance atgietime and guides execution
schedule modifications; Section 4 describes a cache-awetesaneduling strategy for
increasing cache hit-rate and reducing execution time afiteigrated avionics system;
Section 5 analyzes empirical results that demonstrateftbetigeness of cache-aware
metascheduling for increasing cache hit-rate and redusyiatgm execution time; Sec-
tion 6 compares our cache-aware metascheduling appro#itheldted work; and Sec-
tion 7 presents concluding remarks.

2 Integrated Avionics System Case Study

This section presents a case study representative of aratitan avionics system pro-
vided by Lockheed Martin that shows how integrated appbeoat are configured in

modern aircraft, such as the one shown in Figure 1. This dasly sinderscores the
similarity between multi-tenant environments and intégglaapplications in terms of
response time requirements and data sharing restrictipalso shows how schedul-
ing methods for integrating applications can be applieduee safety constraints and
scheduling requirements are met. Section 5.2 describe#fioadins to this method

that increase the cache hit-rates of integrated applicatiochitectures.

In this architecture, task execution schedules are dividegframes in which a
subset of tasks execute. Two tasks are schedule to executergmlly at the start of
each base frame. The task that executes at the base frams sateeduled to run,
followed by another task at a rate of lower frequency. Fomgxe, at Frame 0 the
scheduler will execute the software that runs at 75 Hz anddffitevare that executes
at 37.5 Hz, or half as frequently. This pattern continuesadgdly until the lowest rate
software in the system has completed. All scheduling ofjrateed application tasks in
the avionics system occurs in this manner.

One method for ensuring that tasks execute with a predatedhfrequency is to
set a base execution rate and then set all other tasks totexmoportionately often.
The execution of the tasks can the be interleaved based aeltt&e execution rate,
as shown in Figure 3. Applications 1 and 2 both have tasksekatute at rates N,
N/2, and N/4. The rate N tasks from both applications alwxgzete before any other
tasks in a given frame. Although it is not necessarily theedhat all rate N tasks from
Application 1 will run before the rate N tasks from Appliaaii2, our case study makes
this order repeatablé.e., the interleaving A1/B2/A2 will not change from frame to
frame after it is established when the system starts.
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Fig. 3: Interleaved Execution Order is Repeatable

3 Challenges of Analyzing and Optimizing Integrated Appliations
for Cache Effects

This section presents the challenges faced by system attegrwho attempt to opti-
mize integrated applications to improve cache hit ratete3ys are often subject to mul-
tiple design constraints, such as safety requirementsadredisling deadlines, that may
restrict which optimizations are applicable. This sectiescribes three key challenges
that must be overcome to optimize application integratigintproving the cache hit
rate of integrated applications.

Challenge 1: Altering application source code may invalidée safety certifica-
tion. Existing cache optimization techniques, such as loop fuaial data padding [12,
19], increase cache hit rate but requiring application s@eode modifications, which
may invalidate previous safety certifications by introdigcadditional faults, such as
overflow. Re-certification of integrated applications isl@awsand expensive process,
which increases cost and delays deployment. Proprietangs@ode also may not be
accessible to integrators. Even if source code is availaideeover, integrators may not
have the expertise required to make reliable modificatidftsat is needed, therefore,
are techniques that improve cache hit rates without matlifyntegrated application
software.

Challenge 2: Optimization techniques must satisfy schedinlg constraints. In-
tegrated applications are often subject to schedulingtcaings and commonly use
priority-based scheduling methods, such as rate monosmhieduling, to ensure that
software tasks execute predictably [28, 10]. These cansérprohibit many simple so-
lutions that ignore task priority, such as executing alktasts of each application,



that would greatly increase cache hit-rate. These teclesigan cause integrated ap-
plications to behave unpredictably, with potentially sataphic results due to missed
deadlines and priority inversions. What is needed, theeefare techniques that can
be applied and re-applied when necessary to increase the titerate and decrease
integrated application execution time without violatinmging constraints.

Challenge 3: System complexity and limited access to sourcede.Current in-
dustry practice [3] for increasing cache hit rate requiréecting detailed, instruction-
level information that describe integrated applicatiohda&or with respect to the mem-
ory subsystem and data structure placement. Obtainingniraftoon of this granularity,
however, can be an extremely laborious and time consumintafge-scale systems,
such as integrated avionics systems containing millionime$ of codes and dozens of
integrated applications. Moreover, these large-scal@esysmay be so complex that it
is not feasible to collect this information.

System integrators can more easily obtain higher levetiné&ion, such as the per-
centage of total memory accesses made by a given task. Whaeded, therefore,
are techniques that allow system integrators to increasedbhe hit rate of integrated
applications without requiring intricate, low-level sgst knowledge.

4 Improving Cache Hit Rate Via Cache-aware Metascheduling

This section presents cache-aware metascheduling, whiehtéchnique we devel-
oped to increase cache hit rate through re-ordering theurecschedule of same-
rate tasks of integrated applications. Cache-ware megdsiting can potentially in-

crease the cache hit-rate and reduce execution time ofnisystewhich resources are
not shared between concurrent executions, such as muétirtenvironments and inte-
grated avionics systems.

4.1 Re-ordering Same-rate Tasks with Cache-aware Metascteling

Rate monotonic scheduling can be used to create task esesetiedules for integrated
applications that ensure scheduling deadlines are mes.t&bhnique, however, allows
the definition of additional rules to determine the schediilsame-rate tasks [18, 4,
15]. As shown in Figure 4, reordering same-rate tasks, oaseéeduling, can produce
multiple valid execution schedules.

For example, Figure 4 shows how Task Al can execute befortanrTask B1. Ei-
ther ordering of these same rate tasks meets scheduling@ioits Since the original
schedule satisfies constraints and reordering same rétedass not introduce priority
inversions, schedules generated by metascheduling dde Madreover, metaschedul-
ing does not require alterations to application source @vdew-level system knowl-
edge.

The motivation behind metascheduling is that althougledéfiit execution orders of
same-rate tasks do not violate scheduling constraintgcéaeimpact the cache hit-rate.
For example, if two same-rate tasks that share a large anobaiatta execute sequen-
tially, then the first task may “warm up” the cache for the settask by preloading



data needed by the second task. This type of cache warmimyioeltan improve the
cache hit rate of the second task.

Same-rate task orderings can also negatively affect catregdr For example, tasks
from integrated applications often run concurrently ongame processor. These tasks
may be segregated into different processes, however, mirgetasks from different
applications from sharing memory. If two tasks do not shagenory there is no cache
warmup benefit. Moreover, the first task may write a large armhotidata to the cache
and evict data needed by the second task from the cachejmgdhe cache hit rate of
the second task.

Cache-aware metascheduling is the process of reordegrextitution of same-rate
tasks to increase beneficial cache effects, such as cachewparand reduce negative
effects, such as requiring reading data from main memorgh€&aware metaschedul-
ing is relatively simple to implement, does not require apth knowledge of the in-
struction level execution details and memory layout of gdascale system, and can
be achieved without source code modifications to tasks, mgakideal for increasing
the performance of existing integrated architectures amlti4t@enant systems. Section 5
shows that reordering same-rate tasks does improve caalaédsi and reduce execution
time. A key question, however, is what formal metric can bedut® choose between
multiple potential same-rate task execution schedules.

4.2 Deciding Between Multiple Metaschedules

While cache-aware metascheduling can be used to produdglmwlalid same-rate
task execution schedules, it is not always apparent whibkedide will produce the
overall best hit-rate and application performance. Formgda, Figure 4 shows a sched-
ule generated with rate monotonic scheduling and two aufditivalid schedules cre-
ated by permuting the ordering of same-rate tasks for a ftightroller (FC) application
and a targeting system (TS) application. The only diffeedmetween the task execution
schedules are the order in which tasks of the same-rate aceited.

It is not obvious which task execution schedule shown in FEguwill produce the
best cache hit-rate. For example, Metaschedule 2 in Figahews 2 tasks of Applica-
tion FC executing sequentially, while no tasks of Applioatil'S execute sequentially.
If the tasks in Application FC share a large amount of datgptaal locality should
increase compared to the original schedule since the ca¢haimed up” for the exe-
cution of FC1 by FC2.

In Metaschedule 1, however, 2 tasks of Application TS exesatjuentially while
no tasks of Application FC execute sequentially. If Appiica TS shares more data
than Application FC, Metaschedule 1 will yield greater temgh locality than both the
original schedule and schedule FC since the cached will bmecup with more data.
It may also be the case that no data is shared between anyofaskyg application, in
which case all three schedules would yield similar temploility and cache hit rates.

Figure 4 shows it is hard to decide which schedule will yidld highest cache hit
rate. Constructing a metric for estimating temporal ldgadif a task execution sched-
ules could provide integrated application developers withechanism for comparing
multiple execution schedules and choosing which one wouddtryield the highest
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Fig. 4: Multiple Execution Schedules

cache hit rate. It is hard to estimate temporal locality, éesv, due to several factors,
such as the presence and degree of data sharing between tasks

4.3 Using Cache-Half life to Drive Cache-aware Metaschedurg

While metascheduling can be used to produce new executi@dates that continue to
meet scheduling constraints, many of these schedules etiihmprove, and may even
reduce the cache-hit rate and increase execution time dfystem. We define a new
heuristic, referred to as the cache half-life that can be trselrive the metascheduling
process.

Cache Half-Life. We now explain the key factors that impact cache hit rate ie-in
grated architectures and multi-tenant systems. A benkdiffect occurs when task T1
executes before task T2 and loads data needed by T2 into¢he.cBhe beneficial ef-
fect can occur if T1 and T2 execute sequentially or if anyrimiediate task executions
do not clear out the data that T1 places into the cache thateid by T2. Thecache
half-lifeis this window of time between which T1 and T2 can executeligefte shared
data is evicted from the cache by data used for intermediakeaxecutions. While this
model is simpler than the actual complex cache data repkacemehavior, it is effective
enough to give a realistic representation of cache perfocef2?2].

For example, assume there are 5 applications, each cogsidt? tasks, with each
task consuming 20 kilobytes of memory in a 64k cache. Theviarel uses d east
Recently Used (LRU) replacement policy, which replaces the cache lin¢ tbanained
the longest without being read when new data is written teatfobe. The cache half-life
formulation will differ for other cache replacement poéisi
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Executing the tasks will require writing up to 200 kilobytesache. Since the cache
can only store 64 kilobytes of data, all data from all apgiaras cannot persist in the
cache simultaneously. Assuming the cache is initially gfriptvould take a minimum
of 4 task executions writing 20 kilobytes each before any daitten by the first task
potentially becomes invalidated. This system would treneehave a cache half-life of
4,

Our cache-aware metascheduling algorithm uses the cadHEéto increase the
cache hit-rate and reduce system execution time. We attermpaximize the number
of tasks of the same application that execute before theechali-life of the initial
execution task expires.

For example, as shown in Figure 5 task Al of Application 'Acentes at timestamp
0. The cache half-life of task Al is 3 timestamps. As a redaitat least timestamps
2-4 data from Application 'A’ will persist in the cache. Anggks that share data with
task Al could use the data stored in the cache rather thassingehe data from main
memory, resulting in a cache hit and reducing system exattitne.

In this example, moving Task A2 from timestamp 5 to timest&wall give Task
A2 the opportunity to take advantage of the data cached bly Ads resulting in a
potentially higher cache hit-rate without violating schidlg constraints. Conversely,
moving Task A2 to timestamp 4 will not increase the cacheadti#-as most or all of
the data written by Task Al to the cache will have been ovétewrby this point due to
tasks of other applications executing.

5 Empirical Results

This section analyzes the results of a performance anabysigegrated applications
in multiple systems with different execution schedulesagated through metaschedul-
ing. These systems also differ in the amount of memory shaetdeen tasks. We
investigate the impact of cache-aware metascheduling arattie misses and runtime
reductions for each system.



5.1 Overview of the Hardware and Software Testbed

To examine the impact of cache-aware metascheduling ogratesd application perfor-
mance, we collaborated with members of the Lockheed Marntirp@ration to gener-
ated multiple systems that mimic the scale, execution sdeethd data sharing of mod-
ern flight avionics systems. We specified the number of iatiegkapplications, number
of tasks per application, the distribution of task prigrej;pd the maximum amount of
memory shared between each task for each system. Toge#iserititegrated applica-
tions comprise a representative avionics system. We alslajged a Java-based code
generator to synthesize C++ system code that possesseccth@sicteristics.

Figure 6 shows how the generated systems included a prioaited scheduler and
multiple sample integrated applications that consisteal wdriable number of periodic
avionic tasks. Rate monotonic scheduling was used to ceediterministic priority

Data Sharin Number of Memory Number of Schedule
8 Tasks Usage Applications Heuristic
> (] «—
||
> ) -~ <
System
Generator
— v
System Impl. A System Impl. B System Impl. C
(I 1] (NI
g A va s

Fig. 6: System Creation Process

based schedule for the generated tasks that adheres to sat#anic scheduling re-
quirements. The systems then were compiled and executedDall &atitude D820
with a 2.16Ghz Intel Core 2 processor with 2 x 32kb L1 instiarctaches, 2 x 32 kb
write-back data caches, a 4 MB L2 cache and 4GB of RAM runnimgodivs Vista.

For each experiment, every system was executed 50 timest&nam average
runtime. The cache performance of these executions wefigprosing the Intel VTune
Amplifier XE 2011. VTune is a profiling tool that is capable @flculating the total
number of times an instruction is executed by a processor.



For example, to determine the L1 cache misses of System A,ongited and
then executed it with VTune configured to return the totalenthat the instruction
MEM_LOAD_REQUIRED.L1D_MISS s called. The data sharinglanemory usage
of these integrated applications, as well as the metachnegsirategy, are all parame-
terized and varied to generate a range of test systems. Whes®esimulated systems
to validate cache-aware metascheduling by showing thatgakto account data shar-
ing when selecting a metaschedule performance in termseiugion time and cache
misses.

System Size vs. Cache SizeThe amount of memory required for the system has a
major impact on the caching efficiency of the system. For gtantonsider a system
that requires 6 kilobytes of memory executing on a proceastbran L1 cache of 60
kilobytes. Assuming this is the sole executing system, fatlada can be stored in the
cache, leaving 90% of the cache free. The cache effects vibatdfore be the same
for any system that does not require memory that exceedwv#ilatale memory in the
cache.

Cache-aware metascheduling currently does not take itiouat available cache
size since this may vary drastically from platform to platfio For our experiments,
we require that memory requirements of all generated softwgstems exceed the
memory available in the cache. Otherwise, the cache coate sill of the data used
by all applications simultaneously, removing any contamfior cache storage space,
which is unrealistic in industry systems.

Data Sharing Characteristics. The data shared between applications and shared be-
tween tasks of the same integrated application can greapwdt the cache effective-
ness of a system. For example, the more data shared betweespplications, the
more likely the data in the cache can be utilized by tasks efbplications, resulting
in reduced cache misses and faster system runtime. Thersgstecribed in Section 2
prohibits data sharing between tasks of different integtafpplications.

All systems profiled in this section are also restricted tarsiy data between tasks
of the same application. Integrated applications that axgk a great deal of common
message data, however, are likely to share memory. To atéouthis sharing, our
future work is examining cache-aware metascehdulingegii@s$ that account for these
architectures.

Task Execution Schedule.The execution schedule of the software tasks of the system
can potentially affect system performance. For exampleyras there are two inte-
grated applications named Appl and App2 that do not shaee &aich application
contains 1,000 task methods, with tasks of the same applicstharing a large amount
of data. The execution of a single task stores enough meroagrpletely overwrite
any data in the cache, resulting in a cache half-life of 1.

When a task from Appl executes it completely fills the caclth data that is only
used by Appl. If the same or another task from Appl executdsaheta could reside in
the cache that could potentially result in a cache hit. Shcdata is shared with App2,



however, executing a task from App2 could not result in a eddhand would over-
write all data used by Appl in the class. We predict that rpldtexecution schedules
therefore effect performance differently in terms of cabhigate and execution time.

5.2 Experiments: Determining the Impact of Cache-aware Meischeduling on
Cache Hit-rate and Runtime Reductions

Experiment design. The execution schedule of tasks can potentially impact tiegh
runtime and number of cache misses of a system. We manidulatesxecution order
of a single software system with 20% shared data probaluétyveen 5 applications
consisting of 10 tasks each to create 2 new execution sakgdtitst, rate monotonic
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scheduling was use to create the baseline schedule. THis-eazare metascheduling
was then applied to reorder same rate tasks to increasentipetal proximity between
executions of tasks that share data to the Optimized schedul

Experiment 1: Using Cache-Aware Metascheduling to Reduce &he Misses.This
experiment measures the impact of applying cache-awarasctetduling on the total
L1D cache misses generated by an execution schedule.

Hypothesis: Increasing temporal locality through cache-avare metaschedul-
ing will result in less cache missesAltering the task execution schedule can raise
or lower the temporal locality of a sequence of data acce3ses change in tempo-
ral locality could potential affect the cache hit-rate féag from executing a specific
schedule. One way to potentially raise temporal localitipigcrease the instances in



which a task executes before the cache half-life of a previask with which it shares
memory expires. We hypothesize that increasing tempaoeality through cache-aware
metascheduling will result in less cache misses.

Experiment 1 Results.We hypothesized that using cache-aware metascheduling to
increase temporal locality would reduce the number of cawisses. Figure 7 shows
the L1 cache misses for both execution schedules. The basetiecution schedule
resulted in 35076x10° L1 cache misses while the Optimized execution schedule gen-
erated 3484x10° cache misses. Therefore, this data validates our hypsttiesicache
miss rates can be reduced by using cache-aware metascitettulncrease temporal
locality.

Experiment 2: Reducing Execution Time with Cache-Aware Me&scheduling. This
experiment measures and compares the total execution tirmesgstem execution
schedule generated with rate monotonic scheduling anddinedsile resulting from
applying cache-aware metascheduling.

Hypothesis: Using cache-aware metascheduling to increasamporal locality of
schedule will reduce execution timeWhile Experiment 1 showed that applying cache-
aware metascheduling can reduce cache misses, the imgacta-aware metaschedul-
ing on system execution time remains unclear. We hypotbéisat the schedule gener-
ated with cache-aware metascheduling will execute faktar the schedule generated
with normal rate monotonic scheduling.

Experiment 2 Results.Figure 8 shows the average runtimes for the different exe-
cution schedules. As shown in this figure, the task executidar can have a large im-
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Fig. 8: Runtimes of Various Execution Schedules



pact on runtime. The baseline execution schedule execute@74 milliseconds. The
Optimized execution schedule completed in 3,299 milliselso which was an 2.22%
reduction in execution time from the baseline executioreddte. These results demon-
strate that applying cache-aware metascheduling canedbadotal execution time of
a schedule.

Experiment 3: Impact of Data Sharing on Cache-Aware Metaschkduling Effective-
ness.This experiment measures the impact of data sharing on eadime reductions
due to cache-aware metascheduling.

Hypothesis: Applying cache-aware metascheduling will redce execution time
for all levels of data sharing.

Figure 8 shows the execution time of two execution schedilesly 20% data shar-
ing. Data sharing of industry systems, however, may varyltoge extent. Therefore,
we created 10 other systems with different data sharingacheristics. We hypothesize
that cache-aware metascheduling will lead execution tied@ctions regardless of the
amount of data shared between tasks.

Experiment 3 Results.The execution time for the baseline and Optimized sched-
ules is shown in Figure 9. The Optimized schedule consigterécuted faster than the
baseline schedule with an average execution time reduati®rb4% without requiring
alteration to application source-code and without violgtieal-time constraints. More-
over, this reduction required no purchasing nor implemnmgntif any additional hard-
ware or software or obtaining any low-level knowledge of iystem. These results
demonstrate that cache-aware metascheduling can be dypplieduce the execution
time of an array of systems, such as integrated avionicessstregardless of cost con-
straints, restricted access to software source codetine@leonstraints, or instruction
level-knowledge of the underlying architecture.

6 Related Work

This section compares the cache-aware metaschedulingsamkifor cache optimiza-
tion with other techniques for optimizing cache hits andeysperformance, including
(1) software cache optimization techniques and (2) hardwache optimization tech-
niques.

Software cache optimization techniquesMany techniques change the order in
which data is accessed to increase the effectiveness oégsoc caches by altering
software at the source code level. These optimizationsykras data access optimiza-
tions [13], focus on changing the manner in which loops aexeted. One technique,
known as loop interchange [30], can be used to reorder nfeiltpps to maximize the
data access of common elements in respect to time, referi@stémporal locality [2,
31,30, 24].

Another technique, known as loop fusion [25], is often agublio further increase
cache effectiveness. Loop fusion maximizes temporal liycaly merging multiple
loops into a single loop and altering data access order R%]1Yet another technique
for improving software cache effectiveness is to util@efetch instructions, which
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retrieves data from memory into the cache before the datjisested by the applica-
tion [13]. Prefetch instructions inserted manually intétware at the source code level
can significantly reduce memory latency and/or cache mieg7a9].

While these techniques can increase the effectivenes$tefse utilizing processor
caches, they all require source code optimizations. Magiesys, such as the avionic
system case study described in Section 2, are safety tatidanust undergo expensive
certification and rigorous development techniques. Argration to these applications
can introduce unforeseen side effects and invalidate tfle¢yseertification. Moreover,
developers may not have source code proprietary applicatiat are purchased. These
restrictions prohibit the use of any code-level modificasiocsuch as those used in loop
fusion and loop interchange, as well as manually addingeprkfinstructions.

These techniques, however, demonstrate the effects afdsitrg temporal local-
ity on cache effectiveness and performance. cache-awassaieduling can be used
as a heuristic to change the execution order of the softvemlestto increase cache
effectiveness and performance by ordering the tasks in aughy that temporal lo-
cality is increased. The fundamental difference, howedvetween using cache-aware
metascheduling for cache optimization and these methatisiisio modifications are
required to the underlying software that is executing onsysem, thereby achiev-
ing performance gains without requiring source code aceesslditional application
re-certification.

Hardware cache optimization techniquesSeveral techniques alter systems at the
hardware level to increase the effectiveness of processudres. One technique is to



alter thecache replacement policy processors use to determine which line of cache is
replaced when new data is written to the cache. Severalipslexist, such as Least
Recently Used (LRU), Least Frequently Used (LRU), First Irst=Out (FIFO), and
random replacement [1, 11].

The cache replacement policy can substantially influence Bygtem performance.
For example, LRU is effective for systems in which the samta déll likely be ac-
cessed again before enough data has been written to thetcaobm@pletely overwrite
the cache. Performance gains will be minimal, however, dfugih new data is written
to the cache such that previously cached data is always oittemnvbefore it can be
accessed [26]. In these cases, a random replacement paicyield the most cache
effectiveness [26].

Moreover, certain policies are shown to work better foretit cache levels [1],
with LRU performing well for L1 cache levels, but not as well flarge data sets that
may completely exhaust the cache. Unfortunately, it is haadd often impossible
for users—to alter the cache policy of existing hardwareh@areplacement policies
should therefore be considered when choosing hardware ximiz& the effects of
cache optimizations made at the software or execution sitddzi/el.

Cache-aware metascheduling does not alter the cache eepdat policy of hard-
ware since altering the hardware could invalidate prevaaisty certifications, similar
to altering software at the source code level. Moreoveheavare metascheduling
can be used a heuristic to increase temporal locality byiadfehe task execution or-
der schedule. While many replacement policies exist, th@ssbeduling strategies we
apply assumes an LRU replacement policy. Our future work&srening the impact
of cache replacement policy on the performance gains ofdsgés altered via cache-
aware metascheduling.

7 Concluding Remarks

Processor data caching can substantially increase pafmeof systems (such as in-
tegrated applications and other multi-tenant environsjantwhich SLAs provide re-
sponse time assurance and QoS policies that restrict @ssbaring. It is hard, how-
ever, to create valid task execution schedules that inereashe effects and satisfy
timing constraints. Metascheduling can be used to genenatéple valid execution
schedules with various levels of temporal locality andeatiéht cache hit rates.

This paper presents a cache-aware metascheduling to $ectka performance
gains due to processor caching of integrated applicatdfesempirically evaluated
four task execution schedules generated with cache-awati@soheduling in terms of
L1 cache misses and execution time. We learned the follolesgpns from increasing
cache hit-rate with cache-aware metascheduling:

e Cache-aware metascheduling increases cache hit rate of @grated applica-
tions. Using cache-aware metascheduling led to runtime reduetibas much as 5%
without requiring code-level modifications, violating sctuling constraints or imple-
menting any additional hardware, middleware, or softwanel thus can be applied to
broad range of systems.

¢ Relatively minor system knowledge yields effective metakeduling strategies
for increasing cache performance.Developing cache-aware metascheduling strate-



gies does not require an expert understanding of the undgrépftware. Reasonable
estimates of data sharing and knowledge of the executirgaid tasks are all that is
required to determine schedules that yield effective rédos in computation time.

¢ Algorithmic techniques to maximize cache-hit rate improvenents due to cache-
aware metascheduling should be developethe task execution schedule was shown
to have a large impact on system performance. Our future i8azkamining algorith-
mic techniques for optimizing cache-aware metaschedutindetermine the optimal
execution order for tasks in specific systems (such as namant environments) to
maximize cache hit rate.

e Cache-aware metascheduling should be applied to cloud-bad multi-tenant
environments. Given the similarities (such as response time requiremamisdata
sharing restrictions) between integration applicationd enulti-tenant environments,
we expect cache-aware metascheduling to also increasdfitieney of multi-tenant
cloud environments. In future work, we will apply cache-asvanetascheduling to
multi-tenant clouds to determine what degree of perforraagthancements can be
achieved.

The source code simulating the integrated avionics sysisousked in Section 5
can be downloaded ascent - desi gn- st udi 0. googl ecode. com
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