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Abstract—The rise of large language models (LLMs) is rev-
olutionizing information retrieval, question answering, summa-
rization, and code generation tasks. In addition to confidently
presenting factually inaccurate information at times (known
as “hallucinations”), LLMs are also inherently limited by the
number of input and output tokens that can be processed at
once, making them potentially less effective on tasks that require
processing a large set or continuous stream of information. A
common approach to reducing the size of data is through lossless
or lossy compression. Yet, in some cases it may not be strictly
necessary to perfectly recover every detail from the original data,
as long as a requisite level of semantic precision or intent is
conveyed.

This paper presents three contributions to research on LLMs.
First, we present the results from experiments exploring the
viability of “approximate compression” using LLMs, focusing
specifically on GPT-3.5 and GPT-4 via ChatGPT interfaces.
Second, we investigate and quantify the capability of LLMs to
compress text and code, as well as to recall and manipulate com-
pressed representations of prompts. Third, we present two novel
metrics—Exact Reconstructive Effectiveness (ERE) and Semantic
Reconstruction Effectiveness (SRE)—that quantify the level of
preserved intent between text compressed and decompressed by
the LLMs we studied. Our initial results indicate that GPT-4
can effectively compress and reconstruct text while preserving
the semantic essence of the original text, providing a path to
incorporate more information into fewer tokens.

Index Terms—large language models, prompt engineering, data
compression, code generation

I. INTRODUCTION

Emerging trends and challenges. Large language models
(LLMs) have garnered significant attention with the recent
release of OpenAI’s ChatGPT [1], Google’s Bard [2], and
others [3]–[5]. These LLMs facilitate (potentially incorrect)
information retrieval, whether in the form of concept clar-
ification, question answering, text editing, code generation,
summarization, or task planning. LLMs typically provide users
with an interactive chat interface to engage in back and forth
conversation about a concept, task, or goal. These topics can
be referenced over time within a conversation that preserves
the discussion context over some time horizon (e.g., number
of prompts or total tokens input in the session).

A key to using LLMs effectively is the quality of the input
prompt, which is the text provided as input to the LLM. In
conventional LLMs, the prompt is used in an opaque manner
by the LLM to produce an output, called a response, which
is based on a non-linear function of the input prompt and the
model’s weights (the latter are opaque to users). Given some
target task or output structural characteristics, the process of

identifying high-quality prompts to feed an LLM is known as
prompt engineering [6].

LLMs can be prompted with questions or directives, such as
“who was the first president of the United States?” or “provide
a vegetarian dinner recipe that takes 20 minutes to prepare,”
and they often generate high-quality answers. A key limitation
of conventional LLMs, however, is that they are trained on
knowledge with a cut-off date.1 To reason or answer questions
about newer information that an LLM was not trained on, the
new information must be included in the prompt for the LLM.
For example, a prompt could start with the text from a recent
news article and then the LLM could be prompted with a
question related to the information contained earlier in the
prompt. The training cutoff increases the burden on the user
to provide a sufficient context to the LLM about the nature of
the desired output.

Challenge: LLMs have a maximum input size, which
restricts the amount of information that can be put into
a prompt. The maximum input size of an LLM is typically
measured in tokens [7], [8] and corresponds to how much
information can be input into the LLM at once. A token is
a particular grouping of letters within a word. Tokenization
refers to how a given text is divided from letters and spaces
into groups as a pre-processing step for an LLM, and several
tokenization methods exist. This input token cap determines
the maximum number of words or symbols that can be
included in a prompt provided by a user. It also restricts the
total amount of new information that can be provided to the
LLM to perform a task, such as generating source code for
software.

GPT-3.5, which was the model underlying an earlier release
of ChatGPT, has an input token limit of 4,096 tokens, or
∼3,000 words [7]. The more recently released GPT-4 model
has an increased input token limit of 32,768 tokens, or
∼24,000 words. It is likely, however, that LLMs will eventu-
ally operate on streams of data (e.g., daily customer activity or
meeting transcripts) with much higher token counts. Moreover,
while LLMs such as ChatGPT-4 can handle a conversation
history, the same underlying token limit is applied. As such,
the context the model is able to reason over is truncated by
the internal token limit, regardless of prompt segmentation.

In many cases, the maximum input size is a significant
limitation to the use of LLMs. For example, the source code
for a large software application can often exceed the maximum

1ChatGPT’s cut-off was September, 2021.



input size to the LLM. As a result, the entire source code
for the software cannot be provided to the LLM. It therefore
may lack the full information needed to analyze the software
thoroughly, generate new source code based on existing soft-
ware components, and/or refactor the existing source code in
a consistent and correct manner.

Various approaches exist to overcome input size limitations,
including using the LLM to summarize information that should
be included in a prompt to shorten it. Other approaches range
from (1) using semantic search to (2) only select contextually
relevant information to include in a prompt to (3) structuring
software into isolated components with clear interfaces that are
easy to reason about using smaller segments of source code.
Until the input size of LLMs becomes large enough to avoid
becoming a concern in practice, however, determining how to
use the limited space available in a prompt most efficiently
remains an open research challenge.

Motivated by these limitations, we examine the viability of
prompting LLMs to produce compressed responses that still
preserve rich semantic information, so that the original infor-
mation can be recalled sufficiently and the original intent is
preserved. Potential benefits of LLM compression capabilities
include source code manipulation, text retrieval, information
distillation.

Our work focuses on exploring the following research
questions (RQs):

RQ1: How does LLM compression compare to existing
compression techniques? Based on the insight that LLMs can
effectively summarize information to shorten it for inclusion in
prompts, we examine the ability of two different LLMs—GPT-
3.5 and GPT-4—to achieve data compression and question
answering over text compares to existing lossless compression
methods. Compression is performed by asking the LLMs to
compress provided prompts, whereas decompression is per-
formed by entering the output from the LLM into a separated
unrelated prompt to the LLM (e.g., outside of the prior
conversation state). To limit human bias in our experiments, we
directly request the LLM to produce a prompt that provides
a directive to perform compression on the subsequent input
data.

RQ2: How does the number of compression cycles affect
reconstruction error?

We examine the effects of multiple compression and de-
compression rounds on the quality of data reconstruction
by the LLM, based on the word error rate (WER). The
application of this approach corresponds to one who would
like to iteratively reduce the size of a large text as a kind of
recursive summarization. The benefit associated with multiple
compression cycles in this case is to establish a smaller context
that is still useful in reasoning about a larger set of data.
Applications for this might include editing a long-form text
or reasoning about specific components of a large software
system. Here we examine the change in word error rate (WER)
using multiple compression-decompression round trips.

RQ3: How does the number of compression cycles affect
question answering performance?

Related to reconstruction error is the degree to which an
LLM can correctly answer questions about a compressed
piece of data. Question answering performance is expected to
correlate with the reconstruction error, and helps illuminate
tradeoffs in desired compressed data size with the LLM’s
ability to correctly answer questions about the compressed
data.

This paper compares the compression rates, semantic sim-
ilarity, and reconstruction and recall quality of GPT-3.5 and
GPT-4 for compressed and uncompressed text between dif-
ferent conversations. We restrict the compression format to
characters only (i.e., no emojis or Unicode characters). We
evaluate the compression capabilities of these models against
a standard compression algorithm, Zlib’s Deflate algorithm [9]
using the compression ratio, edit distance, and our exact
and semantic reconstruction effectiveness metrics. We use
the cosine similarity between embeddings2 of compressed
and decompressed text to quantify the quality of LLM com-
pression. We study the effects of multiple compression and
decompression round trips on the LLM’s ability to reconstruct
and answer questions about the input data. This work offers
the following contributions to research on prompt engineering:

• An initial exploration of LLM-based compression in
GPT-3.5 and GPT-4, evaluated with two novel metrics:
Semantic Reconstruction Effectiveness (SRE) and Exact
Reconstruction Effectiveness (ERE)

• Experiments examining LLM compression of fictional
short story excerpts and standardized test passages

• Exploration of LLM manipulation of compressed prompts
for iterative construction of data

• Open source code of experiments and evaluation,
which is available at https://github.com/henrygilbert22/
phd chatgpt/tree/main/compression analysis

The remainder of this paper is organized as follows:
Section II provides background material that motivates our
focus on LLM-based compression; Section IV presents LLM
compression experiments on excerpts from literary short story
text; Section V discusses prompt engineering approaches taken
to facilitate compression; Section VI analyzes results from
experiments using LLM compression for code generation;
Section VII outlines additional studies and summarizes qual-
itative findings; Section VIII compares our approach with
related work on evaluating LLMs and data compression; and
Section IX presents concluding remarks, lessons learned, and
future research directions.

II. BACKGROUND ON COMPRESSION VS. EMBEDDINGS

Large language models (LLMs) are revolutionizing the
field of natural language processing (NLP) by enabling more
efficient and effective information storage and retrieval. A key
research topic addressed by this paper is how well LLMs
can perform their own prompt compression and manipulate

2In this context, an embedding is a real-valued vector of reduced dimen-
sionality derived from the input text data.

https://github.com/henrygilbert22/phd_chatgpt/tree/main/compression_analysis
https://github.com/henrygilbert22/phd_chatgpt/tree/main/compression_analysis


compressed prompts, which enables the extraction and pro-
cessing of information from shorter, condensed inputs while
also maintaining semantic value and intent. A smaller prompt
size may lead to faster response times and more efficient
resource usage.

We begin by highlighting the differences between embed-
dings and compression as they relate to the capabilites of
LLMs. Embeddings [10] provide a one-way mapping for
representing a high-dimensional, possibly sparse feature vector
into a relatively low-dimensional space that still captures the
semantics of the input. A common application of embeddings
is to represent words of text [11] or source code [12].

Embeddings are typically obtained by extracting the weights
of a trained neural network layer that is close to the output
layer, but before a classification layer (such as softmax [13]) is
applied. This approach captures the model’s abstracted repre-
sentation of the input that was learned implicitly during model
training. Embeddings are inherently non-invertible3, owing
to the information lost when reducing the dimensionality of
the original input. In return, however, they offer the ability
to quantify similarity of elements in the embedding space,
typically with a vector-based metric, such as cosine similarity.

In contrast, compression is concerned purely with minimiz-
ing the size of the data while also preserving the integrity
of the information that is compressed. Depending on the
algorithm used, compression may achieve perfect or near-
perfect reconstruction of the compressed data into its original
form. There are two main methods of compression: lossless
and lossy [14]. Lossless compression removes only extraneous
metadata, while lossy compression removes some of the
original data. For example, PNG images use lossless compres-
sion, whereas JPEG images use lossy compression. Similarly,
WAV is a lossless audio compression technique while MP3
provides lossy audio compresion. Lossy compression usually
optimizes the information lost so that the decrease in quality
is perceptually minimal to humans and is therefore tenable for
most use cases.

Both embeddings and compression can be applied to a wide
variety of media formats, ranging from classical text to images
and three-dimensional modeling assets. To summarize, embed-
dings focus on transforming input into a different magnitude
of dimensionality to facilitate comparison that is not easily
achieved in the input space (e.g., semantic similarity of words
or sentences). Conversely, compression focuses on minimizing
the size of the input data so it can be reconstructed with
original or near original fidelity. In other words, embeddings
facilitate the quantitative comparison of data with unwieldy
dimensionality, whereas compression minimizes the storage
footprint of a piece of data while preserving as much of the
original information as possible.

In the following sections, we report the results of our
experiments exploring the following three key areas:

3Non-invertible means that things like the original text cannot be recovered
from the embedding of the text.

1) Analysis of the compression rate and quality of fictional
literary text

2) Prompt engineering tactics for eliciting compressed re-
sponses

3) Code generation capabilities with a compressed repre-
sentation of a natural language description of a program.

We focus primarily on GPT-3.5 and GPT-4, which are
the two models provided by OpenAI in a browser-based
chat interface (i.e., “ChatGPT”) with a ChatGPT Plus sub-
scription. We leverage the API endpoints for GPT-3.5 where
applicable, and otherwise produce prompts and responses
for GPT-4 directly in the chat interface. The prompt text
and results reside in our experiment notebooks available at
https://github.com/henrygilbert22/phd_chatgpt.

III. CONTRIBUTIONS

This paper presents an initial study of compression in
Large language models (LLMs) and proposes novel metrics for
evaluating the effectiveness of such compression techniques.
The main contributions of this work can be divided into two
major subsections: the analysis of LLM compression, and the
development of the Semantical Compression Metric and Exact
Compression Metric.

A. Analysis of LLM Compression
The analysis of LLM compression is an important aspect

of this paper. We thoroughly examined various methods for
compressing the text output of LLMs, enabling these mod-
els to generate and understand code more efficiently. Our
investigation reveals that LLMs can maintain a high level
of performance while generating code from compressed text
descriptions. This is crucial for academia and research, as it
has the potential to improve the efficiency and scalability of
LLMs in a wide range of applications.

Moreover, our study demonstrates that LLMs can recon-
struct code accurately in a variety of situations when provided
with compressed text descriptions. This finding has profound
implications for the development of new, more efficient LLM
architectures and their deployment in real-world use cases. The
ability to decrease the prompt size needed for code generation
and understanding can lead to exponentially larger throughput
for LLM models, making them more viable for large-scale
tasks.

B. Proposed Semantical Compression Metric and Exact Com-
pression Metric

The development of the Semantical Compression Metric and
Exact Compression Metric is another significant contribution
of this paper. These metrics provide a rigorous, quantifiable
method for evaluating the effectiveness of LLM compression
techniques. By offering a standardized means of assessment,
our proposed metrics can facilitate further research on LLM
compression and contribute to the development of better-
performing, more efficient models.

The Semantical Compression Metric measures the preser-
vation of meaning in compressed text, while the Exact Com-
pression Metric quantifies the loss of exact text information.



TABLE I
TEXT EXCERPT IDENTIFIERS FOR THE
FICTIONAL SHORT STORIES STUDIED

Text ID Text Name Author
a A Good Man is Hard to Find Flannery O’Connor
b Break It Down Lydia Davis
c Cat Person Kristen Roupenian
d Cathedral Raymond Carver
e Flowers for Algernon Daniel Keyes
f Sticks Karl Edward Wagner
g Symbols and Signs Vladimir Nabokov
h The Bogey Beast Annie Flora Steele
i The Lottery Shirley Jackson
j The Veldt Ray Bradbury

Together, these metrics offer a comprehensive evaluation of
LLM compression performance, considering both the semantic
aspects and the precise textual content. This is crucial for
both academia and research, as it allows for a more nuanced
understanding of the trade-offs and benefits associated with
different compression techniques.

In summary, our work provides valuable insights into the
current state of LLM compression and proposes new met-
rics for evaluating the performance of these techniques. The
findings presented in this paper have broad implications for
academia and research, offering a foundation for future studies
and the development of more efficient, effective LLMs.

IV. ANALYZING LLM COMPRESSION PERFORMANCE ON
LITERARY TEXT

This section provides initial results on experiments we
conducted to evaluate potential applications and limitations
of LLM compression. We use entropy, compression ratio, and
edit distance to compare LLM compressed text to the baseline
of Zlib’s Deflate compression algorithm. Table I contains the
names of the stories we studied, along with their associated
identifiers used for brevity in corresponding figures.

A. Experiment: Compression of Fictional Literary Text

We first compare the compression rate and reconstruction
loss of GPT-4 with a standard compression method (Zlib
Deflate compression algorithm) to evaluate how well GPT-
4 performs with respect to compressing textual information
effectively while simultaneously retaining semantic informa-
tion. The evaluation set in this experiment is a collection of 10
excerpts from short story texts comprising a variety of genres
and writing styles to assess model performance in compressing
diverse text.

To initiate the compression process, we asked GPT-4 to
generate a prompt that would facilitate text compression. By
requesting that GPT-4 create its own prompt to facilitate
compression and recall, we mitigated human bias and provided
a standard prompt for our experiments. In response to this re-
quest, GPT-4 generated the following prompt for compression:

Compress the following text into the smallest possible
character representation. The resulting compressed text

does not need to be human readable and only needs to be
able to be reconstructed with a different GPT-4 model.

In a similar manner, we prompted GPT-4 to generate a
prompt for text decompression. This prompt ensured that a
new, independent GPT-4 model instance would decompress the
compressed input text effectively. In response to this prompt,
GPT-4 generated the following prompt for decompression
tasks:

Please decompress the following compressed text into
its original form, as it was provided by a user and
compressed by another GPT-4 model.

Next we used these two prompts to instruct GPT-4 to
compress each short story excerpt in the corpus. A separate
instance of GPT-4 independent from the original model (i.e.,
in a separate chat conversation), was used to decompress
the compressed text. By isolating chat conversations, we
eliminated potential interference or leakage from the prompt
to compress the original data. Prompt engineering tactics on
compression quality are discussed further in Section V.

To establish a baseline for comparison, Python’s internal
Zlib library [15] using the Deflate and Inflate algorithms
was used for both compression and decompression to assess
existing lossless compression methods. We compressed each
short story excerpt twice, first with minimal compression and
second with maximal compression by passing the level=0
and level=9, respectively. These results provide a basis to
compare the effectiveness of GPT-4’s compression capabilities.

B. Analysis: Entropy

Given the model’s outputted compressed text, this section
aims to model the derived information density and it’s potential
applications. To better understand the measure of randomness
in the distribution of compressed characters, we calculate the
frequency of each character in the compressed text and then
the entropy of the distribution of compressed characters. Each
compressed text was first converted to a byte stream represen-
tation before computing the distribution of its characters. The
character distribution for a given text is given by:

P (x) =
nx

N
, (1)

where P (x) is the probability of character x, nx is the
number of occurrences of character x, and N is the total
number of characters in the byte stream representation. The
entropy was then computed for each byte character distribution
using the entropy equation [16]:

H(X) = −
∑
x∈X

P (x) log2 P (x), (2)

where H(X) is the entropy of the character distribution of
a compressed text excerpt.

Figure 1 shows the entropy of each compressed text excerpt
compared to the Zlib baselines, indicating that GPT-4 achieves



TABLE II
GPT-4 COMPRESSED TEXT VS. ZLIB DEFLATE BY ENTROPY AND

COMPRESSION RATIO (CR)

Method Avg Entropy Avg CR
GPT-4 0.933 0.825

Zlib Most 0.837 0.469
Zlib Least 0.838 0.453

Fig. 1. Compression Entropy By Text Excerpt

the highest in resulting compression entropy for all texts tested.

ChatGPT-4 large variation in produced compressed text
may stem from it being trained on the largest corpus of
data. As such, ChatGPT-4 implicitly reasons across a much
larger dataset, giving it a larger potential distribution to derive
outputs from. This would result in the derived distribution
of compressed text to have a higher information density than
comparable models.

Table II displays the averaged compression entropy and
compression ratio for GPT-4 and the Zlib baselines.

Fig. 2. Averaged Compression Entropy By Text

As anticipated, ChatGPT-4 consistently results in the high-
est entropy of its compressed text. In contrast, Zlib’s most
compression method generates slightly higher entropy than
the least compression method. Given the small sample size
of text excerpts and the small differences between these
values, we cannot conclude that this trend holds with statistical
significance.

From our analysis we conclude that the entropy in the
character distribution reveals GPT-4 consistently produces
the highest entropy values for the text excerpts tested. This
finding suggests that GPT-4 introduces more randomness in
the compressed text compared to the Zlib baselines. Although
higher entropy may be beneficial for certain applications,
further research is needed to understand the implications of
this characteristic.

C. Analysis: Compression Ratio

To better understand the degree to which an input text was
reduced in size, we compute the Compression Ratio (CR)
between the original and compressed texts using the following
equation:

CR = 1− # compressed bytes
# original bytes

(3)

where CR is the compression ratio. For example, a com-
pression ratio of 0.8 means that the original text size was
reduced by 80% in its compressed form, or is 20% of the
original text’s size. Figure 3 shows the relative compression
ratio for each method across all texts. Clearly, GPT-4

Fig. 3. Compression Ratio By Text

provides higher compression ratios for the all of the text
excerpts studied compared to the baseline methods. Zlib’s
most (level=9) aggressive compression method narrowly
outperforms Zlib’s least (level=0) aggressive method.

As with Figure 3, Zlib’s maximal compression remains
marginally better than Zlib’s minimal compression. GPT-4
continues to outperform both baseline methods with a near
60% increase in compression performance. While this result
may initially appear remarkable, our subsequent analyses in



Section V reveal that GPT-4 achieved this high degree of
compression rate by discarding key information in the original
text.

D. Analysis: Edit Distance

To better understand the exact closeness of the reconstructed
text in relation to the originally compressed text, we use the
Levenshtein edit distance metric [17]:

D(i, j) =



0 if i = 0 and j = 0,

i if j = 0,

j if i = 0,

else

min


D(i− 1, j) + 1

D(i, j − 1) + 1

D(i− 1, j − 1) + (1− δ(si, tj))

(4)

where D(i, j) is the edit distance (number of characters
that must be changed) between the original text of length
i and the reconstructed text of length j, si and tj are the
characters at position i and j, respectively, and δ(x, y) is the
Kronecker delta function which returns whether the characters
at 2 possibly different indices are identical. All edit distances
are normalized between 0 and 1, as the exact quantitative result
is arbitrary in our case, and we only care about the relational
analysis between methods.

Figure 4 shows the edit distances for each compression
method over all texts. The Zlib baselines are lossless com-

Fig. 4. Edit Distance By Text

pression algorithms, so their edit distances are 0, as expected,
and consequently not shown on the graph. From this figure
we observe that GPT-4 compression is rather lossy.

Figure 4 also showcases the variance of exact reconstruction
performance. In particular, GPT-4’s performance varies greatly
on different text excerpts. This edit distance variance in GPT-
4’s compression quality raises questions for future studies,
such as what character distributions and captured features

of input text influence a higher or lower edit distance in
the compressed text. The reasons behind this variance could
be due to inherent characteristics of the input text, such as
language structure, semantic complexity, or specific dialect and
choice of language. This variance requires further investigation
into the factors influencing GPT-4’s performance on text
compression and decompression tasks.

The largest performance difference is 10× the smallest,
correlating loosely with the compression ratio and compressed
text distribution entropy. The average of these edit distances is
0.369. Note that the concrete edit distance is arbitrary without
a baseline to compare against.

E. Analysis: Semantic Retention Quantified by Cosine Simi-
larity

Based on previous results, GPT-4 cannot currently be used
as a reliable compression technique since it does not rival ex-
isting lossless methods based on the edit distance metric. This
finding indicates that information is lost between compression
and decompression when input text is passed to the LLM to
reduce its size. However, we nevertheless want to explore the
ability of an LLM to capture the underlying semantic intent of
the original text in an approximately reconstructable manner.

We are not concerned whether the decompressed text ex-
actly matches the original, as long as it retains the essence of
what is originally intended to be communicated. For example,
if the original message is: “Please send me an email on Mon-
day”, and the reconstructed message is: “On Monday, send
me an email, please”, then the resulting semantic similarity
score should be relatively high as the underlying meaning of
“send an email Monday” is represented in both messages, even
though the character occurrence and alignment do not closely
match.

Quantitatively evaluating whether two texts have the same
semantic meaning is non-trivial and slightly arbitrary since
traditional text comparison methods do not apply. To quantify
similarity of compressed and decompressed texts, we use
OpenAI’s Embeddings API [18], and then apply the cosine
similarity vector metric to pairs of embedded texts. Section I
explained how embeddings are vectors that represent (1) the
semantic information in the text learned by an LLM during its
training and (2) a high-dimensional, possibly sparse vector in
a low-dimensional representation. A text embedding captures
semantic meaning in the embedding space, enabling similarity
comparisons using vector-based metrics. The commonly used
metric for embedding comparison is cosine similarity [19],
which is calculated as follows:

Cosine Similarity(A,B) = cos(θ) =
A ·B
|A||B|

(5)

Where A and B are n-dimensional vectors, A · B is
the dot product between them, and |A||B| represents the
product of their magnitudes. The result of this operation is
the angle between these vectors in the embedding space,
with values ranging from -1 (indicating opposite vectors) to
+1 (indicating proportional vectors). Zero indicates that the



vectors are orthogonal. The angle between these vectors in
the embedding space can be obtained with θ = arccos(x)
where x is the output of Equation 5 above.

Figure 5 shows the computed cosine similarity between
embedding vectors across all texts for each compression
method. Again, since Zlib’s method is lossless it always

Fig. 5. Cosine Similarity Between Embeddings of Decompressed Text

captures the semantic meaning since the original input is
reconstructed perfectly. GPT-4 does not perfectly preserve the
semantic meaning of decompressed texts from the original,
but performs relatively well across all texts, with an average
angle between embedding vectors of arccos(0.923) ≈ 22.6◦.

Interestingly, GPT-4’s semantic reconstruction performance
is consistent across texts, which is a stark contrast to GPT-4’s
high volatility in the edit distance metric. From these results,
we conclude that GPT-4 may not be suitable for near lossless
compression. However, it remains a compelling method to
preserve semantic similarity in compressed and decompressed
representations, based on the embedding methods we use.

As such, it seems that regardless of whether ChatGPT-4
can accurately capture the underlying text, it is always able to
maintain the semantical direction. This aligns much better with
LLM’s strength of understanding and reasoning with textual
relations.

As expected, zlib achieves a cosine similarity of 0, which at
least indicates proportional magnitude vectors pointed in the
same embedding direction. In contrast, ChatGPT-4 produces
an average cosine similarity of 0.777. This result corresponds
to an average angular distance between compressed and de-
compressed representations of roughly 39 degrees.

Although we can’t quantify directly how this angular dis-
tance relates to the preservation of underlying semantical
meaning in the texts, we can compare the relative performance
to the relative performance in edit distance. By taking the rel-
ative difference between each model’s cosine similarity score,
ChatGPT-4 performed, on average, approximately 23% worse
than zlib’s lossless methods for maintaining text semantics.
However, when taking the relative difference between edit
distances, ChatGPT-4 performed, on average, approximately

33% worse than zlib’s lossless methods for maintaining text
character positions. This shows that ChatGPT-4 is relatively
better at capturing semantical meaning when compared to
maintaining exact text reconstruction.

F. Discussion of Results

Our findings reported above indicate that GPT-4’s com-
pressed text is 3−4× more effective than traditional compres-
sion methods. This result, however, is due primarily to GPT-4
discarding half of the originally compressed text during re-
construction, indicated by high edit distances when compared
to traditional lossless compression. Despite its inability to
perform lossless compression, GPT-4 shows promise in retain-
ing semantic information at a level competitive with lossless
compression methods. We quantify semantic preservation of
information with the cosine similarity between the embedding
of the decompressed text and the embedding of the original
text.

Our results suggest that while GPT-4 may not be suitable
for applications requiring lossless compression, it may be
applicable for use cases where the preservation of semantic in-
formation is prioritized. For example, there are several ways to
indicate that an event X has occurred in natural language (e.g.,
“event X happened”, “event X occurred”, “the event called
X passed”, etc.). As long as the natural language description
semantically captures this single bit of information (whether
the event has occurred), then the various text representations
indicating this fact are of roughly equal value.

Motivated by this idea, we applied a similar compression
approach for source code. For example, there may be several
ways to realize or implement a piece of code to accomplish a
task. The quality of a piece of code with respect to its func-
tionality often lies on a spectrum from precision to concision.
For example, does the code execute the required functionality?
More importantly, what is the minimal representation that
achieves the prescribed task that is both performant and
secure? Likewise, is there a more accessible path than ever to
generate functional source code from natural language using
LLMs? In essence, this flexibility in natural language and code
expression further motivates our exploration of semantical
LLM-based compression.

To summarize, while GPT-4 is not a suitable replacement
for traditional lossless compression, it demonstrates potential
in preserving the semantic meaning of text. The next two
sections explore the results of experiments we conducted to
evaluate the influence of prompt structuring on compression
quality and code generation from compressed natural language
descriptions of code functionality, respectively.

V. PROMPT ENGINEERING TO FACILITATE COMPRESSION
BEHAVIOUR

This section present the results of our investigation into
the role prompt engineering plays in terms of prompt content
and wording in facilitating the compression performance of
LLMs, specifically for GPT-4 and GPT-3.5. We examine the
impact of three different meta-prompts for compression: Base



Compression (simply direct to compress the input), Guided
Lossless Compression (by specifying lossless compression of
the input), and Semantic Compression (prioritizing semantic
recovery).

We found that the choice of meta-prompt influenced the
compression behavior of the LLMs studied. To evaluate the
effectiveness of compression in relation to edit distance and
semantic similarity, we introduced two novel metrics, Exact
Reconstruction Effectiveness (ERE) and Semantic Reconstruc-
tion Effectiveness (SRE), respectively. The Exact Reconstruc-
tion Effectiveness metric revealed that while the Zlib De-
flate lossless compression baselines outperformed GPT-4 and
GPT-3.5, our meta-prompts for Guided Lossless Compression
method outperformed both Base Compression and Semantic
Compression in terms of compression ratio and edit distance
minimization.

The Semantic Reconstruction Effectiveness metric, in con-
trast, demonstrated that the Semantic Compression meta-
prompting approach outperformed the baseline lossless com-
pression. Although the baseline lossless methods achieved
slightly higher semantic similarity scores, the GPT-4 Semantic
Compression model provided an improved compression ratio
while preserving functionally equivalent semantic information
in the input. This finding suggests that LLM-based Semantic
Compression could offer considerable performance and cost
gains over traditional compression methods in use cases where
the exact reconstruction of the input is not crucial, as long as
the underlying meaning remains intact.

A. Experiment Setup
The aim of this experiment was to distinguish LLM com-

pression behavior and performance when optimized for loss-
less compression versus semantic compression. We applied
the results from Section IV to represent the baseline GPT-4
model performance when given no additional specification on
compression requirements. The same analysis was therefore
performed as outlined in Section IV, but with two separate
compression models distinguished by the meta-prompting per-
formed to guide compression behavior.

GPT-3.5 was also given the same set of prompts over the
same text excerpts to compare the compression quality be-
tween the different model versions. When requesting lossless
compression, each model was fed the following prompt:

Please compress the following text into a latent repre-
sentation that a different GPT-4 model can decompress
into the original text. The compression model should be
lossless, meaning that a different GPT-4 model should
be able to perfectly reconstruct the original text from
the compressed representation, without any additional
context or information.

The aim of this prompt was to instruct the model to prioritize
lossless compression, thereby ensuring that the decompressed
text was as close as possible if not identical to the original
input. When decompressing the resulting compressed text, the
following prompt was provided to a different GPT-4 model:

A different GPT-4 model was given the following prompt:
“Please compress the following text into a latent repre-
sentation that a different GPT-4 model can decompress
into the original text. The compression model should
be must be lossless, meaning that a different GPT-4
model should be able to perfectly reconstruct the original
text from the compressed representation, without any
additional context or information.” Please decompress
the following text into the original text.

The aim of this prompt was to provide the necessary context
for the decompression process, reinforcing the expectation that
decompressed text should match the original input exactly.

When requesting semantic compression, the following
prompt was used:

Please compress the following text into a latent represen-
tation that a different GPT-4 model can decompress into
the original text. The compression model should purely
minimize the number of characters in the compressed
representation, while maintaining the semantics of the
original text. The resulting compressed text does not need
to be decompressed into the original text, but should
capture the semantics of the original text. The compressed
text should be able to be decompressed into a text that
is semantically similar to the original text, but does not
need to be identical.

The aim of this prompt was to instruct the model to focus on
semantic preservation while minimizing the character count,
without requiring an exact match between the decompressed
and original texts.

When decompressing the resulting compressed text, the
following prompt was used:

A different GPT-4 model was given the following prompt:
“Please compress the following text into a latent rep-
resentation that a different ChatGPT4 model can de-
compress into the original text. The compression model
should purely minimize the number of characters in
the compressed representation, while maintaining the
semantics of the original text. The resulting compressed
text does not need to be decompressed into the original
text, but should capture the semantics of the original text.
The compressed text should be able to be decompressed
into a text that is semantically similar to the original text,
but does not need to be identical.” Please decompress the
following text into semantically similar text.

The aim of this prompt was to provide the necessary context
for the decompression process, emphasizing the importance
of preserving the semantic meaning of the original text rather
than producing an exact match.

GPT-4 was not available programmatically via an API end-
point aat the time we wrote this paper. All prompts and results
were therefore obtained manually using the chat interface
feature on the ChatGPT website (chat.openai.com). For



results from the GPT-3.5 model, the Chat Completion function
of the openai Python library was used. This library requires
providing the model with a “system” prompt to prime the
model with expected behavior, as well as the actual chat
prompt. For GPT-3.5, the following prompt is used when
optimizing for lossless compression:
System Prompt:

You are a ChatGPT LLM trained by OpenAI to com-
press text. The compressed text should be able to be
decompressed by a different ChatGPT LLM model into
the original text. The compression must be lossless,
meaning that a different ChatGPT LLM model should
be able to perfectly reconstruct the original text from
the compressed representation, without any additional
context or information. The compressed text does not
need to be human-readable, only decompressible by a
different ChatGPT LLM model.

Action prompt:

Compress the following text. Return only the compressed
text with no additional text. Text to compress: ...

The following System-Action prompt pair was used to
decompress text that was compressed with the previous
System-Action prompt pair:

System Prompt:

You are a ChatGPT LLM trained by OpenAI to de-
compress text. The compressed text you will be given
was compressed by a different ChatGPT LLM that was
instructed to perform lossless compression.

Action Prompt

Decompress the following text. Return only the decom-
pressed text with no additional text. Text to decompress:
...

When specifying Semantic Compression, the following
prompt was used to compress input text:

System Prompt:

You are a ChatGPT LLM trained by OpenAI to compress
text. The compression model should purely minimize the
number of characters in the compressed text, while main-
taining the semantics of the original text. The resulting
compressed text does not need to be decompressed into
exactly the original text, but should capture the semantics
of the original text. The compressed text should be able to
be decompressed into a text that is semantically similar
to the original text, but does not need to be identical.

Action Prompt

Compress the following text. Return only the compressed
text with no additional text. Text to compress: ...

The following System-Action prompt pair was used for
decompressing text compressed with the previous System-
Action prompt pair:

Pre-prompt

You are a ChatGPT LLM trained by OpenAI to de-
compress text. The compressed text you will be given
was compressed by a different ChatGPT LLM that was
instructed to maximize the compression rate and preserve
semantical meaning. The decompressed text does not
need to match the original exactly, but the decompressed
text should have the same semantical meaning as the
original text.

Action Prompt:

Decompress the following text. Return only the decom-
pressed text with no additional text. Text to decompress:
...

The lossless compression prompts instructed the model to
focus on preserving the original text in its entirety, allowing
for perfect reconstruction. The lossless compression prompts
attempted to accomplish a high-fidelity preservation of the
original text, ensuring that no information was lost during
the compression and decompression process. The semantic
compression prompts instruct the model to prioritize semantic
preservation while minimizing the character count. The seman-
tic compression prompts attempted to accomplish a balance
between reducing the text size and maintaining semantic
integrity.

B. Compressed Text Entropy Analysis

Using Equation 1 and Equation 2, the entropy of the
compressed text was computed for each method across all
texts. To calculate entropy, the text was first converted into
a byte stream representation and the relative probability of
characters was then computed. Figure 6 shows the compres-
sion entropy for each compression method across all literary
texts. The resulting entropy metrics are fairly similar across all
models and texts, with a notable exception being the lossless
compression through GPT-3.5. The second column of Table III
gives the averaged compressed text entropy by model.

TABLE III
AVERAGE EFFICACY METRICS OF COMPRESSED TEXT

Method Entropy CR ED
Base (GPT-4) 0.791 0.825 0.510

Lossless (GPT-4) 0.758 0.423 0.194
Lossless (GPT-3.5) 0.755 0.383 0.573
Semantic (GPT-4) 0.741 0.772 0.556

Semantic (GPT-3.5) 0.737 0.768 0.556
Zlib Deflate Least 0.711 0.453 0
Zlib Deflate Most 0.710 0.469 0



Fig. 6. Entropy of Compressed Text For Compression Methods Using Meta-Prompts

Interestingly, the base compression method, where GPT-
4 was not explicitly prompted on expected compression be-
havior, demonstrates the highest entropy. This result was
surprising given that ChatGPT-3.5 (which is not specifically
designed for this task) performs comparably well. The lossless
compression maintains the lowest compressed text entropy,
suggesting the efficacy of meta-prompting different models to
achieve the desired outcome.

Given the small sample size, however, these results should
serve as an initial baseline for subsequent analysis. From
these results, we conclude that meta-prompting can concretely
impact the compression performance of the LLMs studied.
Our findings suggest that GPT-4 is capable of achieving better
compression results when given specific instructions about the
desired compression behavior, thereby justify further explo-
ration of meta-prompting tactics for improved compression
policies.

C. Compression Ratio

Similar to Section IV, the compression ratio for each of
the candidate compression methods was computed across all
texts. Figure 7 plots the derived compression ratio of each
method over each text. The graph shows high volatility in
model performance across texts and between the models
themselves. Interestingly, Lossless GPT-3.5 actually produces
a compressed text that is approximately 71% larger than the
original text for text c (the figure is truncated slightly below
0 to save space). Confoundingly, this text’s edit distance from
the original input text is the worst, whih is another indicator
that GPT-3.5 struggles to compress input text, highlighting the
limitations of this particular model for compression tasks.

The third column of Table III includes the averaged com-
pression ratio (CR) of each model across all texts. GPT-4
semantic compression maintains the best compression ability,
closely followed by the base compression and GPT-3.5’s
semantic compression. This result was expected since semantic
compression is not constrained by reconstructing the exact
text and presumably the underlying semantic meaning can
be captured in much less text when it can be arbitrarily
decompressed. GPT-3.5’s competitive semantic compression
performance is surprising given its lossless compression per-
formance. One possible explanation is that semantic compres-
sion is implicitly derived internally in these LLMs via text
embeddings.

The traditional lossless methods sit in the middle of the
pack in performance, followed by both GPT lossless methods.
The worse compression rates coming from the LLM lossless
compression methods is expected and validates the impact of
the meta-prompt. Clearly, the models must maintain a greater
information density if the intended goal is exact reconstruction.

Previous LLM exact edit performances were expected to
be worse than traditional methods since they maintained
significantly less information in the compressed state. As such,
they clearly lacked the needed information to reconstruct the
text exactly. However, Figure ?? shows the Lossless LLM
compression actually maintain more informational density
than traditional lossless methods.

From these results, we conclude that LLMs like GPT-
4 can achieve competitive compression rates when given
appropriate meta-prompts, particularly in the case of semantic
compression. The potential applications of our findings include
optimization of data storage and improved communication
efficiency. The next steps for this research include investigating



Fig. 7. Compression Ratio By Text

the role of fine-tuning LLMs specifically for compression
tasks, exploring alternative prompting strategies to further
improve compression performance, and examining the impact
of larger training data sets on compression outcomes.

D. Edit Distance

As discussed in Section IV the edit distance for each
compression method over each text was computed. This metric
shows the model’s ability to exactly reconstruct the original
text from the compressed representation, based on the number
of characters that must be inserted or deleted to achieve the
original input text from the compressed representation of the
text output by the LLM.

The fourth column of Table III shows the corresponding edit
distance for each model over each evaluation text. While the
magnitude of edit distance varies greatly between texts, the
relative model performance is mostly stable, which suggests
that all LLM models struggle on similar kinds of text. Future
research should explore the semantic and syntactic classifica-
tions of texts that are “easier” versus “harder” for LLM models
to compress effectively. Understanding these relationships en-
ables targeted improvements in model performance and better
adaptation to specific use cases.

The most notable model performance deviations are found
in the GPT-4 lossless compression. It routinely performs the
best of any LLM model, and on texts b (“Break it Down”), d
(“Cathedral”), e (“Flowers for Algernon”), and a (“A Good
Man is Hard to Find”), the model performs exceptionally
well with a normalized edit distance near 0. This result
demonstrates that GPT-4 lossless compression can effectively
reconstruct text with high accuracy in some cases. We there-

fore conclude that this model shows promising potential for
text compression tasks.

Figure 8 averages the model edit distance over all texts. As
expected, the traditional Zlib lossless compression methods
maintain a distance of 0 as they losslessly reconstruct the text.
GPT-4 performs better than all remaining models, with over
≈50% more accurate on average than the next closest LLM,
GPT-3.5 Semantic Compression.

Interestingly, GPT-3.5 Semantic Compression and GPT-4
Semantic Compression are roughly split across the texts. Given
the other performance differences between the models, this
result is unexpected, but is likely justified by the limited
evaluation data set, which may not comprehensively capture
all model behaviors. This finding also suggests a notion of
“prompt sensitivity” where the output quality and consistency
may vary between different models for similar prompts.

GPT-3.5 Lossless compression clearly underperforms on
this evaluation metric. This result aligns with expectations
given its subpar performance in both the compression ratio
and entropy metrics. Evidently, GPT-3.5 struggles to achieve
lossless compression and execute it effectively given the meta-
prompt.

There are several possible explanations for GPT-3.5’s limi-
tation. For example, GPT-3.5’s training data may not be com-
prehensive or diverse enough to cover various text compression
scenarios, leading to inadequate understanding of lossless
compression tasks. Likewise, there may be a difference in
model capacity compared to GPT-4, which could result in
GPT-3.5 having a reduced ability to distill and generalize
compression meta-prompts.

Figure 8 further validates that the lossless versus semantic
meta-prompts in part induce the improved compression be-



Fig. 8. Normalized Decompression Edit Distance by Text

TABLE IV
AVERAGE QUALITY METRICS OF DECOMPRESSED TEXT

Method CS ERE SRE
Base (GPT-4) 0.923 0.61 1

Lossless (GPT-4) 0.976 0.945 0.542
Lossless (GPT-3.5) 0.743 0.786 0.374
Semantic (GPT-4) 0.936 0.622 0.949

Semantic (GPT-3.5) 0.93 0.623 0.937
Zlib Deflate Least 1 1 0.594
Zlib Deflate Most 1 0.981 0.615

havior in GPT-4. The lossless version performs ≈286% better
than Semantic and Base compression for the same model. We
therefore conclude from our assessment that meta-prompting
for compression has a measurable effect on the quality of text
compression tasks.

E. Semantic Retention

As discussed in Section IV, the ability of a compression
model to retain the underlying semantic meaning was evalu-
ated using the cosine similarity metric between the embedding
vectors from the original and decompressed text. Cosine
similarity measures the angle between two embedding vectors,
effectively capturing the degree of similarity between the
original and decompressed text in the embedding space.

Figure 9 plots the resultant cosine similarity between em-
beddings of the decompressed and original texts for each
model as an indicator of semantic retention from input text
to output compressed text. Both the overall magnitude and

relative performance difference between models remain fairly
stable across texts, which demonstrates the innate ability of
LLMs to capture the underlying semantic context at a much
higher level than exact text reconstruction. This behavior
occurs because LLMs are designed to understand and generate
meaningful text, so their internal representations inherently
encode semantic information.

Again, the Zlib baseline methods using the Deflate al-
gorithm exhibit perfect semantic retention since they are
lossless. We also observe that the GPT-4 Lossless compres-
sion approach achieves perfect semantic retention in several
cases. GPT-4 Semantic compression performs nearly as well,
indicating that it can effectively retain the semantic content
of the text even when the exact reconstruction is not required.
This result highlights the potential of using LLMs for semantic
compression tasks in cases where the exact reconstruction of
the input data is not strictly necessary.

The second column of Table V-D gives the average cosine
similarity (CS) of the models across all texts. GPT-4 Lossless
is the strongest performing LLM model. GPT-4 Semantic
Compression follows closely behind, with a 4% drop in
performance.

Surprisingly, GPT-3.5 Semantic Compression nearly per-
fectly matches the GPT-4 Semantic Compression performance,
to the point where the exact ordering is likely dependent on
internal model randomness. GPT-4 Base Compression and
GPT-3.5 Lossless Compression perform considerably worse.
These results reinforce that meta-prompting contributes at least



Fig. 9. Cosine Similarity by Text

in part to the overall performance in semantic retention of
compressed text.

F. Exact Reconstruction Effectiveness

Exact Reconstruction Effectiveness is a novel metric pro-
posed in this paper to capture compression performance with
respect to both the compressed size and the ability to perfectly
reconstruct the original text. This metric provides a fair means
to compare LLM compression performance with traditional
lossless algorithms. While traditional lossless algorithms can
perfectly reconstruct the text, their resulting compression rate
is often much lower than LLM compression.

In contrast, LLM compression derives a more efficient com-
pressed representation, though it struggles to perfectly repli-
cate the original input text. Exact Reconstruction Effectiveness
reconciles these differences to provide a balanced evaluation
metric. Exact Reconstruction Effectiveness is computed by
taking the inverse of the log-normalized compression ratio
multiplied by the inverse of the edit distance, as shown in
the following equation:

Exact Reconstruction Effectiveness

=
1

log(Compression Ratio)
× 1

Edit Distance
(6)

This equation maximizes the compression ratio and mini-
mizes the edit distance (or in this case, maximizes the inverse
of the edit distance as this accounts for numerical instability
caused by 0 values in the edit distance). Taking the logarithm

of the compressed ratio scales the relative importance of more
effective methods. This metric is concerned with the ability
to reconstruct the exact input, so we do not want to allow
methods that have a disproportionately high compression rate,
but terrible edit distance, to score highly.

For example, if a method discards 99% of the text, its
compression rate alone could be enough to compensate for a
very high edit distance. Taking the logarithm of the compres-
sion ratio mitigates the impact of such situations and balances
between both the compression ratio and the edit distance. We
take the inverse of the entire equation as the compression
rates are strictly less than 1, resulting in negative values when
log-normalized. Inverting this value is not mathematically
necessary, but maximizes a more intuitive positive number,
rather than minimizing a negative number.

The third column of Table V-D shows the Normalized
Exact Reconstruction Effectiveness for each model. Zlib’s
least compression method scores marginally higher than the
most method due to the inherent trade-off in compression
ratio. GPT-4 lossless compression scores second highest and
validates both the metric formulation and the meta-prompting
technique. GPT-4 semantic compression scores the worst as it
is optimized for the opposite use case and thus its added benefit
of best-in-class compression rate is mitigated and its average
performance in exact reconstruction is unable to compensate.

From these results, we conclude that when accounting
for the added benefit of smaller compression sizes, correctly
prompted LLM models can compete with state-of-the-art tra-



ditional lossless compression methods for certain use cases.
The potential applications of our findings include efficient

data storage and retrieval, particularly in situations where exact
text reproduction is not strictly necessary, and maintaining the
semantic information is of greater importance than preserving
the exact structure of the text. Moreover, this research opens
up new avenues for exploring LLMs and their potential in
other domains where compression is essential, such as mul-
timedia and sensor data. Future work could investigate the
development of domain-specific prompts and techniques to
further optimize LLM-based compression for a wider range
of applications.

G. Semantic Reconstruction Effectiveness

Semantic Reconstruction Effectiveness is the other novel
metric proposed in this paper. We use this metric to evaluate
the performance of compression algorithms with respect to the
captured underlying semantic context. This comparison is par-
ticularly useful for scenarios where exact text reconstruction is
not a strict requirement, and the focus is instead on preserving
the overall meaning of the original text.

Semantic Reconstruction Effectiveness

= Compression Rate × Cosine Similarity
(7)

The fourth column of Table V-D displays the computed
Semantic Reconstruction Effectiveness for each model. The
results validate our metric approach and the effectiveness
of the meta-prompting technique, as GPT-4 Semantic Com-
pression emerges as the highest-performing model under this
metric by a considerable margin. In contrast, the two lossless
compression models exhibit the worst performance since they
are optimized for the exact opposite use case, which mini-
mizes the data size at the expense of discarding semantically
rich information from the input text. Interestingly, traditional
lossless methods demonstrate average performance under this
metric.

These findings again highlight the potential of LLMs such
as GPT-4 in semantic compression applications where exact
text representation is not a priority. For example, in a scenario
where an LLM generates a tailored sales pitch using a context
document, maintaining the precise wording or structure of the
context document is not crucial, as long as the core semantic
selling points are retained. With Semantic Compression, the
input prompt size can be reduced by nearly 80%, yielding
functionally equivalent output while substantially increasing
the information density that can be fed to the model and
simultaneously reducing operating costs.

Moreover, the ability to exchange compressed—but seman-
tically rich—information can open up new possibilities in the
development of AI systems with modular architectures, e.g.,
where specialized LLMs can communicate with each other to
form more powerful and adaptable problem-solving systems.
This design can potentially yield AI systems that can tackle
a broader range of challenges, as well as allow more efficient
transfer learning between models.

To summarize, we demonstrate the value of our novel
metric, Semantic Reconstruction Effectiveness, in assessing
the performance of compression algorithms with respect to
captured semantic context between input and output text.
The superior performance of GPT-4 Semantic Compression in
this regard, as well as the potential applications of semantic
compression in various use cases, underscores the versatility
and adaptability of LLMs for tasks where preserving meaning
is more important than exact text reconstruction.

VI. SEMANTIC COMPRESSION FOR CODE GENERATION

This section presents the results of our third experiment,
which investigated the application of semantic compression
to code generation. The objective of this experiment was to
evaluate the potential of using descriptions of code compressed
by GPT-4 to reconstruct source code and determine functional
equivalence.

Our experiment began with GPT4-generated descriptions for
a set of Python functions. These descriptions were then used
as inputs to a separate model to regenerate the source code of
these functions, establishing a baseline for comparison. Next,
the descriptions were semantically compressed and provided
to another model instance (i.e., a separate GPT-4 conversation)
for code reconstruction. Finally, GPT-4 was used to determine
whether the reconstructed functions were functionally equiva-
lent to the original ones.

The results from our experiments demonstrated that GPT-
4 performed surprisingly well in this context. Four of the six
functions (including examples from the pandas library) were
reconstructed perfectly, with two functions slightly incorrect
in handling individual characters instead of string instances
for an input list of strings. This result suggests that semantic
compression for code generation tasks can effectively retain
the necessary information for code reconstruction and war-
rants further exploration to enhance the efficiency and cost-
effectivness of LLM-based code generation and summariza-
tion, and to better understand the limitations of LLMs in
manipulating code or text obtained from compressed prompts.

A. Experiment Setup

To evaluate GPT-4’s ability to use semantic compression for
code generation, we create six Python functions of increas-
ing complexity. The count_string_instances function
takes a list of strings as input and returns a dictionary
containing the count of each string instance in the input list:

1 def count_string_instances(input: List[str])
↪→ -> Dict[str, int]:

2 return { s: input.count(s) for s in input}

The duplicate_strings function takes a list of strings
as input and returns a dictionary with each string as a key and
the value as the key string concatenated to itself, repeated
twice:



1 def duplicate_strings(input: List[str]) ->
↪→ Dict[str, str]:

2 return { s: s + s for s in input}

The increment_value_at_string function takes a
dictionary with string keys and integer values as input and
returns a new dictionary with the same keys but with all values
incremented by 1:

1 def increment_value_at_string(input: Dict[str,
↪→ int]) -> Dict[str, int]:

2 return { key: value + 1 for key, value in
↪→ input.items()}

The return_one function accept any number of posi-
tional and keyword arguments and returns the integer 1:

1 def return_one(*args, **kwargs) -> int:
2 return 1

The append_mutated function takes a list of strings as
input and mutates each string in the input list by appending
the string “mutated”:

1 def append_mutated(input: List[str]) -> None:
2 for i in range(len(input)):
3 input[i] = input[i] + ’mutated’

Finally, the datetime_to_prob function takes a Pandas
Series object that is called created_at_dt containing
datetime objects and a frequency string freq:

1 def datetime_to_prob(created_at_dt: pd.Series,
↪→ freq: str) -> Dict[str, int]:

2 # Group by day
3 created_at_freq = pd.to_datetime(

↪→ created_at_dt.apply(lambda x: x.strftime
↪→ (freq)))

4 created_at_freq_grouped: List[Tuple[pd.
↪→ Timestamp, pd.Series]] = created_at_freq
↪→ .groupby(created_at_freq)

5 # Get the day to frequency of account
↪→ creation mapping

6 day_to_creation_freq = {}
7 for group_num, group in

↪→ created_at_freq_grouped:
8 day_to_creation_freq[group_num] = len(

↪→ group)
9

10 # Normalize the frequencies
11 for day in day_to_creation_freq:
12 day_to_creation_freq[day] /= len(

↪→ created_at_freq)
13

14 # Create rolling cumulative sum
15 day_to_creation_freq = {day: sum(

↪→ day_to_creation_freq[day_] for day_ in
↪→ day_to_creation_freq if day_ <= day) for
↪→ day in day_to_creation_freq}

16

17 # Create rolling probability
18 for day in day_to_creation_freq:
19 day_to_creation_freq[day] /=

↪→ day_to_creation_freq[max(
↪→ day_to_creation_freq)]

20

21 return day_to_creation_freq

As shown above, the datetime_to_prob function
groups the datetime objects by the specified frequency,
counts the occurrences of each group, normalizes the frequen-
cies, computes the rolling cumulative sum, and calculates the
rolling probability of each group. This function returns a dic-
tionary mapping each datetime group to its corresponding
rolling probability.

Four instances of GPT-4 were then applied, as follows. A
first GPT-4 instance was fed the source code of each function
shown above and asked to generate a text description of the
function’s behavior. A second GPT-4 instance reconstructed
the Python function source code using the unaltered text
description of the original code to establish a baseline. We then
employed a third GPT-4 instance and asked it to semantically
compress the text description of the function of interest.
Finally, the compressed text description was given to a fourth
GPT-4 instance to reconstruct the Python function source code
for evaluation.

B. Evaluating GPT-4 Semantic Compression
To evaluate the ability of GPT-4 to use semantic compres-

sion for code generation, the first GPT-4 instance was fed each
of the above example functions with the following prompt:

Given the following python function, provide a descrip-
tion of its expected behaviour. This description should be
in plain English and should be as detailed as possible.
It should be able to be used by a separate GPT-4 model
to reconstruct the function.

The model generated a detailed description of each func-
tion’s expected behavior. Subsequently, the second GPT-4
instance was given the following prompt to semantically
compress the function descriptions generated by the first GPT-
4 instance:

Compress the following python function description into
its smallest possible representation. The resulting com-
pressed text does not need to be human readable, but
should be able to be used by a separate GPT-4 model to
reconstruct the function description.

The model produced compressed text descriptions for each
function. To establish a baseline, the third GPT-4 instance was
given the following prompt to reconstruct the Python function
using the unaltered text description:

A different GPT-4 model gave the following description
of a python function. Reconstruct the function from the



following description:

Finally, the fourth GPT-4 instance was given the following
prompt to reconstruct the Python function using the com-
pressed text description:

A different GPT-4 model gave the following compressed
description of a python function. Reconstruct the function
from the following description: ...

We then evaluated GPT-4’s ability to leverage semantic
compression for code generation tasks by comparing the
reconstructed functions using both the unaltered and semanti-
cally compressed text descriptions, as discussed next.

C. Code Generation from Base Descriptions
Establishing a performance baseline was crucial to under-

stand the effectiveness of the semantic compression in the
code generation task. It allowed us to compare the quality
of the reconstructed functions using both the unaltered and
compressed text descriptions. This comparison was important
because it provided insights into how well the GPT-4 model
leveraged semantic compression to generate both accurate and
concise code.

Existing research in this domain has already been con-
ducted [20], demonstrating the potential of LLM usage in code
generation tasks. Given the supplied base function descrip-
tions, an independent GPT-4 model generated the functions
discussed below.

The generated chatgpt_base_gen_function_one
function is partially correct because it counts the occurrences
of each character in the input list of strings and returns
a dictionary with the character count instead of the string
instance count as the original function:

1 def chatgpt_base_gen_function_one(strings_list
↪→ ):

2 char_count = {}
3 for string in strings_list:
4 for char in string:
5 if char in char_count:
6 char_count[char] += 1
7 else:
8 char_count[char] = 1
9 return char_count

The generated chatgpt_base_gen_function_two
above is also partially correct because it identifies all unique
characters from the input list of strings and returns a dictionary
with each character mapped to its doubled version, instead of
mapping each input string in the list to a duplicated version
of itself and keyed by the original string:

1 def chatgpt_base_gen_function_two(strings_list
↪→ ):

2 unique_chars = set(’’.join(strings_list))
3 doubled_chars = {char: char * 2 for char

↪→ in unique_chars}
4 return doubled_chars

The generated chatgpt_base_gen_function_three
code is correct because it takes an input dictionary and returns
a new dictionary with the values incremented by one:

1 def chatgpt_base_gen_function_three(input_dict
↪→ ):

2 incremented_values = {key: value + 1 for
↪→ key, value in input_dict.items()}

3 return incremented_values

The chatgpt_base_gen_function_four code is
correct because it accepts any number of positional and
keyword arguments and simply returns the integer 1:

1 def chatgpt_base_gen_function_four(*args, **
↪→ kwargs):

2 return 1

The generated chatgpt_base_gen_function_five
is correct because it appends the string “mutated” to each
element in the input list of strings:

1 def chatgpt_base_gen_function_five(
↪→ strings_list):

2 for i in range(len(strings_list)):
3 strings_list[i] += ’mutated’

The generated chatgpt_base_gen_function_six
code is correct because it processes a pandas Series of datetime
objects, groups them by the given frequency, computes nor-
malized frequencies, and returns a dictionary with the rolling
probability of account creation:

1 def chatgpt_base_gen_function_six(
↪→ created_at_dt, freq):

2 # Step 1: Convert to freq format
3 created_at_freq = created_at_dt.dt.

↪→ strftime(freq).map(pd.Timestamp)
4

5 # Step 2: Group by unique Timestamp values
6 created_at_freq_grouped = list(

↪→ created_at_freq.groupby(created_at_freq)
↪→ .groups.items())

7

8 # Step 3: Initialize the empty dictionary
9 day_to_creation_freq = {}

10

11 # Step 4: Iterate through the grouped list
↪→ and populate the dictionary

12 for group_num, group in
↪→ created_at_freq_grouped:

13 day_to_creation_freq[group_num] = len(
↪→ group)

14

15 # Step 5: Normalize the frequencies
16 total_length = len(created_at_freq)
17 day_to_creation_freq = {key: value /

↪→ total_length for key, value in
↪→ day_to_creation_freq.items()}

18

19 # Step 6: Update the dictionary with a
↪→ rolling cumulative sum

20 rolling_sum = 0
21 for key in day_to_creation_freq:
22 rolling_sum += day_to_creation_freq[

↪→ key]
23 day_to_creation_freq[key] =

↪→ rolling_sum
24

25 # Step 7: Create a rolling probability
26 max_value = max(day_to_creation_freq.

↪→ values())



27 day_to_creation_freq = {key: value /
↪→ max_value for key, value in
↪→ day_to_creation_freq.items()}

28

29 # Step 8: Return the dictionary
30 return day_to_creation_freq

From these results, we conclude that GPT-4 is capable
of near-perfect reconstruction of the original functions using
unaltered text descriptions. GPT-4 was confused by the first
two of these test functions, operating at the character level
instead of the string level for the inputs lists. These results
provide a promising baseline against which to compare LLM
performance when reconstructing functions from compressed
text descriptions.

D. Code Generation from Compressed Text

Now that we established GPT-4 can correctly reconstruct
functions from text descriptions, we explored if it can generate
the functions equally well when given the text description in
compressed form. As shown in the previous experiments, we
observed substantial exact text loss when using LLM com-
pression. Our next experiment aimed to explore if semantic
retention could overcome information loss due to compression
when writing source code. Given the compressed description
prompt, GPT-4 generated the reconstructed Python functions
discussed below.

The generated chatgpt_base_gen_function_one
code is partially correct because it counts the occurrences of
each unique character in the input list of strings and returns
a dictionary with the character count, instead of the count of
string instances:

1 def chatgpt_base_gen_function_one(l: list[str
↪→ ]) -> dict:

2 unique_chars = set(’’.join(l))
3 occurrences = {k: sum(s.count(k) for s in

↪→ l) for k in unique_chars}
4 return occurrences

The generated chatgpt_base_gen_function_two
code is also partially correct because it identifies unique
characters from the input list of strings and returns a dictionary
with each character mapped to its doubled version, instead of
duplicating the input string:

1 def chatgpt_base_gen_function_two(l: list[str
↪→ ]) -> dict:

2 unique_chars = set(’’.join(l))
3 doubled_chars = {k: k * 2 for k in

↪→ unique_chars}
4 return doubled_chars

The generated chatgpt_base_gen_function_three
is correct because it takes an input dictionary and returns a
new dictionary with the values incremented by one:

1 def chatgpt_base_gen_function_three(d: dict[
↪→ str, int]) -> dict:

2 incremented_values = {k: v + 1 for k, v in
↪→ d.items()}

3 return incremented_values

The generated chatgpt_base_gen_function_four
is correct because it accepts any number of positional and
keyword arguments and simply returns the integer 1:

1 def chatgpt_base_gen_function_four(*args, **
↪→ kwargs) -> int:

2 return 1

The generated chatgpt_base_gen_function_five
code is correct because it appends the string ’mutated’ to each
element in the input list of strings:

1 def chatgpt_base_gen_function_five(l):
2 for i in range(len(l)):
3 l[i] += ’mutated’
4 return None

The generated chatgpt_base_gen_function_six
code is correct because it processes a Pandas Series of datetime
objects, groups them by the given frequency, computes nor-
malized frequencies, and returns a dictionary with the rolling
probability of account creation:

1 def chatgpt_base_gen_function_six(
↪→ created_at_dt, freq):

2 # Step 1: Convert created_at_dt to
↪→ created_at_freq using the given
↪→ frequency

3 created_at_freq = created_at_dt.resample(
↪→ freq).count()

4

5 # Step 2: Group created_at_freq into
↪→ created_at_freq_grouped

6 created_at_freq_grouped = list(
↪→ created_at_freq.items())

7

8 # Step 3: Initialize day_to_creation_freq
↪→ dictionary

9 day_to_creation_freq = {}
10

11 # Step 4: Iterate through
↪→ created_at_freq_grouped and update
↪→ day_to_creation_freq

12 for grp_num, grp in
↪→ created_at_freq_grouped:

13 day_to_creation_freq[grp_num] = len(
↪→ grp)

14

15 # Step 5: Normalize day_to_creation_freq
16 total = sum(day_to_creation_freq.values())
17 day_to_creation_freq = {k: v / total for k

↪→ , v in day_to_creation_freq.items()}
18

19 # Step 6: Update day_to_creation_freq with
↪→ rolling cumulative sum

20 rolling_cumsum = pd.Series(
↪→ day_to_creation_freq).cumsum().to_dict()

21 day_to_creation_freq.update(rolling_cumsum
↪→ )

22

23 # Step 7: Create rolling_prob by dividing
↪→ each value by the maximum value

24 max_val = max(day_to_creation_freq.values
↪→ ())

25 day_to_creation_freq = {k: v / max_val for
↪→ k, v in day_to_creation_freq.items()}

26



27 # Step 8: Return day_to_creation_freq
28 return day_to_creation_freq

From these initial experiments, we conclude that GPT-4
can accurately reconstruct the original Python functions from
semantically compressed text descriptions of Python source
code. This result indicates that despite the information loss due
to compression, the model can retain the essential semantics
required for code generation. This finding also demonstrates
the potential of using semantic compression for efficient
communication and processing of source code by LLMs.

E. Result Implications

Our experiments demonstrate that GPT-4 can reliably recon-
struct code when given a compressed text description, which
suggests it can successfully retain essential semantic infor-
mation despite information loss due to compression, enabling
it to reconstruct the original code with functional accuracy.
Assuming the prompt size needed to generate and broadly
understand basic source code functionality can be decrease
substantially, the throughput of LLMs becomes considerably
larger. Given an average semantic compression rate of approx-
imately 80%, this brings ChatGPT-4’s effective token limit
from around ≈ 32k tokens to:

Effective Token Limit =

32, 000× 1

1− 0.80
= 160, 000

(8)

This ∼5× expansion in tokens increases the effective ca-
pacity of the model to handle larger tasks related to code
summarization, annotation, and generation. This finding is
important because it enables researchers and practitioners to
use LLMs like GPT-4 for potentially larger and more intricate
code generation and interpretation tasks that were previously
infeasible due to token limitations restricting the total prompt
size.

We conclude from our experiments that semantic compres-
sion is a powerful technique for improving the efficiency and
effectiveness of LLMs in code generation and interpretation
tasks. One possible improvement to our approach involves
strictly enforcing the use of type hints when prompting for
code generation to further provide an LLM context about
expected variable types and their associated transformations.

VII. ADDITIONAL EXPLORATION

This section outlines additional studies that were conducted
as part of this investigation, along with a brief discussion of
our initial findings.

A. Compression of Factual Information

In addition to literary short stories, the compression tasks
of Section IV were also conducted on nine randomly selected
Wikipedia pages on the following topics: basketball, the his-
tory of medicine, quantum mechanics, the Roman empire,
R2K, the solar system, tulip (flower), viola (instrument),
WeWork (company). The results from this task were similar

to the results reported in Section IV and are therefore omitted
for brevity.

B. Manipulation of Compressed Information

As an initial foray into effective manipulation of compressed
representations, we asked GPT-4 in separate tasks to recur-
sively (1) form a short story with single sentences, starting
from the single sentence seed “A small furry dog with a blue
collar visited a big city by itself.” and (2) construct a list of
digits from 0-9, adding one digit at a time, using the number
5 as a starting point. Both tasks were subject to a maximum
length constraint, so the model could determine the point of
task completion.

Directives were provided in a model-compressed format,
so the model was expected to first decompress the directive,
apply the instructions of the decompressed directive to the
compressed data, and recompress the modified data with the
original data, to pass to another GPT-4 instance for further
processing. The model did not perform well on either of these
tasks since it required recursive manipulation and iterative
compression of information. We will explore this direction
further in future work.

C. Compressive Meta-Prompting for Code Generation

One view of compression from the perspective of source
code generation is the length of a minimal text description
of source code that encodes a functional code prototype. To
further explore the code generation task, a meta-prompt was
provided to GPT-4 to enable a code generation directive and
a language change directive.

These directives were encoded as follows: cg (lang)
[lib] (func) enables “code generation” in a specific
language, possibly using a specific library, implementing the
described functionality; chg (new_lang) enables a change
from the previously generated code language to the target
language. In this context parentheses indicate mandatory ar-
guments and brackets indicate optional arguments.

In limited experiments, this compressive meta-prompt
facilitates the implementation of a basic recurrent neural
network (RNN) in Python, using PyTorch, with the command
cg Python torch rnn. This code was then converted to
Rust source code using chg Rust. In a separate experiment,
a semi-colon was used without prior instruction to produce
Python code using NumPy for matrix multiplication
and then generate code with the same functionality in
JavaScript using the chained directives: cg Python numpy
matrix multiplication; chg JavaScript; cg
JavaScript matrix multiplication.

These results from this experiment warrant additional ex-
ploration in what we call “compressive meta-prompts.” These
types of meta-prompts are directives that encode a potentially
high information density for a sufficiently specified objective.

VIII. RELATED WORK

This section compares our approach with related work on
evaluating LLMs and data compression.



A. Neural Data Compression

Data compression aims to reduce the size of data in a
way that maximally preserves the original raw data before
compression. This problem has recently been addressed via
neural models [21], [22] which can achieve more nuanced
compression policies than rigidly defined algorithms or en-
coding schemes. These approaches may offer promise for
complex compression tasks, such as for high-entropy data or
intricately structured data formats, at the expense of increased
performance overhead or limited generalization power over
legacy approaches.

Our work leverages LLMs, which are treated as a black
box with minimal interpretability from input prompt to output
response. Our approach is based on the view that the model
weights of an LLM represent a compressed representation of
its training data and can thus serve as a compression mech-
anism for input data via strategic prompting. Motivated by
fundamental constraints on input token counts [8] and request
counts to an LLM, we explore the compression capabilities of
LLMs in both lossless and lossy paradigms on both text-to-text
and text-to-code tasks. While our results are not overwhelm-
ingly impressive relative to legacy lossless techniques, they
warrant additional exploration of meta-prompting for semantic
compression capabilities.

B. Large Language Model Code Generation

The code generation capabilities of LLMs have marked
a paradigm shift in legacy software engineering workflows.
Tools like Github Co-Pilot and similar offerings [23], [24]
provide in-IDE pair programming capabilities, endowing pro-
grammers with auto-complete suggestions for code modifica-
tion and refactoring, based on comments or existing neigh-
boring code. These tools are sometimes viewed as simple
shortcuts to crowd-sourcing sites, such as StackOverflow.
Indeed, studies [20], [25]–[28] have shown their propensity
to propagate low-quality or insecure code by de-sensitizing
programmers to the quality of generated code.

Our work focuses on preliminary investigations of leverag-
ing LLMs to compress natural language descriptions of code
functionality. We also focus on generating source code from
compressed, LLM-generated natural language descriptions of
Python functions.

C. Large Language Model Evaluation

Empirical evaluation of LLMs is still a nascent discipline.
In particular, there is both interest and urgency in improving
our collective understanding of the ways an LLM produces
an output response given an input prompt to (1) enhance
transparency and confidence around LLM applications and (2)
mitigate systematic bias [29]–[34]. Efforts in this area center
on the global statistical trends in natural language usage as it
applies to prompting and downstream use of output in LLMs.

There are a number of open questions with respect to fair
evaluation of LLMs and mitigation of bias in these models,
as well as the most productive techniques for ensuring high
quality responses from an input prompt [6], [35]. Our work

assesses the affects of prompt engineering on the measurable
effects of compression quality for text compression and code
generation and summarization tasks. Evaluation methods of
LLMs stand to further enhance and contextualize the findings
in this work, but much additional research is required in this
area.

IX. CONCLUDING REMARKS

This paper presents an initial evaluation of compression
techniques in Large Language Models (LLMs), specifically
ChatGPT-3.5 and ChatGPT-4. We propose two novel metrics
for evaluating their performance: Semantic Reconstruction
Effectiveness (SRE) and Exact Reconstruction Effectiveness
(ERE). We also demonstrate that LLMs can effectively recon-
struct source code from compressed text descriptions while
maintaining a high level of functional accuracy.

The following is a summary of key lessons learned from
the research presented in this paper:

• Evaluation metrics provide a sound basis for comparisons
Our SRE and ERE metrics provide a sound and stan-
dardized means of assessing the effectiveness of LLM
compression techniques, considering both the semantic
aspects and the precise textual content of LLM outputs
on compression directives. These metrics support future
research on LLM compression by fostering the develop-
ment of more data-efficient models, and contributing to
improved interpretability of LLM outputs.

• Evaluations are limitation by resource constraints The
results presented in this paper are inherently limited by
a small number of data samples, as well as limited
resources. A principal concern with LLMs is the immense
amount of resources required to systematically evaluate
bias in outputs at large-scale.

• Reproducibility challenges across releases The LLM
models are updated and modified on an unknown basis,
which may affect the reproducibility of our results over
time. In a similar vein, different users may observe differ-
ent model outputs for identical input prompts, for reasons
that are not entirely clear, which may limit reproducibility
in some cases.

The following is a non-comprehensive summary of ques-
tions that may be of interest for future work in the area of
approximate compression with LLMs:

1) For how long of an inference period can recalled com-
pressed text persist?

2) What meta-representations (e.g., unicode, emoji, math
symbols, etc.) are LLMs biased towards, if any? Simi-
larly, what is the derived relative information density of
each meta-representation when used by an LLM?

3) What is the minimal prompt that achieves a compression
rate of X for a specific type of data?

4) How can cooperating/competing LLMs collectively
leverage or refine a contextual compression policy?

5) Can compressed data be embedded into an existing
LLM system in an adversarial way to produce undesired
behavior?



6) Can approximate compression policies be effectively
shared or communicated across models?

7) Can different contextual categories (e.g., code, prose) be
derived to taxonomize LLM compression capabilities?

8) How does the information integrity degrade when recur-
sively compressed by multiple LLM instances?

As LLMs continue to evolve and serve a wide range of
real-world use cases, we believe the insights and metrics
presented in this study will serve researchers and practitioners
alike, helping to drive the development of more effective and
efficient LLMs.
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