
Command Revisited
Markus Voelter

voelter@acm.org

Michael Kircher

Michael.Kircher@siemens.com

This pattern revisits the Command [GoF] and Command Processor
[POSA1] patterns. The reasons for this revisiting is that we think that the
Command and Command Processor patterns do not really capture the
essence of what the Command pattern is. We think that Command is
basically a way to emulate the concept of closures in object-oriented
languages that don’t natively have this feature.

The Command Revisited pattern packages a piece of application
functionality as well as its parameterization in an object in order to make it
usable in another context, such as later in time or in a different thread.

Example

Suppose you are building a complex communication software. The
individual sub-sequences of the protocol are similar, but not quite identical.
The sub-sequences contain logic that operates on some form of state, also
called context. For the various sub-sequences, adapted context information
is necessary.

Because of maintainability and to keep the footprint small—the
communication software is to be used in an embedded device—you want to
reuse repeating sub-sequences.

For example in the figure above you can detect process step “B” be involved
in protocol I as well as in protocol II. The state on which the sub-sequence
depends is similar in both cases. The isolation of reusable sub-sequences is
the result of an in-depth analysis of the communication protocol. How can

Step A

Step B

Step C

I
Step DII

you encapsulate the protocol sub-sequences as a resuable software building
block?

Context

Applications that need to execute application logic in a different execution
context, such as later in time or in a different thread.

Problem

When building object-oriented systems, it is frequently necessary to
separate the decision of what piece of code should be executed from the
decision of when this should happen.

In the example above, a button is a generic object that, when pressed,
executes a piece of behavior. In order to make this possible, the button must
be configured with this piece of behavior. Once the button is pressed, the
behavior is executed, whatever the behavior does specifically.

Another example are internal iterators. These are functions that iterate over
a collection of elements and execute a piece of functionality for each
element. Again, it is necessary to configure the iterator with the
functionality it should execute.

The following forces must be addressed:

• Context independent execution. The application logic should be
executable independent of the context, for example independent of the
thread or state.

• Parameterization. The application logic should be configurable via
parameters.

• Decoupling. Executing the behavior should not required detailed
knowledge about the specific behavior executed.

Solution

Encapsulate a piece of functionality in a command object. Provide a generic
interface to allow the execution of the behavior independent of the behavior
itself. Attributes of the object carry the parametrization needed during its
execution.

A creator instantiates the command object, providing the necessary context
attributes. The command is then passed to its execution context. The
execution of the command is triggered via a generic interface by an external
event.

Since the execution interface is generic, the execution context does not need
to know about the specific behavior that is encapsulated in the command
object.

Structure

The following participants form the structure of the Command Revisited
pattern:

A creator creates command objects.

A command object contains the application logic.

An execution context provides the state and run-time environment for the
command object.

An executor triggers the execution.

The following CRC cards describe the responsibilities and collaborations of
the participants.

Class
Creator

Responsibility
• Creates a command object

of the required type.
• Parameterizes the

command object with
values from its own
execution context.

• Passes the command
object to its new execution
context.

Collaborator
• Executor

Class
Execution Context

Responsibility
• Represents the

environment in which the
command object is
executed.

Collaborator Class
Executor

Responsibility
• Configures the command

via parameters.
• Executes the command in

the execution context.

Collaborator
• Command Object
• Execution Context

Class
Command Object

Responsibility
• Encapsulates the behavior

to be executed.
• Carries the

parametrization required
to execute the
encapsulated application
logic.

Collaborator
• Execution Context

The following diagram shows a UML class diagram that illustrates the
structural relationships.

Dynamics

The creator decides which behavior should be executed in the execution
context by instantiating a command object of a suitable type. It parametrizes
the command object by setting its context attributes to the required values
from its own context. It then passes the command object to the execution
context. Later, the executor triggers the execution of the command. The
command can access the execution context to access its information.

The following sequence diagram shows the interactions.

Creator

Execution
Context

execute()

Command

Executor

execute()

parameters...

Concrete
Command

<<creates>>

uses
parameter

from

passes
command

to

Creator Concrete
Command

<<create>>

set parameters

Execution
Context

pass command

Executor

execute (execution context)

access context

Implementation

There are several steps involved in implementing the Command Revisited
pattern.

1 Define an abstract class as generic interface for command execution that
will be used by the executor. You will typically define an execute()
operation.

2 Add the state which the concrete commands need during their execution to
the execution context. Make the execution context available to the concrete
command.

3 Define and implement the creator, for example using patterns like Abstract
Factory [GoF] or Factory Method [GoF].

4 Define the execution context. If necessary allow it to keep references to
command objects, but be aware of lifecycle issues.

5 Implement your specific command functionality in subclasses of the
abstract command class defined above. This includes:

5.1 Implementing the execute() operation according to your specific
requirements.

5.2 If a specific command needs temporary state during execution, add the
necessary attributes to the concrete command class.

Example Resolved

Imlement the common sub-sequences of the protocol logic as command
objects. Factor our the state they have in common and present the
encapsulated state as execution context. The state all sub-sequences have in
common gets encapsulated in base classes. Sub-sequence specific state is
kept in derived classes.

The benefits of the this design are the high degree of reusability and the
improved maintainability. When parts of a protocol change, only isolated

Common
Execution
Context

Process I
Execution
Context

Process II
Execution
Context

Sub-Sequence A
Command

Sub-Sequence D
Command

Sub-Sequence C
Command

Sub-Sequence B
Command

parts of the software must be changed. Also, when the state on which the
protocol operates changes, the relevant parts can be exchanged between the
context base class and the a derived class.

Variants

There are two variation points in this pattern:

• A command may need to access state that is determined by the creator. In
this case, the command object has to remember the state determined by
the creator. Thus, for each parameter the execute() operation accesses,
the command class needs to have an attribute. The creator passes the
parameters to the constructor, which assigns the respective values to the
attributes. They can then be accessed during execution.

• A second variation point is how the command accesses the execution
context. In some cases it might be implicit (for example, since the context
is global), sometimes it needs to be given access explicitly. In that case,
the execute() operation has to have the respective parameters. The
executor has to pass these values to the execute() operation.

Consequences

There are several benefits of using the Command Revisited pattern:

• Time-independent execution of application logic. The encapsulation of
application logic allows to queue it and execute it at a different point in
time.

• Context-independent execution of the application logic. The separation
between application logic and context allows to execute the application
in separate contexts, such as in a different thread or using a different state.

• Exchangeability of application logic. The separation between application
logic and context allows to easier exchange the application logic.

There are also some liabilities using the Command Revisited pattern:

• Dependency of the application logic on the state. If the representation of
the state changes slightly, all application logic has to follow that change.

• Complexity. Wrapping application logic and parameters in a command
adds complexity to the application. This is the penalty for the benefit of
context independency.

Known Uses

Commands are used in many cases. Some examples follow:

• GUI libraries. As outlined above, GUI commands are the most
prominent example. The can be found in Java Swing, in SWT as well as
almost any other GUI library.

• Java. Commands are often used to implement internal iterators in
languages, such as Java, which do not feature them natively.

• Transactional systems. Finally, commands are often used in transactional
systems. The infrastructure provides transaction handling, the specific
behavior that should be executed within the transaction is passed in by
clients via a command.

See Also

Futures [Lea99] can be used to allow the creator access to the result of
executing the command.

Command objects are a way to emulate closures. Closures are available in
many functional and some object-oriented languages. Examples include
LISP and Smalltalk, where they are called code blocks.

References

[GoF] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

[Lea99] D. Lea, Concurrent Programming in Java: Design Principles and Pattern,
Addison-Wesley, 1999

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture—A System of Patterns, John Wiley
and Sons, 1996

