
1

Controlling Quality-of-Service in a Distributed Real-time and
Embedded Multimedia Application via Adaptive Middleware

Richard E. Schantz, Joseph P. Loyall, Craig Rodrigues

BBN Technologies
Cambridge, MA, USA

{schantz, jloyall, crodrigu}@bbn.com

Douglas C. Schmidt
Vanderbilt University
Nashville, TN, USA

d.schmidt@vanderbilt.edu

Abstract

An increasingly important and challenging problem for distributed real-time and embedded (DRE) systems is con-

trol and adaptation of resources to maintain the best possible application performance in the face of changes in

load and available resources. This paper presents two contributions to R&D activities in the DRE domain. First,

we describe the structure and functionality of an advanced middleware platform (based on our QuO adaptive

middleware framework and the TAO Real-time CORBA middleware suite) for developing DRE applications that

can adapt to changes in resource availability to meet quality of service (QoS) requirements. Second, we present

the results of a case study of a DRE multimedia application for Unmanned Aerial Vehicle (UAV) video distribu-

tion we have developed using this middleware platform in conjunction with QoS-enabled operating systems (such

as Real-time Linux) and networking protocols (such as IntServ and DiffServ). We describe the design of the UAV

multimedia application using our middleware platform and report empirical results showing how adaptive behav-

ior and end-to-end resource management techniques are used to meet timeliness requirements, even in the face of

processing power and network bandwidth restrictions that are characteristic of many types of DRE systems. Our

results show that our middleware infrastructure can effectively coordinate resource allocation end-to-end and

adapt application behavior to continue to meet QoS requirements over changing environments.

1 Introduction

1.1 Emerging Trends and Technologies

Next-generation distributed real-time and embedded (DRE) systems must collaborate with multiple remote

sensors, provide on-demand browsing and actuation capabilities for human operators, and respond flexibly to un-

anticipated situational factors that arise at run-time [5,28]. For example, new and planned emergency response

systems are incorporating Unmanned Air Vehicles (UAVs) to send video images to processes that distribute the

video to the proper control stations, which in turn contain video displays and other video processing applications,

such as automatic target recognition (ATR), that analyze the video and trigger appropriate responses, including

revised tasking for the UAV-based video sensors. In these types of DRE systems, end-to-end control and adapta-

tion of various application quality of service (QoS) properties (such as latency, jitter, throughput, dependability

and security) are essential to maintain the best possible performance in the face of changes in available computing

and networking resources and changes in mission requirements. The computing and networking infrastructure

must therefore be flexible enough to support varying workloads at different times during an application’s lifecy-

cle, while also maintaining highly predictable and dependable behavior. Controlling the end-to-end real-time be-

havior of such DRE systems is a crucial dimension of their delivered QoS, as is adaptively managing the tradeoffs

among competing demands and optimizations.

The recent focus on user control over QoS aspects [4,6,10,12,24] stems from technology advances in research

areas such as resource allocation policies, synchronization of streams in DRE multimedia applications, and as-

sured communication in the face of high demand over shared resources. The focus on QoS has led to the devel-

opment of a number of improvements to commonly available computing and networking infrastructures that can

recognize and react to environmental changes. At the heart of these infrastructures is middleware, which is sys-

tems software that resides between the applications and the underlying operating systems and networks to provide

reusable services that can be composed, configured, and deployed to create DRE applications rapidly and robustly

[17]. Figure 1 illustrates the following two middleware layers that are central to the focus of this paper:

• Distribution middleware – This layer of

middleware encapsulates lower-level oper-

ating system and networking mechanisms to

provide a higher level programming model

that automates common distributed pro-

gramming tasks, such as connection man-

agement, data transfer, parameter

(de)marshaling, request and endpoint de-

multiplexing, concurrency control, and

some forms of error handling. Examples of

commercial-off-the-shelf (COTS) distribution m

soft's COM+ [2].

• QoS adaptive middleware – This emerging laye

tion’s QoS needs across its multiple parts and (2
Logical Method Calls

Bandwidth
Control

Status
Collection

Configuration
Management

Bandwidth
Control

Status
Collection

Configuration
Management

Client Host Network

Operating System
and Protocols

Middleware

Applications
Client

Servant Host

Middleware

Applications
Object

Resource
Managers

Resource
Managers

Property
Managers

Policy
Managers QoS Adaptive Layer

Common Services
QoS Adaptive Layer
Common Services

Distribution
Middleware

Distribution
Middleware

Mechanisms

Network Based Services
Event

Services
Name

Services
...
...Managers

Operating System
and Protocols

Communication and
Concurrency Mechanisms

Communication and
Concurrency Mechanisms

2

iddleware include CORBA [16], Java RMI [25], and Micro-

r of middleware helps to bridge the gap between (1) an applica-

) the middleware services and infrastructure that provide QoS.

Fig. 1. Layers of Middleware

3

It provides the abstractions necessary to adapt to changing conditions and requirements for applications that

can operate in a wide variety of DRE system environments and changing conditions. An example of QoS adap-

tive middleware is the Quality Objects (QuO) framework [27].

1.2 Towards Adaptive Middleware for DRE Systems

As computing and networking performance continues to increase, so too does application demand for more

control over computing and networking resources through the middleware interface. In particular, the DRE mul-

timedia applications outlined in Section 1.1 have stringent requirements (such as the need for streaming data

transport, time-sensitive performance, and demanding QoS characteristics oriented toward human factors) and

characteristics (such as workloads that can vary significantly at run-time) that need focused support from middle-

ware. In turn, this increases the demands on end-to-end system resource management, where it has historically

been hard to coordinate multiple end-to-end resource needs simultaneously and mediate resource needs across

multiple applications. In addition, the mission-critical processing aspects of next-generation DRE multimedia ap-

plications require that they (1) continue to respond adequately during both anticipated and unanticipated opera-

tional changes in their run-time environment and (2) ensure that critical applications acquire the necessary re-

sources at the expense of less critical applications.

Meeting the growing demands of DRE multimedia applications motivates the need for adaptive middleware-

centric QoS management abstractions and techniques. Supporting this adaptive middleware QoS management

architecture efficiently, predictably, and scalably requires new dynamic and adaptive resource management tech-

niques that can (1) integrate control and measurement of resources end-to-end, (2) mediate the resource require-

ments of multiple (often competing) applications, and (3) dynamically adjust resource allocation in response to

changing requirements and conditions. Our earlier middleware R&D efforts on these topics have focused on The

ACE ORB (TAO) [19] and the Quality Objects (QuO) framework [11], which leverage Real-time CORBA [15] to

provide efficient, scalable, and predictable middleware structures and services, and adaptive QoS management

policies, respectively, in supporting end-to-end DRE system QoS requirements. TAO is a high-performance dis-

tribution middleware layer targeted for DRE applications with both deterministic and statistical QoS require-

ments, as well as best-effort requirements. The QuO framework is a QoS adaptive middleware layer that runs on

existing middleware and supports DRE applications that can specify (1) their QoS requirements via rule-based

contracts, (2) the system elements that must be monitored and controlled to measure and provide QoS, and (3) the

structure and behavior for adapting to QoS variations that occur at run-time.

This paper extends our earlier work with TAO and QuO by combining these advanced adaptive middleware

4

frameworks with multimedia middleware services (such as the CORBA Audio/Video Streaming Service [13]),

real-time operating systems (such as Real-time Linux [21]), and QoS-enabled networking protocols (such as Int-

Serv [26] and DiffServ [8]) to develop robust DRE multimedia applications that can adapt to changes in resource

availability toward meeting their QoS requirements. Our approach is presented in the context of a DRE multime-

dia application for Unmanned Air Vehicles (UAV) video distribution, in which a video flow from a UAV source

adapts to meet its mission QoS requirements (such as timeliness and video quality) in the face of restrictions in

processing power and network bandwidth. We discuss distinct behaviors that can be used to adapt to limitations

and restrictions in processing power and network bandwidth, e.g., reduction of the video flow volume by selec-

tively dropping frames and managing the resources associated with the end-to-end paths. We present and analyze

empirical results we gathered to evaluate this application in the context of an open experimentation platform

(OEP)1 developed to evaluate these technologies in operational systems. Our results show how adaptation can be

controlled effectively by applying integrated resource management end-to-end and by superimposing application-

level policies managed via middleware to regulate performance problems caused by processor and/or network

load. Our UAV application case study also provides insight into emerging engineering practices where applica-

tions are composed from existing software component building blocks, and highlights some of the difficulties en-

countered and solution paths taken to meet end-to-end QoS constraints within this development paradigm.

1.3 Paper Organization

The remainder of this paper is organized as follows: Section 2 describes a case study in which TAO, QuO, and

associated technologies have been applied to develop an adaptive DRE multimedia application for UAV video

distribution. Sections 3 and 4 discuss how adaptive middleware-mediated policies and mechanisms can be inte-

grated to coordinate the multiple layers of resources used by DRE multimedia applications, such as those appear-

ing in our UAV video distribution case study. Section 5 analyzes the results of empirical tests we conducted to

evaluate these mechanisms and approaches. Section 6 presents concluding remarks and outlines future work.

2 Applying Managed QoS to DRE Systems: the UAV Case Study

This section presents a case study of a DRE multimedia application for UAV video distribution, where multi-

1 An OEP is a hardware/software laboratory capability environment incorporating COTS infrastructure and representa-

tive applications operating in it, which can be modified and augmented with technology and application innovations, toward

evaluating their contribution to technical challenges in that context. We are currently using the Emulab facility at the Univer-

sity of Utah (http://www.emulab.net) to host the UAV application OEP environment.

layer resource management mechanisms are coordinated via middleware to ensure video flows can meet their

mission QoS requirements (such as timeliness, jitter, and image resolution) by adapting to restrictions in available

processing power and network bandwidth. The resulting application architecture shown in Figures 2 and 3 adap-

tively controls video transmission captured from cameras via a distribution process to viewers on various com-

puter displays using the following three stage pipeline:

1. Sensor sources, (endsystems

1-3) including processes

with live camera feeds (and

those that simply replay

from a pre-recorded file to

simulate airborne sensors),

which send video images to

2. Distributor processes,

(endsystem 4) which are

responsible for distributing

the video to one or more

3. Receivers, (endsystems 5-7) inclu

software.

Our UAV application suite uses t

gaging application adaptive behavior

such as dropping frames, requesting

resource reservations, indicating pri-

oritization among data streams, and

ensuring transparent fault recovery in

a bounded amount of time. It also ex-

hibits a wide variety of characteristic

(such as constrained resources, vary-

ing conditions and configurations, an

varying data and processing characte

istics) that are representative of many
Control Station Host 5

CORBA A/V
Streaming Service

UAV Host 1

Image
File

Image
File

Host 4

Wired

Wireless
Ethernet

Image
Distributor
Process 1

Image
Distributor
Process 2

Image
Distributor
Process 3

Sensor
Source
Process Filter

Filter
Contract

UAV Host 2

Image
File

Image
File

Sensor
Source
Process Filter

Filter
Contract

UAV Host 3
Sensor
Source
Process

Scale/
Compress

Quality
Contract

Bandwidth
Management

Bandwidth
Management

Bandwidth
Management

Throughput
Contracts

Displays

Control Station Host 6

Throughput
Contracts

Displays

Control Station Host 7

ATR
Contract

ATR
Display

… …

Fig. 2. Architecture of the UAV Application Suite
ding human-oriented video displays and CPU-intensive image processing

he QuO and TAO middleware outlined in Section 1.1 to manage QoS by en-

,

s

d

r-

sender

CORBA (send
image)

CORBA (send
alert) via RTEC

AVStreams
(send image)

distributor receiver

ATR (identify
target)

Event
Service

ATR Event
Channel
client ATR

QuO
kernel

CORBA
(send alert)

Sender Endsystem Distributor Endsystem Receiver Endsystem

AVStreams
(send image)

CORBA (send
alert) via RTEC

Fig. 3. A Detailed Interaction Diagram for a Single end-to-end Stream
5

6

DRE multimedia applications. These characteristics include varying (1) data formats, such as MPEG and PPM,

with different data sizes and compression characteristics, (2) network transports, such as wireless, LAN, and

WAN, with variable and constrained bandwidth over both noisy and private channels, (3) image processing algo-

rithms, such as image display and image recognition processes (the automated target recognition (ATR) process

shown in Figure 3), with different CPU usage patterns, (4) granularities of real-time deadlines, ranging from mi-

croseconds to milliseconds and seconds, and (5) resource constraints. Thus, while this paper demonstrates our

results on a particular application suite, the characteristics of that suite are representative of a broad class of time-

sensitive, mobile, and dispersed operation DRE applications, especially in the domains of pervasive computing,

remote sensing, hazardous operating environments, and automated process control.

In the context of our UAV application, managing real-time end-to-end QoS requires supporting and coordinat-

ing the following measures of operational effectiveness:2

• Minimal frame rate. Full motion video is typically 30 frames per second (fps), but smooth video is still ac-

ceptable above 20 fps. Lower frame rates are visibly less smooth, but are usable as long as other qualities

(such as data fidelity and jitter) are controlled. Our UAV application uses variable frame rates as low as 2 fps

for human viewing and lower for image processing.

• Minimal latency. Some uses of sensor information (such as remote piloting) require remote end viewers to

see an accurate and timely view of the sensor data, which implies a minimal latency requirement. Studies

have indicated that humans can perceive a delay of more than 100-200 ms, which provides a lower bound

timeliness requirement in cases where the video is meant for human viewing and precision action. In cases

where an image is processed automatically, the latency should be low enough so there is no more current im-

age.

• Minimal jitter. Controlling the smoothness of the video can have greater impact on the perceived quality than

the frame rate. Minimizing jitter requires control all along the end-to-end path since it can be affected by

changes to video transmission rates, delivery latency, and display rates. Common strategies for reducing jitter

(such as buffering) are not as useful in real-time video because of the timeliness constraints.

• Image quality. The image must be of high enough quality (i.e., have the requisite image size, pixel depth,

etc.) for the purpose it is being used. For human viewing, the video must be large enough and clear enough to

discern details that humans need. For automated processing, it means the image must contain whatever impor-

2 We are continually evaluating our technology approach against these and other measures of effectiveness. Section 5 re-

ports quantitative results that validate empirically whether we are achieving this operational effectiveness.

7

tant features the processing is intended to detect.

• Coordination of multiple activities. The middleware, in conjunction with OS, network, and application direc-

tives, must control and coordinate the necessary allocations and tradeoffs that are made to ensure that the

highest priority streams and the most important characteristics (e.g., frame rate, latency, and jitter) are fa-

vored, even while other, less important characteristics may be minimized or neglected.

Satisfying the measures of operational effectiveness outlined above requires managing resources (particularly

CPU and network bandwidth) along the entire path from video source to sink. It also involves trading off one

property (e.g., timeliness) against another property (e.g., fidelity) based on the particular requirements of end-

users at that moment. For example, in our UAV application it is not acceptable to suspend the display during a

period of network congestion and resume the display from the same point in the video flow when bandwidth is

restored because that can violate the timeliness constraint of the delivered images. It is likewise not acceptable to

drop arbitrary frames or to attempt to retransmit lost frames continuously.

All remote operation calls in our UAV application are made via the TAO real-time ORB [19,20]. The TAO

implementation of the CORBA Audio/Video (A/V) Streaming Service [14] is used to establish the video streams

and to transport the data. We encode QoS measurement, control, and adaptation directives and policies via QuO

contracts [23] that are distributed throughout the UAV application. These contracts are responsible for managing

the resource and application/data adaptation necessary to achieve an appropriate end-to-end QoS matched to the

circumstances relevant at that time.

3 Resource Management for DRE Multimedia Applications

This section describes the various priority- and reservation-based OS and network resource management

mechanisms we have integrated and evaluated within our QoS management framework for DRE multimedia ap-

plications based on QuO and TAO. The OS and network mechanisms are necessary conditions for establishing

end-to-end QoS, but they are not sufficient by themselves. To achieve end-to-end QoS, therefore, we use a mid-

dleware-mediated QoS management framework to control and coordinate these individual resource management

mechanisms, augmented with additional adaptation mechanisms for making dynamic adjustments and modulating

the application's footprint for using resources as discussed in this section.

3.1 Mechanisms for Prioritized and Reserved Management of Computing and Networking Re-

sources

Achieving end-to-end QoS for DRE multimedia applications requires management and control of the process-

ing resources on endsystems in a distributed system and the network resources that connect them. A number of

8

mechanisms for managing these individual resources are emerging, including the mechanisms described below

that (1) prioritize competing network traffic using standard Internet technologies and (2) reserve pre-specified

amounts of processor time on endsystem computers. In addition to outlining these mechanisms, we describe how

we have experimented with – and augmented with complementary mechanisms – various combinations to find the

most effective solutions to end-to-end management in the context of our UAV video distribution application de-

scribed in Section 2.

Priority-based OS resource management. The management of CPU resources in most operating systems

has traditionally been handled by assigning priorities to tasks in the system (usually threads or processes) and ap-

plying scheduling algorithms to assign each task a share of CPU time. CORBA (as well as other standards-based

COTS middleware) has historically lacked features that leverage these priority-based OS resource management

capabilities, which made it hard to ensure and coordinate predictable platform processing behavior via middle-

ware. To remedy this omission, the Real-time CORBA 1.0 specification [15] defines standard features that support

end-to-end predictability for operations in fixed-priority CORBA applications, thereby enabling fine granularity

allocation, scheduling, and control of key endsystem OS resources.

The TAO implementation supports the standard Real-time CORBA interfaces and QoS policies. As a result,

DRE applications that use TAO have standard ways to configure (1) processor resources via end-to-end priority

preservation mechanisms, thread pools, intra-process mutexes, and a global scheduling service, (2) networking

resources via protocol properties and explicit bindings, and (3) memory resources by bounding request buffering

and thread pool size. Our earlier work [18] describes how these priority-based OS resource management mecha-

nisms have been applied to UAV mission computing systems via the TAO Real-time CORBA ORB.

Reservation-based OS resource management. An alternative to priority-based OS resource management is

to reserve sufficient resources a priori for estimated application needs. TimeSys has applied this approach to re-

source management by implementing a CPU reservation feature for their TimeSys Linux OS. An application – or

a middleware proxy for the application – running on top of the TimeSys OS can specify its QoS requirements for

timeliness, and their underlying resource kernel [22] will manage the OS resources so that these requirements can

be met. For CPU resources, TimeSys Linux allows applications to specify their timeliness requirements by speci-

fying parameters for compute time and period. If the resource kernel can allocate resources that meet these re-

quirements, it grants an application a reserve, which guarantees that for every period, the application will have the

requested amount of CPU compute time and will not be pre-empted.

Although TimeSys Linux provides mechanisms for reserving OS CPU resources, the QuO and TAO middle-

ware are ultimately responsible for determining who gets the reserved capacity, how much, and for how long.

9

These policy decisions are performed by the higher-level middleware since it retains the end-to-end perspective to

set the lower-level OS resources appropriately. We have worked with the University of Utah to develop a

CORBA-based CPU reservation manager that (1) is the local agent for setting up reservations on an endsystem

and (2) translates various representations of reservation specification into the style supported by TimeSys Linux.

Section 5.2, especially measurement 2, reports results of applying reservation-based OS resource management

within our UAV multimedia application context described in Section 2.

Priority-based network resource management. The Internet Engineering Task Force (IETF) Differentiated

Services (DiffServ) architecture [8] provides different types or levels of service for IP network traffic. Individual

traffic flows can be made more resistant to packet dropping (and hence get preferential delivery) by setting the

value of each IP packet’s DiffServ field appropriately. An IP header has an eight bit DiffServ field that encodes

router-level QoS into (1) six bits of DiffServ Codepoint (DSCP), which enables 64 service categories of per-hop

behavior, and (2) two bits of explicit congestion notification. The middleware is responsible for adding the appro-

priate QoS management DSCP encoding to the data packet headers to specify the appropriate type of service

within the multi-application environment. DiffServ-enabled routers then use the DSCP to differentiate the network

traffic.

We have implemented enhancements to TAO and QuO that leverage DiffServ capabilities. First, TAO pro-

vides an efficient and flexible way of setting the DSCP by extending its Real-time CORBA protocol properties on

the GIOP request and response packets so that priority can be propagated to requests as they transit the network

and OS resources. Based on various factors (such as resource availability, application conditions, and operational

requirements), the QuO middleware can change these priorities dynamically by marking application streams with

appropriate DSCPs to ensure appropriate priority handling against lower priority competing traffic. Second, TAO

provides a mechanism to map Real-time CORBA priorities to DiffServ network priorities. The TAO ORB pro-

vides a priority-mapping manager that QuO uses to install a custom mapping to override the default mapping.

Section 5.2, especially measurement 1, reports on empirical evaluation of the results of applying priority-based

network resource management (in combination with reserved CPU management) to our UAV multimedia applica-

tion described in Section 2.

Reservation-based network resource management. Setting DSCPs as discussed above makes traffic flows

less likely to be dropped due to network congestion in routers. There is no way in this model, however, to guaran-

tee a level of service to a traffic flow unless it is the single highest priority traffic at each intermediate step. As

with the OS-level resource reservations discussed earlier, it is also desirable to request resources from the network

to help guarantee properties (such as latency or bandwidth of network traffic) across some competing flows by

10

reserving appropriate capacity in advance.

To address these issues, the IETF developed the Resource Reservation Protocol (RSVP) [26], also commonly

referred to as IntServ (for Integrated Services), which is a new reserved capacity mechanism to augment IP.

Whereas the DiffServ mechanisms outlined earlier merely classify and prioritize packets for different service lev-

els, IntServ reservations allocate and coordinate router behavior along a communication path flow to ensure the

reserved end-to-end bandwidth. Our earlier work [18] describes how IntServ reservation-based network resource

management mechanisms were applied to UAV applications via the CORBA A/V Streaming Service provided

with TAO.

3.2 A QoS Management Framework for DRE Multimedia Applications

The OS and network resource management mechanisms described in Section 3.1 can be used in various com-

binations that reflect tradeoffs of integrated methodology, current practice, widespread availability, or maximum

performance/cost advantage. Although it may be desirable in some circumstances to have a single methodology

(i.e., priority-based or reservation-based) apply throughout, other combinations can be useful in practice. Like-

wise, managing an individual resource (e.g., CPU or network connection) will not enable predictable multimedia

application performance if the other complementary DRE system resources along an end-to-end path are con-

strained, unmanaged, or even managed in an uncoordinated manner. Instead, these resources must be managed in

combination to achieve appropriate end-to-end and aggregate results.

To enable more effective coordination and control of individual and aggregate end-to-end resources, we have

created elements of a QoS management framework for DRE multimedia applications by integrating the TAO and

QuO middleware outlined in Section 1.1 with the mechanisms described in Section 3.1 that manage lower level

OS and network resources. The primary focus of the resource management control strategies outlined in Section

3.1 (such as bandwidth or CPU reservation or priority access to available CPU and network resources) is to ensure

that more important application tasks get the resources they need to complete their actions at the expense of – or

isolated from – other less important tasks. In many cases this is not sufficient to achieve managed QoS objectives,

either because there may still be insufficient resources available or because it may be more appropriate to share

resources using gradations of service levels that could operate simultaneously, each with diminished resources. To

complement the resource control strategies, our QoS management framework supports adaptive strategies that

seek to dynamically change the resource consumption of an individual DRE application. By intelligently modify-

ing the approach to the application functionality (e.g., by using alternative algorithms, changing heuristics, or be-

ing more selective about degrees of fidelity for various aspects of a computation), we can often change the way an

11

application performs its task (and indirectly shape/reduce the amount and timing resources needed to perform that

task) to dynamically adapt to the current load, resource availability, or operating conditions prevalent at the time.

Section 4 describes some key adaptive strategies used by our UAV video distribution application.

4 Maintaining Real-time QoS Under Reduced Resource Availability in the UAV

Multimedia Application

This section describes in detail how we augmented and applied the QoS management control aspects de-

scribed in Section 3 with application-level adaptation to complement resource control by shaping the interactions

between components so they can continue to meet the QoS requirements under diminished resources available to

the application.

4.1 Using Adaptation to Meet UAV Application QoS Requirements

A bottleneck may occur in our UAV application because at some point along the video transport path there are

not enough resources to send the entire video to the viewers in real time. For example, the distributor endsystem

may not have enough CPU power available to dispatch video frames to all viewers at that rate or failures could

cause there to be insufficient bandwidth in the network path to one or more viewers. A bottleneck can also occur

when one or more of the competing UAVs has (or gains) priority access to significant fractions of the available

resources, while the rest must operate within the diminished resources available. When such a bottleneck is de-

tected3, we use adaptation techniques to mitigate the damage to our QoS objectives. Depending on user require-

ments, it is possible to omit some frames of the video entirely, yet still retain an end-user video that displays the

motion of the scene in real time without the total fidelity of continuously displayed motion achieved at frame rates

of 24 frames or more per second.

To perform data filtering in the UAV prototype, we employ the technique of reducing the transmitted frame

rate, e.g., from the distributor to the viewer or between the video source and the distributor. In one important

mode of operation, the frame rate must not be reduced in such a way as to create a “slow motion effect,” i.e., a

vehicle that crossed the field of view of the video source camera in say, 2.5 seconds, should still cross the viewer

in 2.5 seconds. A video source attempts to transmit data at the standard rate of 30 fps, which is received at that

rate (when system resources permit), but an adaptive behavior can be interposed that sends out a smaller number

of frames representing the action that occurs during each second. The subset to be sent is selected by dropping

some frames from the video, and also sending out the remaining frames at a reduced rate.

3 See [9] for a discussion of approaches to bottleneck detection.

1

The implementation of data filtering to reduce the

volume of video data is dependent on the video encod-

ing format. MPEG encoded video results in sequences of

15 frames each of which consist of an independent I

frame, as well as 10 derived B frames and 4 derived P

frames (see figure 4, and [4] for a synopsis of MPEG

encoding of video). One second of video at the full rate of 3

frame-dropping strategies drop B-frames when only a few f

each second of video, so this technique can bring the sendin

To drop more frames, P-frames can then be dropped. I-fram

more between images are acceptable, which in our applicat

For practical implementation reasons we chose to drop

frames were to be displayed at a constant rate. This strategy

QoS among which to adapt the application, as determined b

ting the video intact to provide the highest level of QoS, (2

the video and transmitting all the I- and P-frames, which pr

and (3) 2 fps, which is done by dropping all P- and B-frame

loses the finer details of motion and some very short-lived

frame rates by assigning each frame rate to a different regio

strategy at any given time according to the current region (a

2 fps, the application would go dormant, until appropriate c

threshold of operator usability.

4.2 Analysis of Bandwidth Reduction from Fram

In the video used in our experiments, I-frames averaged

5,000 bytes, and B-frames approximately 2,900 bytes. The

coded sequences is therefore (2(13,800) + 8(5,000) + 20(2,

Mbit link, which is the bandwidth requirement of sending o

drop the rate to 10 frames per second by eliminating the B-

falls to approximately (2(13,800) + 8(5,000)) * 8 = 540,800

frames as well, the required bandwidth in bits per second fa
I B B P B B P B B P B B P B B
2 0 1 5 3 4 8 6 7 11 9 10 14 12 13

Sequence header
GOP header GOP header

Fig. 4. Sequence of frames in MPEG file
2

0 fps requires two sequences of these frames. The best

rames needed to be dropped. There are 20 B-frames in

g rate down to a still effective 10 frames per second.

es can be dropped only if intervals of 1 second or

ion it was not.

frames entirely in such a way that the remaining

 provided us with three significantly different levels of

y the frame rate: (1) 30 fps, which is done by transmit-

) 10 fps, which is done by dropping all B-frames from

eserves most perception of motion in the video scene,

s from the video and transmitting all I-frames, which

actions. We then adaptively switch among these three

n of a QuO contract, and setting the frame-dropping

nd indirectly the currently available resources). Below

onditions were restored, because these were below the

e Filtering

 approximately 13,800 bytes, P-frames approximately

approximate size in bits of two average MPEG en-

900)) * 8 = 1,004,800, i.e., near the capacity of a 1.5

ne second of the video at the full rate of 30 fps. If we

frames, the bandwidth required, in bits per second,

 and if we drop the rate to 2 fps by eliminating the P-

lls to approximately 2(13,800) * 8 = 220,800, i.e., re-

13

ducing the frame rate from 30 to 10 (a 67% reduction) reduces the bit rate by 46%, and reducing the frame rate

from 30 to 2 (a 93 % reduction) reduces the bit rate by 78%.

The reductions of bandwidth and other system resource demands outlined above are substantial, so it is not

hard to find system conditions under which the full bandwidth is not supportable, but one of the reduced-

bandwidth adaptations is. The reduction in bit rate is not proportional to the reduction in frame rate because the

frames that are dropped first are precisely those frames that have the greatest dependency on other frames (and the

fewest frames depending on them), and consequently the encoded sizes of these dropped frames are relatively

smaller. On the other hand, reduction in the perceived value of the reduced-frame-rate display to a human viewer

also is not proportional to the reduction in frame rate, judging from the reactions of system operators who

watched demonstrations of the application adapting.

5 Empirical Results of End-to-end Resource Management Experiments

This section presents and analyzes the results of experiments that cover end-to-end management capabilities

stemming from the integration of the individual resource management techniques discussed in Section 3.1 within

our middleware-mediated QoS management framework described in Section 3.2. These experiments evaluate the

ability of multiple resource management technologies coordinated via middleware to effectively and predictably

maintain end-to-end QoS as systems scale to include more participants and more competing load. Our prior ex-

perimental results [1] showed the ability of individual technologies to (1) manage QoS end-to-end when compet-

ing load was concentrated exclusively on either the processing nodes or the network and (2) fail to manage end-

to-end QoS when the type of competing load was unconstrained. These results indicated the need to conduct ex-

periments using integrated and coordinated multiple types of resource management (e.g., CPU and network man-

agement) provided by our QoS management framework to evaluate its ability to sustain managed QoS in the pres-

ence of a more realistic combined resource load.

5.1 Experimental Design and Hardware/Software Testbed

To test the hypothesis that middleware-coordinated CPU and network management working together can

maintain end-to-end QoS in systems with constrained and loaded processors and links, we conducted a set of ex-

periments that ran up to 14 simultaneous simulated UAVs sending imagery to the simulated ground control sta-

tions (distributors) and control centers (receivers) described in Section 2. The number of image streams was

enough to overload the networks transporting the imagery and control information, and to overload the processors

14

executing the image processing systems.4 We measured the ability of the resource management mechanisms to

control resource allocations sufficiently for an image stream designated as most critical (the experimental case) to

consistently sustain the resources needed to complete the application requirements (i.e., detecting and reporting

identified targets in imagery data), as contrasted with other competing image streams not marked as critical (the

control cases).

In this series of experiments, each of the 14 senders transmitted a sequence of images at a constant rate of 2

fps, in accordance with the application architecture depicted in Figure 3 in Section 2. For a single image stream, a

sender process sends images to a distributor and the distributor transmits these images to a receiver. The receiver

transmits images to an automated target recognition (ATR) program. If the ATR identifies a target in the image

stream, it sends a notification to a QuO contract monitoring the imaging components, which in turn propagates the

alert via the TAO Real-time Event Channel [7] to an Event Channel client program. When this client program re-

ceives the alert, it performs a round-trip time calculation designed to measure the overall time that elapsed from

(1) when an image with a target in it was sent from the sender to (2) the time when an alert notification reached

the ATR Event Channel client. This time represents the desired end-to-end capability for which we are trying to

maintain a predictable QoS footprint under heavy load.

In this experiment, there was contention for both network and CPU resources due to the number of processes

involved in simultaneously trying to deliver and identify objects in the 14 image streams. Our coordinated net-

work and CPU QoS management framework capability was configured to attempt to sustain the end-to-end per-

formance of a designated image stream (which in these experiments was arbitrarily selected to be the 7th stream,

out of the 14). This coordinated QoS management capability under test combined DiffServ network prioritization

and CPU reservations. For stream 7, we applied DiffServ network prioritization (over other competing, non-

prioritized traffic) using QoS management setup to introduce this behavior between the sender and distributor, and

between the distributor and the receiver. In addition, we applied the CPU reservation behavior to the ATR for

stream number 7 (only), using a middleware-mediated CPU broker developed at the University of Utah). The

CORBA object in the ATR that received the frames was encapsulated by a QuO delegate that was responsible for

determining the magnitude of the CPU reservation requested from the CPU broker. The policy used in this ex-

periment adjusted the CPU reservation request to the highest value seen in processing the five previous frames.

This adaptive policy works well in general since it can quickly adapt to spikes in usage without overprovisioning

4 In contrast, our earlier experiments introduced artificial load on targeted processors or links. Our experiments reported

in this paper produced more realistic loading of the entire system end-to-end.

15

for long periods of time. For this experiment, we used a “strict priority” contention policy that favors high-priority

processes when making reservations. Under that policy, the designated high priority UAV stream would be

granted its reservation request regardless of the requests of the other activities.

Experiments were performed on hardware and software provided by the University of Utah’s Emulab testbed.

The hardware configuration for each node in our experiments included:

• 850 MHz Intel Pentium III processor

• 512MB PC133 ECC SDRAM

• 4 Intel EtherExpress Pro 10/100Mbps Ethernet ports (Experimental network)

• 1 Intel EtherExpress Pro 10/100Mbps Ethernet port (Control network)

• 40 GB IBM 60GXP 7200 RPM ATA/100 IDE hard disk

The machines’ experimental network interfaces are connected to a Cisco 6509 high-end switch and automati-

cally included in “virtual LANs” to simulate the network topology for our experiments (not shown). This network

topology was designed to allow multiple UAV sender programs to transmit imagery data to multiple distributor

programs, which in turn would transmit this data to receiver programs.

The software configuration for our experiments included the following:

• Red Hat Linux 7.3

• TimeSys v3.1 (selected nodes)

• FreeBSD 4.8 on "router" nodes, modified to support QoS for network traffic using the (ALTQ) extensions

• TAO v.1.3.3

• QuO v.3.0.11

• CPU Broker v1

5.2 Managed End-to-end Behavior Observations

We now report the results of the testbed configurations described above, using observed/measured values that

indicate how our integrated middleware-mediated QoS management framework can be used effectively to sustain

adequately predictable QoS results under heavy competing load using realistic application scenarios.

Measurement 1: Number of frames received at receiver. For this measurement, the number of images re-

ceived at each of the competing receivers was recorded. Stream 7 (only) was prioritized for its network traffic us-

ing DiffServ and used CPU Reservations to ensure adequate processing resources. Figure 5 shows that UAV#7

received all of its frames (as did unmanaged UAV's #2,4,5), while some of the rest received most of their frames

(#8,9,11), and most (#1,3,6,10,12,13,14) received hardly any service at all, as measured by the number of frames

that arrived during the experimentation

interval. Since frames are received prior

to the CPU intensive processing of the

ATR, this measure is largely dominated

by controlling network behavior.

Measurement 2: Number of ATR

alert control messages received. For this

measurement, the number of ATR Alert

control messages, which were received

by the ATR Event Channel client pro-

gram, was recorded. Stream 7 was priori-

tized with DiffServ and CPU Reserva-

tions. These alert messages are sent only after identification of an object of interest by the CPU intensive ATR.

Figure 6 shows that only stream #7 success-

fully identified all of its target objects (as

evidenced by receiving all of its alerts). All

of the other (unmanaged) streams missed

completing the identification cycle (or

couldn't get their identifying signal to the

collector) at least some of the time, with

most (#1,3,5,6,8-14) missing almost all of

the identification opportunities. The key fac-

tor here is the use of CPU reservation to en-

sure timely processing of the CPU intensive

activity.

Measurement 3: Receiver frame latency. For

transmitted from the sender to the receiver was reco

vations. Figure 7 charts the average latency for fram

with the previous). The figure shows streams #1,4,6

prioritized stream 7. However, only streams #2,4,5,

ies (from figure 5) so the lower latency for streams

Fig
0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stream number

N
um

be
r

of
 A

TR
 A

le
rt

s
R

ec
ei

ve
d

 6. ATR alerts successfully detected; Stream 7 uses a CPU reservation and
Diffserv Priority
0
200

400
600

800
1000

1200
1400

1600
1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stream number

N
um

be
r

of
 fr

am
es

 r
ec

ei
ve

d
at

R

ec
ei

ve
r

Fig. 5. Number of frames received; Stream 7 uses a CPU reservation and Diff-
serv Priority
16

this measurement, the time that elapsed when an image was

rded. Stream 7 was prioritized with DiffServ and CPU Reser-

es received (a lower number is better for this chart, in contrast

 with average latency per frame delivered lower than for the

7,8,9,11 had a significant number of successful frame deliver-

#1,6 can be discounted because of the relatively few success-

ful deliveries. Stream #4 had (as yet inexpli-

cably) a lower average latency for delivered

frames despite being unmanaged, but stream

#7, with controlled resource management

working in its favor had a significantly

lower standard deviation likely indicating a

more controlled outcome expected from ap-

plying course grain resource management

strategies to ensure outcome.

5.3 Analysis of End-to-end Resource

Management Control Experi-

ments

Out of the 14 image competing streams, half of

even a non-trivial fraction of their intended workloa

essed its intended workload with no observed packe

were:

• In this and all subsequent runs of the experimen

the receiver endsystem with no observed packet

ducible over multiple runs of the experiment, i.e

and sometimes they did not. Which ones did an

streams also had higher rates of packet loss than

• The number of ATR Alert control messages for

higher than for any of the other streams. Nine o

control messages indicating successful object id

livery and processing. Stream 7 produced 150 a

21% better than the next best stream (Stream 2)

much better than the non-prioritized streams for

packet loss compared to other streams, so image

processing and (2) reserving CPU resources for

ess images and identify targets in a timely fashi

Fig i-
0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stream number

L
at

en
cy

 o
f

fr
am

es
 a

t
R

ec
ei

ve
r

(m
il

li
se

co
n

d
s)

 7. Latency of images; Stream 7 uses a CPU reservation and Diffserv Pr
ority
17

 them did not even come close to receiving and processing

d, as shown in Figure 5. The DiffServ prioritized stream proc-

t loss. The most significant observations of this experiment

t, the prioritized stream (the seventh stream) always reached

 loss. The behavior of non-prioritized streams was not repro-

., sometimes these streams reached the receiver endsystem

d did not would vary from trial to trial. Non-prioritized

 the prioritized stream.

the prioritized and CPU reserved stream was significantly

ut of the fourteen streams (64%) did not produce ATR Alert

entification, and requiring successful and timely upstream de-

lerts, which reached the ATR Event Channel client. This was

, which produced 124 alerts. The prioritized stream performed

 two reasons: (1) DiffServ prioritizing stream 7 reduced the

s with targets in them were more likely to reach the ATR for

 ATR 7 significantly improved the ability of this ATR to proc-

on despite competing load.

18

The most significant conclusion drawn from the empirical results described above is that by using a multi-

layer middleware-mediated QoS framework that integrates resource management mechanisms (such as DiffServ

network priorities and TimeSys Linux CPU reservations), the end-to-end path of a critical, multi-host application

exhibits (1) higher performance (delivery of all object identification alerts) and (2) better predictability (consis-

tently, timely delivery of video images and no observed packet loss) than other less critical applications compet-

ing for limited network and CPU resources. Being able to selectively control these end to end behaviors as they

wind through different parts of an overall system and through different areas of technical focus is a giant leap

forward in itself. In addition, it represents an important building block in the longer run R&D pursuit of QoS

managed adaptive behavior for DRE systems through a common framework, where design time analysis is com-

bined with runtime adaptive mechanisms and policies that manipulate this system level control, while at the same

time integrating system-centric adaptation with application-centric adaptation.

6 Concluding Remarks

Developing distributed real-time and embedded (DRE) systems that can maintain the best possible application

performance in the face of changes in available resources is an increasingly important and challenging R&D prob-

lem. This paper describes the design and performance of a QoS management framework that adaptively controls

the end-to-end behavior of DRE multimedia applications by applying resource management techniques for both

processing and communication tasks. This QoS management framework integrates QoS-enabled middleware

(such as TAO and QuO), multimedia middleware services (such as the CORBA Audio/Video Streaming Service),

real-time operating systems (such as Real-time Linux) and QoS-enabled networking protocols (such as IntServ

and DiffServ) to develop robust DRE multimedia applications that can adapt to changes in resource availability to

meet their QoS requirements.

During the past two years we have enhanced, applied, and evaluated these middleware-mediated QoS man-

agement technologies in the context of an open experimentation platform (OEP) that embodies complex challenge

problems associated with DRE multimedia applications – in particular a UAV video distribution application suite.

The relevant QoS management activities associated with this OEP include trading off sensor/image quality and

timeliness and coordinating resource usage among competing applications to satisfy changing mission require-

ments under dynamic (and potentially hostile) environmental conditions. Our empirical results presented in this

paper showed how integrated resource management techniques can be effective in sustaining predictable QoS re-

sults under very heavy competing load.

Our experiments used a combination of CPU reservation along with network priority for end-to-end control of

19

resources management policy to effect the controlled QoS behavior reported for our UAV video distribution ap-

plication. Other combinations have been tried and are continuing to be integrated and evaluated, toward a more

comprehensive analysis of the tradeoffs, effectiveness, and widespread availability of these middleware-mediated

OS and network resource management mechanisms. Our future work will present the results of these efforts as

well as the results of experiments that combine the middleware-mediated managed resource approach with the

adaptation approach used to dynamically change application profiles, and combine design time analytic ap-

proaches with runtime adaptive behavior approaches.

Acknowledgements

This work is sponsored by DARPA and US AFRL under contract nos. F33615-00-C-1694 and F30602-98-C-

0187. Thanks to Tim Stack, Eric Eide and colleagues at the University of Utah and to Gautam Thacker and col-

leagues at Lockheed Martin Advanced Technology Labs (ATL) for their help with technology integration and ex-

perimentation reported here.

References

[1] “PCES UAV Phase I Experiments Summary Report,” BBN Technologies Technical Report, September 2003,
http://www.dist-systems.bbn.com/projects/AIRES/UAV/experimentation/results/phaseI/
bbn_summary_phaseI_experiments.doc, BBN Technologies, “Quality Objects (QuO)”, http://www.dist-
systems.bbn.com/papers.

[2] D. Box, Essential COM, Addison-Wesley, Reading, MA, 1997.
[3] D. Conan, E. Putrycz, N. Farcet, M. DeMiguel, “Integration of Non-Functional Properties in Containers,” Proc. of the 6th

International Workshop on Component-Oriented Programming, Budapest, Hungary, 2001.
[4] D. Le Gall. MPEG: a video compression standard for multimedia applications. Communicationsof the ACM, April 1991.
[5] B. Doerr, T. Venturella, R. Jha, C. Gill, and D. Schmidt, "Adaptive Scheduling for Real-time, Embedded Information

Systems", Proceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference (DASC), St. Louis, Missouri, Oct
1999.

[6] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, P. Robin, “Supporting Adaptive Multimedia Applications through Open
Bindings,” International Conference on Configurable Distributed Systems, Maryland, 1998.

[7] T. Harrison., D. Levine, and D. Schmidt, “The Design and Performance of a Real-time CORBA Event Service,” OOPSLA
'97, Atlanta, GA, October 1997.

[8] IETF, An Architecture for Differentiated Services, http://www.ietf.org/rfc/rfc2475.txt
[9] Karr DA, Rodrigues C, Loyall JP, Schantz RE, Krishnamurthy Y, Pyarali I, Schmidt DC. Application of the QuO Qual-

ity-of-Service Framework to a Distributed Video Application. Proceedings of the International Symposium on Distributed
Objects and Applications, September 18-20, 2001, Rome, Italy.

[10] F. Kon, F. Costa, G. Blair, and R. Campbell, “The Case for Reflective Middleware,” CACM, June 2002.
[11] J. Loyall, R Schantz, J.. Zinky,and D. Bakken, "Specifying and Measuring Quality of Service in Distributed Object Sys-

tems", Proceedings of the 1st IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC), April 1998.

[12] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R Vanegas, and K. Anderson. QoS Aspect Languages and Their
Runtime Integration. Lecture Notes in Computer Science, Vol. 1511, Springer-Verlag. Proceedings of the Fourth Work-
shop on Languages, Compilers, and Run-time Systems for Scalable Computers (LCR98), May 1998, Pittsburgh, PA.

[13] S. Mungee, N. Surendran, Y. Krishnamurthy, and D. Schmidt, “The Design and Performance of a CORBA Audio/Video
Streaming Service,” Design and Management of Multimedia Information Systems: Opportunities and Challenges, Idea
Publishing Group, 2000.

[14] Object Management Group, "Control and Management of Audio/Video Streams, OMG RFP Submission (Revised),
OMG Technical Document 98-10-05", Oct 1998, Framingham. MA.

http://www.dist-systems.bbn.com/projects/AIRES/UAV/experimentation/results/phaseI/ bbn_summary_phaseI_experiments.doc
http://www.dist-systems.bbn.com/projects/AIRES/UAV/experimentation/results/phaseI/ bbn_summary_phaseI_experiments.doc
http://www.ietf.org/rfc/rfc2475.txt

20

[15] Object Management Group, “Realtime CORBA Joint Revised Submission”, OMG Document orbos/99-02-12, March
1999.

[16] Object Management Group, Real –Time CORBA 2.0: Dynamic Scheduling Specification, OMG Final Adopted Specifi-
cation, September 2001, http://cgi.omg.org/docs/ptc/01-08-34.pdf.

[17] R. Schantz and D. Schmidt, “Middleware for Distributed Systems: Evolving the Common Structure for Network-centric
Applications,” Encyclopedia of Software Engineering, Wiley and Sons, 2002.

[18] R. Schantz, J. Loyall, C. Rodrigues, D. Schmidt, Y. Krishnamurthy, and I. Pyarali. Flexible and Adaptive QoS Control
for Distributed Real-time and Embedded Middleware. The ACM/IFIP/USENIX International Middleware Conference,
June 2003, Rio de Janeiro, Brazil.

[19] D. Schmidt, D.Levine, and S. Mungee, “The Design and Performance of Real-Time Object Request Brokers,” Computer
Communications, April 1998.

[20] D. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers”, Journal of Real-time Systems, special issue on Real-time Com-
puting in the Age of the Web and the Internet, Kluwer, 2001.

[21] TimeSys Corporation. TimeSys Linux R/T User’s Manual, 2.0 edition, 2001.
[22] Timesys Corporation. Predictable Performance for Dynamic Load and Overload, Version 1.0. http://www.time-

sys.com/files/whitepapers/Predictable_Performance_1_0.pdf, 2002.
[23] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and D. Bakken, “QuO's Runtime Support for Quality of Service in

Distributed Objects", Proceedings of Middleware 98, the IFIP International Conference on Distributed Systems Platform
and Open Distributed Processing, Sept 1998.

[24] N. Wang, D. Schmidt, A. Gokhale, C. Gill, B. Natarajan, C. Rodrigues, J. Loyall, R. Schantz. "Total Quality of Service
Provisioning in Middleware and Applications," Microprocessors and Microsystems spec. issue on "Middleware Solutions
for QoS-enabled Multimedia Provisioning over the Internet", 2003.

[25] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for the Java System”, USENIX Computing Systems,
MIT Press, vol. 9, num. 4, Nov/Dec 1996.

[26] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A New Resource ReSerVation Protocol,” IEEE
Network, September 1993

[27] J. Zinky, D. Bakken, and R. Schantz, “Architectural Support for Quality of Service for CORBA Objects”, Theory and
Practice of Object Systems, vol. 3, num. 1, 1997.

[28] D. Corman, J. Gossett, D. Noll, “Experiences in a Distributed, Real-Time Avionics Domain - Weapons System Open
Architecture, ISORC, Washington DC, USA, April 2002.

http://cgi.omg.org/docs/ptc/01-08-34.pdf

	Abstract
	Introduction
	Emerging Trends and Technologies
	Towards Adaptive Middleware for DRE Systems
	Paper Organization

	Applying Managed QoS to DRE Systems: the UAV Case Study
	Resource Management for DRE Multimedia Applications
	Mechanisms for Prioritized and Reserved Management of Computing and Networking Resources
	A QoS Management Framework for DRE Multimedia Applications

	Maintaining Real-time QoS Under Reduced Resource Availability in the UAV Multimedia Application
	Using Adaptation to Meet UAV Application QoS Requirements
	Analysis of Bandwidth Reduction from Frame Filtering

	Empirical Results of End-to-end Resource Management Experiments
	Experimental Design and Hardware/Software Testbed
	Managed End-to-end Behavior Observations
	Analysis of End-to-end Resource Management Control Experiments

	Concluding Remarks
	Acknowledgements
	References

