
Adaptive Parallel Computing for Large-scale Distributed and Parallel
Applications

Jaiganesh Balasubramanian† , Alexander Mintz†, Andrew Kaplan†,
Grigory Vilkov†, Artem Gleyzer†, Antony Kaplan†, Ron Guida†,

Pooja Varshneya‡, Douglas C. Schmidt‡
†Zircon Computing LLC, Wayne, NJ, USA
‡Vanderbilt University, Nashville, TN, USA

Abstract
This paper presents the structure and functionality of zFunction,
which is an adaptive distributed computing platform that supports
a user-friendly programming model for developing parallelpro-
cessing applications. It allows developers to design software as if
they are programming for a single computer and then it automati-
cally takes care of data distribution and task parallelization activ-
ities on different cluster nodes or multiple CPU cores. zFunction
thus substantially improves the performance of complex distributed
applications that process a large amount of data in real time, mis-
sion critical systems. This paper uses a representative case study
from the financial services domain to show how these types of ap-
plications can benefit from zFunction.

1. INTRODUCTION
Parallel programming is increasingly becoming important for

researchers and developers of large-scale distributed andparallel
applications in a number of domains, including financial risk as-
sessment and modeling (e.g., Value-At-Risk and historical calcu-
lations), real-time decision-making based on algorithmicfeedback
(e.g. market making, electronic strategy arbitrage, and high-frequency
trading), and processing, archiving, storing and searching content
repositories for enterprise content management systems (e.g., news
websites and web encyclopedias). With the advent of commodity
multi-core processors and cloud computing systems, researchers
and developers also need newer parallel programming techniques
that can maximize the utilization of such systems.

Traditional parallel programming techniques, such as message
passing [8] and shared memory grid computing middleware [15],
have been applied by researchers in universities and national labs
to develop and deploy enterprise-scale distributed and parallel ap-
plications. Parallel application development remains a challenging
problem, however, in the domain of large-scale developmentof dis-
tributed and parallel applications, where traditional grid computing
technologies cannot be applied due to the following limitations:

• Complex programming models that do not have inherent sup-
port for features like node-discovery, data dissemination, load-
balancing and concurrency control. Applications written us-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DD4LCCI’2010,April 27, Valencia, Spain
Copyright 2010 ACM ACM 978-1-60558-917-6/10/04 ...$5.00.

ing such techniques, do not scale well for complex mission-
critical systems.

• Traditional grid computing technologies are not platform ag-
nostic.

• There is a steep learning curve involved in mastering these
parallel programming paradigms.

To address these limitations, we have developed an adaptivedis-
tributed computing middleware calledzFunctionthat enhances large-
scale distributed and parallel applications by creating adaptive, real-
time, and distributed computing on demand. zFunction provides
following capabilities to researchers and developers:

• Configurable middleware whose pluggable services automate
many tedious and error-prone activities related to network
programming, including handling different network proto-
cols, (de)marshaling, fault-tolerance, thread creation and man-
agement, and advanced load balancing across a network of
computation servers.

• A decentralized software architecture that has no single point
of failure.

• A straightforward parallel programming model that allows
developers of complex, large-scale applications (e.g., com-
putational finance and data processing applications) to de-
sign software that runs in a cluster of computers as if they
are programming for a single computer.

Paper organization. The remainder of this paper is organized as
follows: Section 2 describes a case study from the financial services
domain to showcase the challenges of developing distributed and
parallel applications; Section 3 explores the capabilities zFunction
provides to simplify the development of large-scale distributed and
parallel applications; Section 4 describes how zFunction provides
solutions for the challenges described in the case study; Section 5
compares zFunction with related work; and Section 6 presents con-
cluding remarks.

2. A CASE STUDY IN FINANCIAL ANAL-
YSIS

Computational finance applications involving massive simula-
tions, are well suited for distribution and parallelization. Unfor-
tunately, the prohibitive effort that is needed to parallelize these ap-
plications using traditional mechanisms has restricted the financial
industry’s movement in this direction. Since markets are increasing
dominated by electronic trading systems, however, real-time per-
formance becomes an increasingly critical factor in makingtimely
trading decisions.

A common problem encountered in the financial services indus-
try is risk estimation.Monte Carlo methods[9] relying on simula-
tions based on hypothetical market behavior scenarios haveproven
quite useful in risk calculations, especially for portfolios involving
derivatives. The computational intensity of such methods,however,
generally limits the frequency with which they can be used. Hence,
there is a significant benefit from boosting the performance of such
computations.

The remainder of this section presents a case study in finan-
cial analysis based on avalue-at-risk(VaR) [12] calculation using
Monte Carlo simulation to showcase key design challenges ofde-
veloping parallel computational finance applications.

2.1 The Definition and Applications of VaR
Analysis

In financial mathematics and financial risk management, Value
at Risk (VaR) is a widely used measure of the risk of loss on a spe-
cific portfolio of financial assets. For a given portfolio, probability
and time horizon, VaR is defined as a threshold value such thatthe
probability that the mark-to-market loss on the portfolio over the
given time horizon exceeds this value (assuming normal markets
and no trading in the portfolio) is the given probability level.

For portfolios involving traditional instruments like stocks, ef-
fective and computationally parsimonious analytical methods (such
as the variance-covariance method [11, 7]) for calculatingthe value-
at-risk have been devised. Crucially, such methods rely on impor-
tant assumptions about the nature of the loss distribution,including
the stipulation that it is a normal distribution. Hence, such algo-
rithms cannot be applied to portfolios that contain exotic instru-
ments (such as options and other derivatives) and risk managers
must resort to more generalized techniques.

Due to their generality,Monte Carlomethods are often utilized
for VaR calculations for portfolios with options. Instead of mod-
eling future portfolio performance on purely theoretical consider-
ations, such methods simulate a large, representative set of possi-
ble performance scenarios and then base the VaR measurements
on tallies of the results. One variant of such methods—design
for portfolios with options—is to use the historical performance
of the options’ underlying securities at different randomly-selected
times to generate plausible scenarios of future underlyingsecuri-
ties’ values. Since powerful algorithms (such as the Black-Scholes
model [5] and the binomial tree model [6]) exist to predict option
prices based on underlying prices, such scenarios can be extended
to generate predictions about the performance of all positions in the
portfolio, and thus the portfolio’s overall performance.

Although suchMonte Carlo(we useMonte Carlomethods based
on historical simulations) methods are general and versatile, they
are extremely computationally intensive. In particular, the algo-
rithms for deriving options prices from those of their underlying
securities are quite involved, and the computational cost is com-
pounded by the fact that many such predictions must be calculated
to generate a sufficiently large number of scenarios for reliable sta-
tistical analysis. Indeed, the computational cost of such calcula-
tions is often the factor limiting their broader use in the financial
industry.

2.2 A Typical Serial Implementation of VaR
Calculation

Inputs and results for VaR calculations are often hosted in appli-
cations such asMicrosoft Excel spreadsheetsand calculations are
often controlled by aVisual Basic for Applicationsscript. The ac-
tual calculations may be performed either within the Excel process

or delegated to another process in a client/server configuration.
This paper focuses on a representative VaR calculation where

the computational task is to estimate the 1-day value at riskfor a
portfolio with positions in stocks, an index, and a number ofAmer-
ican options on these securities. Figure 1 shows an architecture
of such a serial VaR calculation, where aVisual Basicclient ap-
plications computes the VaR for a set of portfolios (whose input
data are stored in aMicrosoft Excelspreadsheet) by invoking re-
mote requests on a VaR evaluation library hosted in aLinux server.
The Monte Carlosimulation achieves this VaR calculation by (1)

Figure 1: A Serial VaR Calculation Example
computing the value of the portfolio at the end of the time horizon
under a large number of market behavior scenarios and (2) quanti-
fying the maximum loss expected with a given probability (i.e., the
simulation’s confidence interval).

In our case study, 381 options, 30 stocks, and one index track-
ing fund qualify for our portfolio. We collect the history ofdaily
stock returns for two years preceding the VaR calculation date in
an Microsoft Excelspreadsheet. The next step is creating 1,000
distinct scenarios by randomly drawing 1,000 sets of returns and
calculating the underlying 1-day VaR value. As shown in Figure 1,
the VaR calculation function is embedded in a library hostedon
a Linux machine. Likewise, the client for this computation is an
Excelspreadsheet and aVisual Basicclient executable assists the
Excelspreadsheet to make remote invocations on the Linux library.
In the next section, we will describe the design challenges for par-
allelizing such VaR calculations.

2.3 Design Challenges of Parallelizing the
VaR Calculation

In our case study, we have American options with discrete div-
idends on individual stocks, as there is no closed-form solution
available for them and one has to use time-consuming binomial
trees to calculate the price. Hence, the following computational
steps are involved in calculating 1-day VaR: (1) randomly picking
N historical dates, (2) applying the returns for each historical date
to the underlying prices on the initial date to obtain a scenario for
the underlying prices at the end of the time horizon, (3) for each
scenario for the prices of the underlying securities, evaluating the
prices of all the options in the portfolio, and (4) after evaluating all
scenarios, forming the simulated distribution of the portfolio values
and computing VaR.

Since the options price model calculations are logically indepen-
dent and quite numerous within the scope of a single portfolio’s
analysis, this VaR calculation has great exploitable concurrency
and is easy to parallelize. Although parallelization provides a re-
alistic and economical way to improve the performance of such
analysis, conventional implementations of this parallel calculation
face a number of design challenges in offloading serial calculation

to run in parallel on hundreds or thousands of distributed computa-
tion servers. The remainder of this section describes some of these
key design challenges.

Challenge 1: Discovery and addressing of remote computa-
tion servers for distributed computation. If application develop-
ers write source code manually to perform parallel programming,
they would have to identify the IP addresses of the client andserver
machines, determine multicast addresses, and also handle the vari-
abilities associated with the underlying network stack to transfer
requests and replies across the network. Moreover, this process
would be repeated whenever the underlying platforms change, e.g.,
the input data could be moved from theExcel spreadsheet to a
database, or the VaR calculation server could be moved from the
Linuxhost to aSolarishost. Irrespective of these changes in the un-
derlying network, hardware, and platform topologies, the VaR cal-
culation data must be distributed and distributed computations must
be performed. As described above, manually modifying source
code to handle such sophisticated use cases is hard.

Challenge 2: Data Dissemination for remote distributed com-
putation. Distributed computations involves transforming the in-
ternal state of a program (e.g., the input for the VaR calculation
stored in the Excel spreadsheet) in an external format that be can
transferred via the network to remote computation servers.The
programming technique used to accomplish this transformation is
called asmarshalingand the reverse process of converting the ex-
ternal data format to internal data format is calleddemarshaling.
Historically, application developers have manually written (de)mar-
shaling code to meet the distributed computing requirements of
VaR calculations. This (de)marshaling code is highly dependent
on the format of the data being sent and the platforms hostingthe
client-server processes, which complicates manual sourcecode de-
velopment activities.

Challenge 3: Efficient distribution of remote computation re-
quests for effective resource management across the network.
After application developers devise solutions to challenges 1 and
2 above, intelligent request scheduling and distribution algorithms
are needed to disseminate requests across the various computation
servers. Efficient request dissemination ensures that (1) all hard-
ware resources are utilized efficiently, (2) remote computations are
not impeded by load imbalance across computation servers, and
(3) clients are shielded from heterogeneous hardware and software
capabilities.

Challenge 4: Fault tolerance and application transparent fault
detection and recovery. When remote computation servers exe-
cute complex application calculations, hardware failurescan dis-
rupt the calculations. These types of failures must be handled re-
siliently since both the compute server(s) and communication links
may be rendered unavailable. Developing source code for provid-
ing fault tolerance could involve writing code for detecting faults,
identifying the requests that were being computed by the failed
server, resending those requests to an alternate server, and taking
rejuvenation actions such as restarting the failed servers. It is a
tedious and error-prone process to write fault-tolerance infrastruc-
ture code for every application and makes it difficult for application
developers to quickly parallelize existing finance applications.

Challenge 5: Concurrency management. Computational fi-
nance applications, such as the VaR calculation in our case study,
are often highly computation intensive. These applications can
therefore benefit greatly from proper concurrency management where
all the cores in a multi-core processor are utilized efficiently for
optimizing calculations. Programming these concerns requires ap-
plication developers to manage concurrency explicitly by creating
threads and synchronizing those threads with messages, andlocks.

This process must be repeated for every platform since thread pro-
gramming APIs differ from platform to platform,e.g., differences
in the thread API between Windows and Linux. Ideally, applica-
tion developers should develop source code in a platform-agnostic
manner so that application requests could be optimized depending
on the availability of single- vs. multi-core processors.

The remainder of this paper uses the VaR case study to motivate
how the zFunction middleware can address the above described dis-
tributed and parallel application development challengesassociated
with large-scale computational finance applications.

3. STRUCTURE AND FUNCTIONALITY
OF ZFUNCTION

This section describes the structure and functionality of zFunc-
tion, which is adaptive distributed middleware for accelerating the
performance of complex compute-intensive applications ina net-
worked environment.

Figure 2: Overview of the zFunction Architecture
Figure 2 shows the following key elements in the zFunction mid-

dleware:
•Test Configuration Environment (TCE), is a application con-

figuration utility that discovers, validates, and manages all applica-
tions in a deployment. It manages the compute servers, clients,
and monitoring utilities and provides IP addresses and multicast
addresses for distributed execution environment.

• zNet, which is an optimized load balancing framework linked
with the client applications and hence resides in the clientaddress
space. zNet automatically distributes computations to allthe avail-
able servers, transparently parallelizes executions in a scalable, re-
liable, and resource-efficient fashion, and improves performance
by orders of magnitude compared with conventional programming
techniques.

• zEngine, which is a computational server container that is
installed and launched on (potentially heterogeneous) target ma-
chines. This is the container in which parallelized computations ac-
tually run. A zEngine uses the underlying operating system schedul-
ing mechanisms (i.e., core-aware thread creation, synchronization,
and management) to maximize processor utilization by executing
an instance of a parallelized function on each core (a commonprac-
tice is to start as manyzEngineinstances on each host as there are
processor cores).

• zPluginbuilder, is a utility that is used to adapt serial client li-
braries into parallelizable plug-in libraries that can parallelize com-
plex computations using zNet middleware.

• zAdmin, which is a utility for managing (i.e., monitoring, in-
stalling, starting, and stopping) the resources, and applications in
the system either graphically or via a command-line.

The remainder of this section outlines the types of applications

that can benefit from zFunction and describes how its components
in Figure 2 address the parallelization challenges described in Sec-
tion 2.3.

3.1 zEnabling using zFunctionAdapters and
zPluginLibraries

Any serial legacy application that performs complex calculations
on large data-sets can be parallelized using zFunction. Paralleliz-
ing a serial application (which we callzEnabling) involves steps to
link the application to zFunction middleware that transparently en-
capsulates the concerns of distributed and parallel processing from
applications.

ThezEnablingprocess shields application developers from low-
level distribution concerns, such as discovery, addressing, (de)mar-
shaling requests and replies, and deals with variabilitiesin the un-
derlying network protocol stack(s), so that applications can inte-
grate with any platform and programming language seamlessly.
zEnabledapplication contains an equivalentzFunctionAdapterz_F
for every parallelizable functionF. Client application developers
only need to replace calls toF with calls toz_F for parallelization.

The zFunctionAdapterz_F is a client-side proxy that transpar-
ently dispatches asynchronous requests to the zEngines, thereby
providing adaptive, distributed, and high performance computing
on demand for client applications. zFunction makes use of the
zPluginBuilder tool forzEnablinguser libraries.

The input to the zPluginBuilder tool is anXML file describing
the functionF, its input parameters, its output parameters, and the
location of the library that contains the definition of the functionF
(shown in the middle section of Figure 3). The output is a library

Figure 3: zEnabling a Serial Application with zFunction
(called the zPluginLibrary) with zFunctionAdapter implementation
z_F conforming to the same interface as the original functionF.
The generated zPluginLibrary is linked by both the client applica-
tion as well as the zEngine (see the right side of the Figure 3). On
the server, the zPluginLibrary simply delegates the calls made from
the client-side zPluginLibrary (on behalf of the client applications)
to the functionF defined in the library created by the service de-
velopers. With a minimal amount of development effort, therefore,
zFunction users obtain a versatile, production-quality parallelized
application that can be deployed in a network of parallel computing
nodes.

3.2 Resolving Distributed and Parallel Ap-
plication Design Challenges with zFunc-
tion

We now describe how the zFunction components shown in Fig-
ure 2 address the key distributed and parallelize application design
challenges summarized in Section 2.3.

Resolving challenge 1: Providing an information service for

discovery and addressing of remote computation servers. The
Configuration Environment(TCE) acts as an information service
for zFunction and bootstraps all the applications in the network. All
other components in a zFunction deployment (including the clients
and the zEngines that perform the remote computations) register
with the TCE at startup. This process allows TCE to identify net-
work settings such as the host IP addresses, network subnet identi-
fication, multicast addresses. TCE employs a handshaking protocol
that provides network information to all zFunction components, so
that applications can communicate with each other at runtime with-
out collaborating with TCE.

Resolving challenge 2: Providing transparent management
of data distribution for remote communications. zFunction al-
lows application developers to optimize the system performance
by providing flexible data-dissemination mechanisms. zFunction
clients do not send data with every request; instead, data issent
only once, and with every request, zFunction sends a reference
to each server on where the data could be found. Moreover, if
new data needs to be updated midway through the computations,
zFunction also provides a mechanism to signal all the servers and
allow them to reach a common snapshot or checkpoint, receive
the new input data from the client, and then resume computations.
zFunction provides a utility called the zPluginBuilder that auto-
matically generates zPluginLibraries that serve as adapters between
the generic zFunction middleware and specific client/server appli-
cations. These adapters emit efficient (de)marshaling codethat en-
ables zFunction middleware to transparently support remote com-
munication across heterogeneous platforms and networks.

Resolving challenge 3: Providing effective resource manage-
ment of remote computation servers. When zEnabled client re-
quests are sent to a server pool, zFunction middleware’s intelligent
load-balancer is used to evenly distribute work amongst existing
computation servers in real-time, as shown in Figure 4. By spread-
ing computations evenly across all the available servers, zFunction
maximizes resource allocation for critical applications and also en-
sures that hardware resources are utilized to their fullest.

Figure 4: Parallel Application Development with zFunction
Resolving challenge 4: Providing application-transparent mu-

lti-layer fault tolerance . zFunction also ensures application exe-
cution irrespective of hardware failures, and transparently provides
fault recovery and failover by re-executing requests at servers that
are still operational. zFunction keeps track of the execution history
of each request and to which zEngine the request has been sentto.
When zFunction detects that a zEngine has failed, it automatically
resends the request to a new or a rejuvenated Engine and ensures
that the computations are performed irrespective of hardware fail-
ures.

Resolving challenge 5: Providing implicit scalability using
core-aware multi-threading. zFunction attains parallelization by

executing multiple instances of an application’s parallelizable func-
tion simultaneously in zEngine processes running on different ma-
chines on a network. zFunction provides implicit concurrency sup-
port and automatically creates threads for distributing requests to
different servers and also synchronizes those threads using mes-
sages and locks.

4. APPLYING ZFUNCTION TO THE VAR
CASE STUDY

This section presents an updated VaR application that uses zFunc-
tion to parallelize calculations on a portfolio of stocks and options
represented as aMicrosoft Excelspreadsheet. As discussed in Sec-
tion 3, the zFunction middleware permits the effective decoupling
of the client code and the parallelizable function implementation
so that they can run on different platforms,e.g., Windows for the
client and Linux for the servers. Moreover, different partsof the
VaR application can also be written in different languages,e.g., Vi-
sual Basic for the client and C/C++ for the servers.

The interface between the client and the parallelizable function
is specified concisely in an XML-basedInterface Description File.
The zPluginBuilder tool is then used to generate plug-in libraries
appropriate for both the client application and the zEngineserver
implementation. For this case study, the client is aMicrosoft Excel
spreadsheet that uses a COM interface (viaVisual Basic) to inte-
grate with the zFunction middleware. Conversely, servers are de-
ployed in a pool of zEngines deploying Linux C/C++ librariesfor
VaR calculation.

4.1 zFunction-based Client Implementation
The client code for this application resides in aMicrosoft Excel

workbook that contains data about the market behavior scenarios
(see Figure 1), which is a natural and typical medium for data-
intensive financial calculations. As shown in Figure 5, the client

Figure 5: A zEnabled VaR Calculation Example
can therefore easily support a legacy serial implementation of the
calculation written inVisual Basicfor applications. This figure also
shows how thezEnabledapplication requires two superficial trans-
formations of the client-side code embedded in the spreadsheet:

• The calculations are dispatched asynchronously, and a sepa-
rate callback function receives responses from remote zEng-
ines and populates target cells in the resulting spreadsheet
with these responses.

• The zPluginBuilder tool is used to generate a client-side COM
interface that allows the invocation of the appropriate func-
tion from within theVisual Basicclient code.

4.2 zFunction-based Server Implementa-
tion

When developing the server-side code of azEnabledapplication,
it is only necessary to (1) create a user library containing the paral-
lelizable function and (2) describe the function’s interface using an
interface description file (in XML). The zPluginBuilder tool is then
used to generate a plugin library that can be dynamically loaded
into zEngines running on any supported platform, as shown inFig-
ure 3.

The server implementation consists of aneval_portfolio()
function, whose input parameters include a portfolio definition and
a stock price scenario and uses the binomial options pricingmodel
to evaluate all the options in the portfolio. The final resultof the
computation for a single scenario is a portfolio value. Eachscenario
(which is defined by its distinct set of hypothetical stock prices at
the end of the simulation’s time horizon) thus yields an indepen-
dent and parallelizable portfolio value calculation. As shown in
Figure 5, the zEngines devoted to the calculation can complete all
these independent scenario calculations efficiently, withthe client-
side load balancer integrated into the zNet middleware distributing
the work automatically.

4.3 Benefits of Applying zFunction to the
VaR Case Study

The automated zEnabling process addresses all the challenges
from Section 2.3 that are faced by developers of computational fi-
nance applications. As shown in Figure 5, to resolve challenges
1, 3, 4, and 5, the zFunction middleware automatically provides
discovery, addressing, load balancing, fault detection and recov-
ery mechanisms, ensuring that all client requests handed toit will
eventually run, irrespective of communication or server failures.
This fault-tolerance is provided by zFunction components on both
sides of the network, requiring no application developer effort. The
application-specific zFunction generated by the zPluginBuilder also
encapsulates the concerns related to robust distributed computing
behind an interface similar to that of the synchronous paralleliz-
able function, thereby raising the level of programming abstraction
experienced by application developers.

5. RELATED WORK
This section compares and contrasts our work on zFunction with

related work on parallel application development and deployment.
Aspect-Oriented Programming (AOP). Recent work has fo-

cused on using AOP [13] to separate parallelization concerns from
application specific source code [10, 17, 14]. However, in order to
provide real-time capabilities like fault-tolerance, load-balancing
and data dissemination using AOP, newer technologies need to be
used that support composition of aspects. zFunction provides all
these benefits with minimum modification to existing applications.

Grid computing middleware. Many projects have explored the
idea of utilizing distributed computing architectures to accelerate
complex calculations over cluster of computers. Some well-known
examples include the SETI@Home [3] and BOINC [2] projects,
which employ under-utilized networked processors to perform com-
putational tasks. Likewise, Frontier (www.frontier.com) pro-
vides grid software for utilizing available processors to accelerate
parallel applications. In general, in these approaches theclient
nodes communicate via a centralized master node to submit jobs,
which can increase latency, create performance bottlenecks, and
yields a single point of failure. In contrast, zFunction provides a
highly optimized and decentrallized middleware infrastructure for
application parallelization, interprocess communication and data
distribution.

Middleware for accelerating financial engineering applica-
tions. Prior work has also focused on developing and/or applying
grid architectures and grid applications for financial services ap-
plications. For example, [16] discusses practical experiences asso-
ciated with data management and performance issues encountered
in developing financial services applications in the IBM Bluegene
supercomputer [1]. Likewise, PicsouGrid [4] is a fault-tolerant
and multi-paradigm grid software architecture for accelerating fi-
nancial computations on a large scale grid. Other grid-based sys-
tems include Platform Computing (www.platform.com), Data-
Synapse, (www.datasynapse.com), and Microsoft HPC (www.
microsoft.com/hpc), which provide distributed software en-
vironments for financial computations. zFunction differs from these
technologies in its ease of use and integration, its real-time perfor-
mance, its ability to handle both small as well as large scalecom-
putations, its support for portable architectures and platforms, and
its advanced parallel programming features such as application-
transparent fault-tolerance, load balancing, and implicit shared-mem-
ory thread programming.

6. CONCLUDING REMARKS
This paper showcased the capabilities of the zFunction middle-

ware that can parallelize complex computation and data intensive
distributed applications by using a simplified programmingmodel
and creating an adaptive, real-time, fault-tolerant distributed com-
puting environment on-demand. zFunction is well-suited for do-
mains where complex real-time calculations are needed quickly and
predictably, and which can benefit from distributed workload pro-
cessing across a (potentially heterogeneous) network. It can sub-
stantially improve the performance of such systems at a low cost
by enabling the applications to run parallely on COTS hardware,
desktops, clusters and the cloud.

7. REFERENCES
[1] et. al. Allen, F. Blue gene: a vision for protein science using

a petaflop supercomputer.IBM Syst. J., 40(2):310–327, 2001.
[2] D. P. Anderson. Boinc: A system for public-resource

computing and storage. InGRID ’04: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing,
pages 4–10, Washington, DC, USA, 2004. IEEE Computer
Society.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@home: an experiment in public-resource
computing.Commun. ACM, 45(11):56–61, 2002.

[4] S. Bezzine, V. Galtier, S. Vialle, F. Baude, M. Bossy, V. D.
Doan, and L. Henrio. A fault tolerant and multi-paradigm
grid architecture for time constrained problems. application
to option pricing in finance. InE-SCIENCE ’06:
Proceedings of the Second IEEE International Conference
on e-Science and Grid Computing, page 49, Washington,
DC, USA, 2006. IEEE Computer Society.

[5] F. Black and M. Scholes. The Pricing of Options and
Corporate Liabilities.The Journal of Political Economy,
81(3), May 1973.

[6] J. C. Cox, S. A. Ross, and M. Rubinstein. Option Pricing: A
Simplified Approach.Journal of Financial Economics, 4,
1979.

[7] D. Duffie and J. Pan. An Overview of Value At Risk.The
Journal of Derivatives, 4(3), Apr. 1997.

[8] M. Forum. Message Passing Interface Forum.
www.mpi-forum.org.

[9] P. Glasserman.Monte Carlo Methods in Financial
Engineering (Stochastic Modeling and Applied Probability).
Springer Verlag, 2003.

[10] B. Harbulot and J. R. Gurd. Using aspectj to separate
concerns in parallel scientific java code. InAOSD ’04:
Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 122–131, New
York, NY, USA, 2004. ACM.

[11] J. C. Hull.Risk Management and Financial Institutions.
Prentice Hall, Upper Saddle River, NJ, 2006.

[12] P. Jorion.Value at Risk: The New Benchmark for Managing
Financial Risk. McGraw-Hill, New York, NY, third edition,
2006.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. InProceedings of the 11th European
Conference on Object-Oriented Programming, pages
220–242, June 1997.

[14] M. E. F. Maia, P. H. M. Maia, N. C. Mendonca, and R. M. C.
Andrade. An aspect-oriented programming model for
bag-of-tasks grid applications. InCCGRID ’07: Proceedings
of the Seventh IEEE International Symposium on Cluster
Computing and the Grid, pages 789–794, Washington, DC,
USA, 2007. IEEE Computer Society.

[15] OpenMP. OpenMP Home Page. www.openmp.org.
[16] T. Phan, R. Natarajan, S. Mitsumori, and H. Yu. Middleware

and performance issues for computational finance
applications on blue gene/l.Parallel and Distributed
Processing Symposium, International, 0:371, 2007.

[17] J. Sobral. Incrementally developing parallel applications
with aspectj.Parallel and Distributed Processing
Symposium, International, 0:95, 2006.

