Adaptive Parallel Computing for Large-scale Distributed and Parallel
Applications

Jaiganesh Balasubramanian®, Alexander Mintzt, Andrew Kaplanf,
Grigory Vilkov', Artem Gleyzerf, Antony Kaplanf, Ron Guida,

Pooja Varshneyat, Douglas C. Schmidtt
tZircon Computing LLC, Wayne, NJ, USA
*Vanderbilt University, Nashville, TN, USA

Abstract

This paper presents the structure and functionality of zftion,
which is an adaptive distributed computing platform thgpsorts

a user-friendly programming model for developing paralpeb-
cessing applications. It allows developers to design sofvas if
they are programming for a single computer and then it autidma
cally takes care of data distribution and task parallelipat activ-
ities on different cluster nodes or multiple CPU cores. zétion
thus substantially improves the performance of complexibiiged
applications that process a large amount of data in real {imés-
sion critical systems. This paper uses a representative sagly
from the financial services domain to show how these typep-of a
plications can benefit from zFunction.

1. INTRODUCTION

Parallel programming is increasingly becoming importamt f
researchers and developers of large-scale distributecaradliel
applications in a number of domains, including financiak @s-
sessment and modeling.¢, Value-At-Risk and historical calcu-
lations), real-time decision-making based on algorithfe@dback
(e.g. market making, electronic strategy arbitrage, agb-fiiequency
trading), and processing, archiving, storing and seagchontent
repositories for enterprise content management systemsrews
websites and web encyclopedias). With the advent of comyodi
multi-core processors and cloud computing systems, relsea
and developers also need newer parallel programming tgebsi
that can maximize the utilization of such systems.

Traditional parallel programming techniques, such as agEss
passing [8] and shared memory grid computing middlewarg, [15
have been applied by researchers in universities and sdfiains
to develop and deploy enterprise-scale distributed anallphap-
plications. Parallel application development remainsadlehging
problem, however, in the domain of large-scale developrofdis-
tributed and parallel applications, where traditionatigiomputing
technologies cannot be applied due to the following lintad:

e Complex programming models that do not have inherent sup-
port for features like node-discovery, data disseminatimad-
balancing and concurrency control. Applications writtea u

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DD4LCCI'2010,April 27, Valencia, Spain

Copyright 2010 ACM ACM 978-1-60558-917-6/10/04 ...$5.00.

ing such techniques, do not scale well for complex mission-
critical systems.

e Traditional grid computing technologies are not platfoign a
nostic.

e There is a steep learning curve involved in mastering these
parallel programming paradigms.

To address these limitations, we have developed an adatitive
tributed computing middleware callefFunctionthat enhances large-
scale distributed and parallel applications by creatirapéide, real-
time, and distributed computing on demand. zFunction plewi
following capabilities to researchers and developers:

e Configurable middleware whose pluggable services automate
many tedious and error-prone activities related to network
programming, including handling different network proto-
cols, (de)marshaling, fault-tolerance, thread creatimhraan-
agement, and advanced load balancing across a network of
computation servers.

e Adecentralized software architecture that has no single po
of failure.

e A straightforward parallel programming model that allows
developers of complex, large-scale applicatioag{ com-
putational finance and data processing applications) to de-
sign software that runs in a cluster of computers as if they
are programming for a single computer.

Paper organization The remainder of this paper is organized as
follows: Section 2 describes a case study from the finaneialces
domain to showcase the challenges of developing distidbaiel
parallel applications; Section 3 explores the capabiliiEunction
provides to simplify the development of large-scale distréd and
parallel applications; Section 4 describes how zFunctimvides
solutions for the challenges described in the case studitioBes
compares zFunction with related work; and Section 6 presznt-
cluding remarks.

2. ACASE STUDY IN FINANCIAL ANAL-
YSIS

Computational finance applications involving massive $amu
tions, are well suited for distribution and parallelizatioUnfor-
tunately, the prohibitive effort that is needed to paréikethese ap-
plications using traditional mechanisms has restricteditrancial
industry’s movement in this direction. Since markets acegasing
dominated by electronic trading systems, however, read-fper-
formance becomes an increasingly critical factor in malktimgely
trading decisions.

A common problem encountered in the financial services indus or delegated to another process in a client/server configara

try is risk estimationMonte Carlo methodf9] relying on simula-
tions based on hypothetical market behavior scenarios fraven
quite useful in risk calculations, especially for portédiinvolving
derivatives. The computational intensity of such methbdsjever,
generally limits the frequency with which they can be useéné¢e,
there is a significant benefit from boosting the performariceioh
computations.

This paper focuses on a representative VaR calculationevher
the computational task is to estimate the 1-day value atfosk
portfolio with positions in stocks, an index, and a numbeAuofer-
ican options on these securities. Figure 1 shows an artinigec
of such a serial VaR calculation, wherevsual Basicclient ap-
plications computes the VaR for a set of portfolios (whogsutn
data are stored in Blicrosoft Excelspreadsheet) by invoking re-

The remainder of this section presents a case study in finan- mote requests on a VaR evaluation library hostedlimax server.

cial analysis based onwalue-at-risk(VaR) [12] calculation using
Monte Carlo simulation to showcase key design challengekeof
veloping parallel computational finance applications.

2.1 The Definition and Applications of VaR
Analysis

In financial mathematics and financial risk management, é/alu
at Risk (VaR) is a widely used measure of the risk of loss orea sp
cific portfolio of financial assets. For a given portfolioppability
and time horizon, VaR is defined as a threshold value suchitibat
probability that the mark-to-market loss on the portfoli@pthe
given time horizon exceeds this value (assuming normal etark
and no trading in the portfolio) is the given probability édv

For portfolios involving traditional instruments like sics, ef-
fective and computationally parsimonious analytical rod#h(such
as the variance-covariance method [11, 7]) for calculdtiegalue-
at-risk have been devised. Crucially, such methods relyngpoi-
tant assumptions about the nature of the loss distribuiticihyding
the stipulation that it is a normal distribution. Hence, Isabgo-
rithms cannot be applied to portfolios that contain exotistiu-
ments (such as options and other derivatives) and risk neasiag
must resort to more generalized techniques.

Due to their generalityMonte Carlomethods are often utilized
for VaR calculations for portfolios with options. Insteafimod-
eling future portfolio performance on purely theoreticahsider-
ations, such methods simulate a large, representativel peissi-

The Monte Carlosimulation achieves this VaR calculation by (1)

Windows Environment Linux Environment

VAR Visual Basic
Caleulation Client Application
ts

!
SpreadSheet |y e

x| D

Calculation
Results

Microsoft Excel

eval_portfolio() I VAR Portfolio
¥ Calculation
R

Server

Figure 1: A Serial VaR Calculation Example
computing the value of the portfolio at the end of the timeizar
under a large number of market behavior scenarios and (2itigua
fying the maximum loss expected with a given probabilitg.{the
simulation’s confidence interval).

In our case study, 381 options, 30 stocks, and one index-track
ing fund qualify for our portfolio. We collect the history ofaily
stock returns for two years preceding the VaR calculatide da
an Microsoft Excelspreadsheet. The next step is creating 1,000
distinct scenarios by randomly drawing 1,000 sets of restwmd
calculating the underlying 1-day VaR value. As shown in Fégl,,
the VaR calculation function is embedded in a library hostad

ble performance scenarios and then base the VaR measusementy | inux machine. Likewise, the client for this computatienain

on tallies of the results. One variant of such methods—desig
for portfolios with options—is to use the historical perftance

of the options’ underlying securities at different randgratlected
times to generate plausible scenarios of future underlgeyri-
ties’ values. Since powerful algorithms (such as the Blackeles
model [5] and the binomial tree model [6]) exist to predictiop
prices based on underlying prices, such scenarios can eeded

to generate predictions about the performance of all postin the
portfolio, and thus the portfolio’s overall performance.

Although suchMonte Carlo(we useMonte Carlomethods based
on historical simulations) methods are general and véesaliey
are extremely computationally intensive. In particuldue glgo-
rithms for deriving options prices from those of their urigieg
securities are quite involved, and the computational cosom-
pounded by the fact that many such predictions must be edémll
to generate a sufficiently large number of scenarios foalpégdi sta-
tistical analysis. Indeed, the computational cost of sualbuta-
tions is often the factor limiting their broader use in theafinial
industry.

2.2 ATypical Serial Implementation of VaR
Calculation
Inputs and results for VaR calculations are often hostegjptia
cations such aMlicrosoft Excel spreadsheessd calculations are
often controlled by &/isual Basic for Applicationscript. The ac-
tual calculations may be performed either within the Exeetpss

Excelspreadsheet and\Asual Basicclient executable assists the
Excelspreadsheet to make remote invocations on the Linux library
In the next section, we will describe the design challengepér-
allelizing such VaR calculations.

2.3 Design Challenges of Parallelizing the
VaR Calculation

In our case study, we have American options with discrete div
idends on individual stocks, as there is no closed-formt®wiu
available for them and one has to use time-consuming bidomia
trees to calculate the price. Hence, the following comparat
steps are involved in calculating 1-day VaR: (1) randombkisig
N historical dates, (2) applying the returns for each histdrilate
to the underlying prices on the initial date to obtain a sderfar
the underlying prices at the end of the time horizon, (3) fache
scenario for the prices of the underlying securities, etihg the
prices of all the options in the portfolio, and (4) after exating all
scenarios, forming the simulated distribution of the pmitfvalues
and computing VaR.

Since the options price model calculations are logicaliejpen-
dent and quite numerous within the scope of a single pootfoli
analysis, this VaR calculation has great exploitable coecgey
and is easy to parallelize. Although parallelization pdes a re-
alistic and economical way to improve the performance ohsuc
analysis, conventional implementations of this paraléétalation
face a number of design challenges in offloading serial &zaticm

to run in parallel on hundreds or thousands of distributedmata-
tion servers. The remainder of this section describes sdriese
key design challenges.

Challenge 1: Discovery and addressing of remote computa-
tion servers for distributed computation. If application develop-
ers write source code manually to perform parallel programgm
they would have to identify the IP addresses of the clientsamder
machines, determine multicast addresses, and also haedlauti-
abilities associated with the underlying network stackramsfer
requests and replies across the network. Moreover, thisepso
would be repeated whenever the underlying platforms change
the input data could be moved from tiiexcel spreadsheet to a
database, or the VaR calculation server could be moved fhem t
Linuxhost to aSolarishost. Irrespective of these changes in the un-
derlying network, hardware, and platform topologies, ta&\¢al-
culation data must be distributed and distributed commriatmust
be performed. As described above, manually modifying sourc
code to handle such sophisticated use cases is hard.

Challenge 2: Data Dissemination for remote distributed com
putation. Distributed computations involves transforming the in-
ternal state of a prograne (g, the input for the VaR calculation
stored in the Excel spreadsheet) in an external format thaiah
transferred via the network to remote computation servéiise
programming technique used to accomplish this transfoomas
called asmarshalingand the reverse process of converting the ex-
ternal data format to internal data format is cal&marshaling
Historically, application developers have manually verit{de)mar-
shaling code to meet the distributed computing requiresent
VaR calculations. This (de)marshaling code is highly dejean
on the format of the data being sent and the platforms hostiag
client-server processes, which complicates manual saade de-
velopment activities.

Challenge 3: Efficient distribution of remote computation re-
quests for effective resource management across the netvkor
After application developers devise solutions to chaleeng and
2 above, intelligent request scheduling and distributigo@thms
are needed to disseminate requests across the various tediopu
servers. Efficient request dissemination ensures thatll(hped-
ware resources are utilized efficiently, (2) remote comporta are
not impeded by load imbalance across computation servads, a
(3) clients are shielded from heterogeneous hardware dtwiese
capabilities.

Challenge 4: Fault tolerance and application transparent &ult
detection and recovery When remote computation servers exe-
cute complex application calculations, hardware failwwas dis-
rupt the calculations. These types of failures must be teahch-
siliently since both the compute server(s) and commurundinks
may be rendered unavailable. Developing source code foigro
ing fault tolerance could involve writing code for detegfifaults,
identifying the requests that were being computed by thledai
server, resending those requests to an alternate serdetaking
rejuvenation actions such as restarting the failed serviirs a
tedious and error-prone process to write fault-toleranfr@struc-
ture code for every application and makes it difficult for Egatgion
developers to quickly parallelize existing finance appiazs.

Challenge 5: Concurrency management Computational fi-
nance applications, such as the VaR calculation in our dasky,s
are often highly computation intensive. These applicatioan
therefore benefit greatly from proper concurrency managéwmleere
all the cores in a multi-core processor are utilized effitjefor
optimizing calculations. Programming these concernsiregap-
plication developers to manage concurrency explicitly Bating
threads and synchronizing those threads with messagefcksd

This process must be repeated for every platform sincedtpea
gramming APIs differ from platform to platforng.g, differences
in the thread API between Windows and Linux. Ideally, applic
tion developers should develop source code in a platfomostic
manner so that application requests could be optimizedrdixpg
on the availability of single- vs. multi-core processors.

The remainder of this paper uses the VaR case study to netivat
how the zFunction middleware can address the above deddide
tributed and parallel application development challerags®ciated
with large-scale computational finance applications.

3. STRUCTURE AND FUNCTIONALITY
OF ZFUNCTION

This section describes the structure and functionalityFafre-
tion, which is adaptive distributed middleware for accatierg the
performance of complex compute-intensive applicationa mmet-
worked environment.

RunTime

——— o)
|zEnabled Client = g’
2zPluginLibary

ZNet®

)

ZPluginLibary

ZNet”

chl_}
2zPluginLibary

ZNet”

Figure 2: Overview of the zFunction Architecture

Figure 2 shows the following key elements in the zFunctiod-mi
dleware:

e Test Configuration Environment (TCE), is a application con-
figuration utility that discovers, validates, and manadkapplica-
tions in a deployment. It manages the compute servers,tglien
and monitoring utilities and provides IP addresses and icastt
addresses for distributed execution environment.

e zNet, which is an optimized load balancing framework linked
with the client applications and hence resides in the chelulress
space. zNet automatically distributes computations tthalbvail-
able servers, transparently parallelizes executions aalkakle, re-
liable, and resource-efficient fashion, and improves parémce
by orders of magnitude compared with conventional progralgm
techniques.

e zEngine, which is a computational server container that is
installed and launched on (potentially heterogeneougjetana-
chines. Thisis the container in which parallelized compaoite ac-
tually run. A zEngine uses the underlying operating systemedul-
ing mechanismsi.g., core-aware thread creation, synchronization,
and management) to maximize processor utilization by eiggtu
an instance of a parallelized function on each core (a conprent
tice is to start as mamgEngineinstances on each host as there are
processor cores).

e zPluginbuilder, is a utility that is used to adapt serial client li-
braries into parallelizable plug-in libraries that canglialize com-
plex computations using zNet middleware.

e zZAdmin, which is a utility for managingife., monitoring, in-
stalling, starting, and stopping) the resources, and egibins in
the system either graphically or via a command-line.

The remainder of this section outlines the types of apptioat

that can benefit from zFunction and describes how its comyene
in Figure 2 address the parallelization challenges desdtiilo Sec-
tion 2.3.

3.1 zEnabling using zFunctionAdapters and
zPluginLibraries

Any serial legacy application that performs complex caltiohs
on large data-sets can be parallelized using zFunctiorallBl-
ing a serial application (which we calEnabling involves steps to
link the application to zFunction middleware that trangpdly en-
capsulates the concerns of distributed and parallel psougéom
applications.

ThezEnablingprocess shields application developers from low-
level distribution concerns, such as discovery, addrgsgite)mar-
shaling requests and replies, and deals with variabilitiebe un-
derlying network protocol stack(s), so that applicatioas inte-
grate with any platform and programming language seanylessl|
zEnabledapplication contains an equivalezfunctionAdapter _F
for every parallelizable functiofr. Client application developers
only need to replace calls fowith calls toz_F for parallelization.

The zFunctionAdaptez _F is a client-side proxy that transpar-
ently dispatches asynchronous requests to the zEngine®bth
providing adaptive, distributed, and high performance jgotimg
on demand for client applications. zFunction makes use ef th
zPluginBuilder tool forzEnablinguser libraries.

The input to the zPluginBuilder tool is aXML file describing
the functionF, its input parameters, its output parameters, and the
location of the library that contains the definition of thedtion F
(shown in the middle section of Figure 3). The output is adlilr

Serial ing the ibrary ing the zPluginLibrary

™) zEnabled Client

main()

Vinterface
Definition
File

.
Client App

A

3) y =

% ZPluginLibrary
/ ®
zNet

main()

F(.)

)

2)

ZPluginBuilder|

r o
User Library
F(.)
‘ (|
Ilbusiness logic
}

Figure 3: zEnabling a Serial Application with zFunction
(called the zPluginLibrary) with zFunctionAdapter implentation
z_F conforming to the same interface as the original funcfon
The generated zPluginLibrary is linked by both the clierglea-
tion as well as the zEngine (see the right side of the Figuré®Ba)
the server, the zPluginLibrary simply delegates the cadiderfrom
the client-side zPluginLibrary (on behalf of the client Apgtions)
to the functionF defined in the library created by the service de-
velopers. With a minimal amount of development effort, éfiere,
zFunction users obtain a versatile, production-qualisajelized
application that can be deployed in a network of parallelgotimg
nodes.

3.2 Resolving Distributed and Parallel Ap-
plication Design Challenges with zFunc-
tion

We now describe how the zFunction components shown in Fig-
ure 2 address the key distributed and parallelize appticatesign

challenges summarized in Section 2.3.

Resolving challenge 1: Providing an information service fo

2zPluginLibary

ZNet®

discovery and addressing of remote computation serversThe
Configuration EnvironmenfTCE) acts as an information service
for zFunction and bootstraps all the applications in thevoek. All
other components in a zFunction deployment (including tieats
and the zEngines that perform the remote computations}tezgi
with the TCE at startup. This process allows TCE to identin
work settings such as the host IP addresses, network sularei-i
fication, multicast addresses. TCE employs a handshakotgqui
that provides network information to all zFunction compuaise so
that applications can communicate with each other at ruentinth-
out collaborating with TCE.

Resolving challenge 2: Providing transparent management
of data distribution for remote communications. zFunction al-
lows application developers to optimize the system peréorce
by providing flexible data-dissemination mechanisms. zfaon
clients do not send data with every request; instead, dataris
only once, and with every request, zFunction sends a referen
to each server on where the data could be found. Moreover, if
new data needs to be updated midway through the computations
zFunction also provides a mechanism to signal all the sered
allow them to reach a common snapshot or checkpoint, receive
the new input data from the client, and then resume compuisti
zFunction provides a utility called the zPluginBuilder ttlzauto-
matically generates zPluginLibraries that serve as adapttween
the generic zFunction middleware and specific client/seappli-
cations. These adapters emit efficient (de)marshaling ttaten-
ables zFunction middleware to transparently support reroin-
munication across heterogeneous platforms and networks.

Resolving challenge 3: Providing effective resource manag
ment of remote computation servers When zEnabled client re-
quests are sent to a server pool, zFunction middlewarefigent
load-balancer is used to evenly distribute work amongsitiex
computation servers in real-time, as shown in Figure 4. Bgagh
ing computations evenly across all the available serv&isnation
maximizes resource allocation for critical applications also en-
sures that hardware resources are utilized to their fullest

Service-Oriented Serial Application zEnabled Application

Client-Side

i ‘ol

) T T

Server-Side

[Client A il
st B
:
—
}
Iterations Iterations
of of
F(...) B F(...)
WA | VVOCORYCONRYYYIRRNAY)

Figure 4: Parallel Application Development with zFunction

Resolving challenge 4: Providing application-transparetmu-
Iti-layer fault tolerance. zFunction also ensures application exe-
cution irrespective of hardware failures, and transpéregmovides
fault recovery and failover by re-executing requests ategsrthat
are still operational. zFunction keeps track of the execuitistory
of each request and to which zEngine the request has beetosent
When zFunction detects that a zEngine has failed, it auicaigt
resends the request to a new or a rejuvenated Engine ancesnsur
that the computations are performed irrespective of harel\iil-
ures.

Resolving challenge 5: Providing implicit scalability ushg
core-aware multi-threading. zFunction attains parallelization by

executing multiple instances of an application’s paredédle func-
tion simultaneously in zEngine processes running on aiffema-
chines on a network. zFunction provides implicit concucsesup-
port and automatically creates threads for distributirguests to
different servers and also synchronizes those threadg usés-
sages and locks.

4. APPLYING ZFUNCTION TO THE VAR
CASE STUDY

This section presents an updated VaR application that Faegz
tion to parallelize calculations on a portfolio of stockslaptions
represented ashicrosoft Excekpreadsheet. As discussed in Sec-
tion 3, the zFunction middleware permits the effective dgtiog
of the client code and the parallelizable function impletagan
so that they can run on different platfornesg, Windows for the
client and Linux for the servers. Moreover, different partghe
VaR application can also be written in different languages, Vi-
sual Basic for the client and C/C++ for the servers.

The interface between the client and the parallelizabletfan
is specified concisely in an XML-baséterface Description File
The zPluginBuilder tool is then used to generate plug-iralies
appropriate for both the client application and the zEngieeer
implementation. For this case study, the client Miarosoft Excel
spreadsheet that uses a COM interface Wigual Basig to inte-
grate with the zFunction middleware. Conversely, serveesda-
ployed in a pool of zEngines deploying Linux C/C++ librarfes
VaR calculation.

4.1 zFunction-based Client Implementation

The client code for this application resides iliérosoft Excel
workbook that contains data about the market behavior siwsna
(see Figure 1), which is a natural and typical medium for data
intensive financial calculations. As shown in Figure 5, thent

Windows Environment Linux Environment

2Enabled
Visual Basic
Ciient Application

Microsoft Excel| VAR End

SpreadSheet (Calculation
Inputs
x|

T
—‘ VAR

Results {5

PluginLivary [l

ZNet’®

VAR Results o
2PluginLibary

ZNet”

Figure 5: A zEnabled VaR Calculation Example
can therefore easily support a legacy serial implememtaifche
calculation written irvisual Basidor applications. This figure also
shows how theEnabledapplication requires two superficial trans-
formations of the client-side code embedded in the spresdsh

e The calculations are dispatched asynchronously, and a sepa
rate callback function receives responses from remotezEng
ines and populates target cells in the resulting spreatishee
with these responses.

e The zPluginBuilder tool is used to generate a client-sidéCO
interface that allows the invocation of the appropriatecfun
tion from within theVisual Basicclient code.

4.2 zFunction-based Server Implementa-
tion

When developing the server-side code aEmabledapplication,
itis only necessary to (1) create a user library containiegparal-
lelizable function and (2) describe the function’s integaising an
interface description file (in XML). The zPluginBuilder tide then
used to generate a plugin library that can be dynamicallgdda
into zEngines running on any supported platform, as shoviign
ure 3.

The server implementation consists ofearal _portfol i o()
function, whose input parameters include a portfolio dééniand
a stock price scenario and uses the binomial options pritiodel
to evaluate all the options in the portfolio. The final rexflthe
computation for a single scenario is a portfolio value. Esm@nario
(which is defined by its distinct set of hypothetical stoclces at
the end of the simulation’s time horizon) thus yields an pete
dent and parallelizable portfolio value calculation. A®wh in
Figure 5, the zEngines devoted to the calculation can camplé
these independent scenario calculations efficiently, thighclient-
side load balancer integrated into the zNet middlewareibigtng
the work automatically.

4.3 Benefits of Applying zFunction to the
VaR Case Study

The automated zEnabling process addresses all the chedleng

from Section 2.3 that are faced by developers of computalifin
nance applications. As shown in Figure 5, to resolve chgéen
1, 3, 4, and 5, the zFunction middleware automatically mtesi
discovery, addressing, load balancing, fault detectioth r@tov-
ery mechanisms, ensuring that all client requests handedvit
eventually run, irrespective of communication or servelufas.
This fault-tolerance is provided by zFunction componem$oth
sides of the network, requiring no application developtarefThe
application-specific zFunction generated by the zPlugildBualso
encapsulates the concerns related to robust distributeguting
behind an interface similar to that of the synchronous pelizal
able function, thereby raising the level of programmingtiausion
experienced by application developers.

5. RELATED WORK

This section compares and contrasts our work on zFunctitin wi
related work on parallel application development and depknt.

Aspect-Oriented Programming (AOP). Recent work has fo-
cused on using AOP [13] to separate parallelization corscEom
application specific source code [10, 17, 14]. However, deoto
provide real-time capabilities like fault-tolerance, delalancing
and data dissemination using AOP, newer technologies reekd t
used that support composition of aspects. zFunction pesvall
these benefits with minimum modification to existing apyilmas.

Grid computing middleware. Many projects have explored the
idea of utilizing distributed computing architectures txelerate
complex calculations over cluster of computers. Some wadhwn
examples include the SETI@Home [3] and BOINC [2] projects,
which employ under-utilized networked processors to patfcom-
putational tasks. Likewise, Frontiemw. f r ont i er . conj pro-
vides grid software for utilizing available processors toelerate
parallel applications. In general, in these approachesclieat
nodes communicate via a centralized master node to subbg jo
which can increase latency, create performance bottleneuid
yields a single point of failure. In contrast, zFunctionides a
highly optimized and decentrallized middleware infrastame for
application parallelization, interprocess communicatand data
distribution.

Middleware for accelerating financial engineering applica
tions. Prior work has also focused on developing and/or applying
grid architectures and grid applications for financial gy ap-
plications. For example, [16] discusses practical expegs asso-
ciated with data management and performance issues eecednt
in developing financial services applications in the IBM &jene
supercomputer [1]. Likewise, PicsouGrid [4] is a faultei@nt
and multi-paradigm grid software architecture for acaiag fi-
nancial computations on a large scale grid. Other griddbays-
tems include Platform Computingamw. pl at f or m con), Data-
Synapse,jww. dat asynapse. comn), and Microsoft HPCyjmw.

m crosoft. conm hpc), which provide distributed software en-
vironments for financial computations. zFunction diffes these
technologies in its ease of use and integration, its rea-perfor-
mance, its ability to handle both small as well as large scaie-
putations, its support for portable architectures andiquliais, and
its advanced parallel programming features such as afiplca
transparent fault-tolerance, load balancing, and immitared-mem-
ory thread programming.

6. CONCLUDING REMARKS

This paper showcased the capabilities of the zFunction lexdd
ware that can parallelize complex computation and datagnte
distributed applications by using a simplified programmingdel
and creating an adaptive, real-time, fault-tolerant iisted com-
puting environment on-demand. zFunction is well-suiteddo-
mains where complex real-time calculations are neededkigiaad
predictably, and which can benefit from distributed worlkl gmao-
cessing across a (potentially heterogeneous) networkanltsab-
stantially improve the performance of such systems at a lost ¢
by enabling the applications to run parallely on COTS hardwa
desktops, clusters and the cloud.

7. REFERENCES

[1] et. al Allen, F. Blue gene: a vision for protein science using
a petaflop supercomputéBM Syst. J.40(2):310-327, 2001.
D. P. Anderson. Boinc: A system for public-resource
computing and storage. [BRID '04: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing
pages 4-10, Washington, DC, USA, 2004. IEEE Computer
Society.
D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@home: an experiment in public-resource
computing.Commun. ACM45(11):56-61, 2002.
[4] S.Bezzine, V. Galtier, S. Vialle, F. Baude, M. Bossy, .. D
Doan, and L. Henrio. A fault tolerant and multi-paradigm
grid architecture for time constrained problems. appilicat
to option pricing in finance. lE-SCIENCE '06:
Proceedings of the Second IEEE International Conference
on e-Science and Grid Computinuage 49, Washington,
DC, USA, 2006. IEEE Computer Society.
F. Black and M. Scholes. The Pricing of Options and
Corporate LiabilitiesThe Journal of Political Economy
81(3), May 1973.
[6] J. C. Cox, S. A. Ross, and M. Rubinstein. Option Pricing: A
Simplified ApproachJournal of Financial Economicél,
1979.
[7] D. Duffie and J. Pan. An Overview of Value At Riskhe
Journal of Derivatives4(3), Apr. 1997.
[8] M. Forum. Message Passing Interface Forum.
www.mpi-forum.org.

(2]

(3]

(5]

[9] P. GlassermarMonte Carlo Methods in Financial
Engineering (Stochastic Modeling and Applied Probabjlity
Springer Verlag, 2003.

B. Harbulot and J. R. Gurd. Using aspectj to separate

concerns in parallel scientific java code A@SD '04:

Proceedings of the 3rd international conference on

Aspect-oriented software developmepgiges 122-131, New

York, NY, USA, 2004. ACM.

J. C. Hull.Risk Management and Financial Institutions

Prentice Hall, Upper Saddle River, NJ, 2006.

P. JorionValue at Risk: The New Benchmark for Managing

Financial Risk McGraw-Hill, New York, NY, third edition,

2006.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented

Programming. IfiProceedings of the 11th European

Conference on Object-Oriented Programmjipgges

220-242, June 1997.

M. E. F. Maia, P. H. M. Maia, N. C. Mendonca, and R. M. C.

Andrade. An aspect-oriented programming model for

bag-of-tasks grid applications. ®CGRID '07: Proceedings

of the Seventh IEEE International Symposium on Cluster

Computing and the Gridpages 789-794, Washington, DC,

USA, 2007. IEEE Computer Society.

[15] OpenMP. OpenMP Home Page. www.openmp.org.

[16] T. Phan, R. Natarajan, S. Mitsumori, and H. Yu. Middlesva
and performance issues for computational finance
applications on blue geneParallel and Distributed
Processing Symposium, Internation@i371, 2007.

[17] J. Sobral. Incrementally developing parallel appimas
with aspectjParallel and Distributed Processing
Symposium, Internationad:95, 2006.

[10]

[11]

[12]

[13]

[14]

