A Component Assignment Framework for Improved
Capacity and Assured Performance in Web Portals

Nilabja Roy, Yuan Xue, Aniruddha Gokhale, Larry Dowdy andutas C. Schmidt

Electrical and Computer Science Department Vanderbiltghsity

Abstract. Web portals hosting large-scale internet applicationg l@come pop-
ular due to the variety of services they provide to their sis€hese portals are
developed using component technologies. Important dedigfienges for de-
velopers of web portals involve (1) determining the compar@acement that
maximizes the number of users/requests (capacity) witimouéasing hardware
resources and (2) maintaining the performance within tetiaunds given by
service level agreements (SLAs). The multitude of behavipatterns presented
by users makes it hard to identify the incoming workloads.

This paper makes three contributions to the design and aaiuof web portals
that address these design challenges. First it introducedgmrithmic frame-
work that combines bin-packing and modeling-based quethiegry to place
components onto hardware nodes. This capability is rehlizethe Component
Assignment Framework for multi-tiered internet applioag (CAFe). Second, it
develops a component-aware queuing model to predict wablgmrformance.
Third, it provides extensive experimental evaluation gdine Rice University
Bidding System (RUBIS). The results indicate that CAFe a@ntify opportu-
nities to increase web portal capacity by 25% for a constanatLent of hardware
resources and typical web application and user workloads.

1 Introduction

Emerging trends and challengesPopular internet portals, such as eBay and Amazon,
are growing at a fast pace. These portals provide many ssr¥aclients, including
casual browsing, detailed reviews, messaging betwees,usgrer and seller reviews,
and online buying/bidding. Customers visiting these wettgd® perform various types
of behaviors, such as casual browsing, bidding, buying/amdessaging. The broader
the variety of services and user behavior a web portal sapgbe harder it is to analyze
and predict performance.

Performance of web portals can be quantified by averagemssgione or through-
put, which are functions of incoming load. In turn, the loahgrally corresponds to the
arrival rate of user sessions or the concurrent number efitslihandled by the portal.
As the number of clients increases, performance can degritdeespect to customer’s
response time.

Service level agreements (SLAs) could be provided to bohagérformance, such
as an upper bound on response time. In such a case, a webmmEets to meet per-
formance within the bounds given by the SLA. The capacityusfhsa web portal is



defined as the maximum number of concurrent user sessiohg onaximum request
arrival rate handled by applications with performance imithe SLA bound.

The goal of portal designers is to deploy the given web pootahaximize its ca-
pacity,i.e.,, maximize the number of users in the system while maintgittie average
response time below the SLA limit. In turn, this goal helpscimraze the revenue of the
portal since more users can be accommodated. Portal casagétnerally proportional
to the hardward,e., more/better hardware means more/better capacity. Wethl pie-
signers are constrained by system procurement and opsahtiosts, however, which
yields the following questions: (1) for a fixed set of hardeyazan web portals serve
more clients and is the current hardware utilized in therogktiway?

To answer these questions, it is important to understandidlyecontemporary web
portals are implemented. Component-oriented develop(senh as J2EE or .NET) is
generally used to develop web portals by using the “dividd@nquer” method. Each
basic functionality (such as a business logic or a databasey}jis wrapped within a
component, such as a Java class. Several components areothponsed together to
implement a single service, such as placing bids in an austte or booking air tickets
in a travel site.

A service is realized by deploying the assembly of compaenthe hardware re-
sources. Maximizing the utilization of resources and nmgetlient SLA requirements
can be achieved by intelligently placing the componentshenrésources. For exam-
ple, colocating a CPU-intensive component with a diskfislee component may yield
better performance than two CPU-intensive componentshege

Application placement in clustered servers has been stiektensively [1-6]. For
example, [4—6] estimate resource usage of components aee pbmponents onto
nodes by limiting their sum of resource usage within avddainde resource. They
do not check response time of applications. On the other,jahdhecks the response
time while placing components. Their model is based on lifigang and the effect of
colocating components is estimated approximately. Otlogk\i2, 3] checks response
time while provisioning resources using queuing theory.

In most related work, however, the functional granulargymodeled at the tier
level, not at the component level. The downside of using teaser granularity is that
resources can remain unutilized in nodes where componeatd be configured, but
tiers may not. If the models are component aware, avail@sieurces in the nodes can
be better utilized by proper placement. Algorithms becornesncomplicated, however,
since the solution space is increased.

Solution approach — Intelligent component placing to maximize capacity . This
paper presents theéomponent Assignment Framework for multi-tiered internet appli-
cations (CAFe), which is an algorithmic framework for increasingaaity of a web
portal for a fixed set of hardware resources by leveragingéneponent-aware design
of contemporary web portals. The goal of CAFe is to create@ogenent plan that
maximizes the capacity of the web portal so their perforreanr@mnains within SLA
bounds. It consists of a mechanism to predict the applicgt@formance coupled with
an algorithm to assign the components onto the nodes.

CAFe complements related work by (1) introducing the cohoép performance
bound through a SLA that acts as an additional constrainthenptacement prob-



lem, which requires estimating and evaluating applicgberiormance against the SLA
bound at every step, (2) creating service- and componeateagueuing models to es-
timate component resource requirements that predict bwerxice performance, (3)
devising an algorithmic framework that combines a queuitglehwith a bin-packing
algorithm to iteratively compute component placement &/hilaximizing capacity of
the application, and (4) showing how to balance resourcgausaross nodes in the
network to deliver better performance.

Paper organization. The rest of the paper is organized as follows: Section 2 dis-
cusses an example to motivate intelligent component planeéand formulate the prob-
lem CAFe is solving; Section 3 examines CAFe’s algorithmaarfework in detail; Sec-
tion 4 empirically evaluates the performance of CAFe; $&ch compares CAFe with
related work; and Section 6 presents concluding remarks.

2 Motivating the Need for CAFe

This section presents an example to motivate intelligentpmnent placement and for-
mulate the problem CAFe is solving.

2.1 Motivating Example

The motivating example is modified from [7] to show how intgthtly mapping the
components of a web portal to available hardware nodesasesgperformance by sev-
eral factors. The portal is an online bidding system (sintdeeBay) that provides mul-
tiple services, such as browsing, bidding, and creatingj@ng The portal is structured
as a 3-Tier application with web-server, business logid,@atabase tiers.

Each service in the web portal consists of three componenésin each tier of the
application. For example, the functionality of creating@ans is implemented by a ser-
vice that is composed of three components: (1) a web sereicgonent that handles
incoming requests, (2) a business tier component that imgriés application logic, and
(3) a database component to make database calls. The welbipateployed using a
default deployment strategy with each tier placed on a singide. The portal perfor-
mance is analyzed using an analytical model presented.in [7]

Server |CPU %Disk % Server |CPU %Disk %
Web Server 0.510| 0.568| |Web Server 0.510| 0.568
BT Node | 0.727 | 0.364 BT Node | 0.822| 0.554
DB Server| 0.390| 0.997| | DB Server| 0.294 | 0.806

(a) Original Deployment (b) After Reallocation
Table 1:The Utilization of resources

The response times are given in Table®, @lumn. Most services have an unduly
high response times.g., Place Bid has a response time of 30 secs, which is unaccept-
able in an online bidding system. The CPU and disk utilizagiof each node is given
in Table 1a. Table 1a shows that the DB Server is dispropmataly loaded. In partic-
ular, the DB Server disk is overloaded, whereas the Busihiesg{BT) Server disk is



underloaded. One solution would be to move some compon@mtsthe DB Server to
the Business Tier Server so disk usage is more uniform atressodes.

The database component for the “Login” service is chosearadam to move to
the BT node. To analyze the new deployment, the analytic ined#anged and the
new utilization of the resources are given in Tables 1b, tvisltows that the resources
are more evenly utilizede.g., the DB_Server disk is now only 80% utilized. The cor-
responding response times are given in the Tablé®2c@umn. The percent decrease

Services [Response Tim&lew Response Timeo Decreaske
Home 0.086 0.086 0.00

Search 12.046 0.423 96.49
View Bids 6.420 0.530 91.78
Login 17.230 0.586 96.60
Create Auction  27.470 0.840 96.95

Place Bid 30.800 0.760 97.53

Table 2: The Response Times of the Services Before and A&allédtation

in the response times are given in the right-most columns@&hmesults show that the
response times are reduced significantly.

The analysis clearly shows that the response time of alicEs\can be improved
significantly by placing the components properly. Propacpment can be achieved via
two approaches. First, component-aware analytical madei$e used to evaluate the
impact of co-located components. Traditional models hawkdd at performance from
the granularity of a tier [2] or have overlooked the effectoflocating components [1].
Second, resource utilization can be balanced between timisanodes to ensure the
load on any one resource does not reach 100%. This approable eaded by analyzing
performance at the component level (since components hiéewavailable resources
more effectively) and using a placement routine that mapgpmments to nodes so that
the resources are utilized uniformly and none utilize 10G%ny resource. Section 3
shows how CAFe combines both approaches to develop a compoapping solution
that improves web portal capacity.

2.2 Problem Formulation and Requirements

As discussed in Section 1, the problem CAFe addresses eswabaximizing the capac-
ity (user requests or user sessions) of a web portal for dieedware resources, while
ensuring that the application performance remains wittiA Sounds. This problem
can be stated formally as follows: The problem domain cdmsikthe set oh compo-
nents C, ££1,Cy, .....Cy}, the set ofm nodes P P1,P....Py}, and the set ok services
{S1,S...&}. Each component has Service DemandDy {D»...D,}. Each service has
response time RTRT;, RT,...RT}. The capacity of the application is denoted by either
the arrival rate) for each service X;.....A¢} or the concurrent number of customers
M {M1,My,....Mi}. QUi gives the utilization of resouraeby component. The SLA
gives an upper bound on the response times of each sé&\Riga 1...RTyax}-



CAFe must therefore provide a solution that placesthemponents il€ to them
nodes P such that the capacity (eitheor M) is maximized while the response time
is within the SLA limit RT < RTga. To achieve this solution, CAFe must meet the
following requirements:

Place components onto nodes to balance resource consumptio polynomial
time. Application components must be placed onto the availabiévere nodes such
that application capacity is maximized while the perforeais within the upper bound
set by a SLA. Since this is an NP-Hard problem [8] it is impott® find out efficient
heuristics that can find good approximate solutions. Se@i@ describes how CAFe
uses an efficient heuristic to place the components ontovhiable nodes and also
ensuring that the resource utilization is balanced.

Estimate component requirement and application performarte for various place-
ment and workload. To place the components in each node, the resource requiteme
of each component is required. Moreover, for each placersteategy, the applica-
tion performance must be compared with the SLA bound. Botly wath workload
and particular placement. We therefore need a workloadeanthonent-aware way of
component resource requirement and application perfareastimation. Section 3.2
describes how CAFe develops an analytical model to esticwatgponent resource re-
quirement and application performance.

Co-ordinate placement routine and performance modeling tanaximize capac-
ity. For each particular placement, the application perforraareed to be estimated
to check if it is within the SLA limit. Conversely, performea estimation can only be
done when a particular placement s given. Placement arfidrpgance estimation must
therefore work closely to solve the overall problem. Set8a3 describes how CAFe
designs a algorithmic framework to co-ordinate the actimfes placement routine and
an analytical model in a seamless fashion.

3 CAFe: A Component Assignment Framework for Multi-Tiered
Web Portals

This section discusses the design of CAFe and how it addrélseeproblem and re-

quirements presented in Section 2.2. CAFe consists of twgponents: the placement
algorithm and analytical model, as shown in Figure 1. Theiinp CAFe includes the

set of application components and their inter-dependascghown by the box on the
left in Figure 1 and the set of available hardware nodes slawthe right. The output

from CAFe is a deployment plan containing the mapping of iegfibn components to

nodes. This mapping will attempt to maximize the applicatiapacity. The rest of this
section describes each element in CAFe.

3.1 Allocation Routine

As mentioned in Section 2.2, there is a need to develop eftidieuristics to place
components onto nodes. Placing components to hardware matiebe mapped as a
bin-packing problem [9], which is NP-Hard in the generalecéand which is what our
scenarios present). Existing bin-packing heuristicsi{@gfirst-fit and best-fit) can be
used to find a placement that is near optimal.



Component
Assignment
Algorithm

S| 4 |

Simple
Analytic
Model
Application Component Available

Components Assignment Hardware
Framework

Server Server  Server

Server Server  Server

Fig. 1: The CAFe Component Assignment Framework Architectu

The motivating example in Section 2 describes the intuibehind the allocation
routine, which is that performance increases by balandiegésource utilization be-
tween the various nodes and not allowing the load of any resdo reach 100%. We
use worst-fit bin packing since it allocates items to bins ékabcing the overall usage
of each bin.

Algorithm 1 gives the overall allocation routine, which ismaapper around the

Algorithm 1 : Allocate
C: Set of components

foreach L: Set of Components that should remain local do
D+ Sum the Service Demands of all componentk in

Replace all components in L withD in C
end
DP =worst_fit_bin_packing(C,P)

worst-fit Algorithm 2. Algorithm 1 groups together compotetihat are constrained to
remain co-located in one machine. For example, they coutdddatabase components
that update the tables and need to be connected to the nredterde of a database and
hence msut be allocated to a single node. Algorithm 1 sum$Sémeice Demands of
the components that must be collocated and then replacedijpa hypothetical single
component. A call to thevorst_ fit routine is made at the end of algorithm 1.

The worst-fit routine is given in Algorithm 2. The componeats first ordered ac-
cording to their resource requirements (Line 2). The atharithen runs in an iterative
fashion. At each step an item is allocated to a bin. All biresiaspected and the least
utilized bin is selected.

3.2 Component- and Service-aware Analytical Modeling

Section 2.2 also discusses the need for performance estimtatplace components.
This estimation process involves (1) predicting the reseuequirements of each com-
ponent for certain application loads, (2) predicting theprnse time of each service for



Algorithm 2 : Worst-Fit Bin Packing
begin
Order_Components(C) // Order the Components by resource requirement
foreachCi € C,1<i <|C| do
/I For all components
P < The node with the maximum slack
PlaceC; on toPy
end
end

a b~ W NP

a particular placement, and (3) computing the overall resoutilization of each node.
As application components move among the various nodegédtfermance of each
service in the application will vary. Performance also defseupon the components
that are collocated.

CAFe provides a queuing model that provides average catmp@nce analysis of
a system. It also models the interaction of collocated mlglitomponents by modeling
the queuing delay for resource contention. CAFe uses tfosnration to transform a
deployment plan produced by Algorithm 1 into a multiple slagieuing model that
maps each service as a class in the model. The componentsrafla dass that are
placed in the same node are considered as a single entity. Séwwice Demands are
summed together. After the model outputs the results, CARpsnthe performance
parameters of each class onto the services.

Figure 2 shows the process of creating a model of the apjglicathe input to such

Component Placement
with Service Demand

|:{> CAFe <:| Workload Parameters
A: Arrival Rate

<):‘> M: Concurrent Users
NN Z:Think Time

Servers @ P: Arrival Distribution
Component &
Service aware

Queuing Model

Fig. 2: Create Models of Application

a process consists of the component placement map (mappagpbcation compo-
nents to nodes) along with their Service Demands and theleamthparameters, such
as arrival rate of transactions and number of concurremtagssions.

Depending upon the workload characteristics, a closed aspem model of the
application is constructed. An open model assumes a cantgflow of incoming re-
quests with a given average inter-arrival time betweemtdieA closed model assumes
a fixed number of user sessions in steady state. The sess@itgexactive and users
make requests, then think for some time, and then make acudaserequest. If an
application consists of independent requests arriving lagidg processed, it can be



modeled as an open model. If there are inter-dependentisegsief requests coming
from a single user, however, it must be modeled using a closstel.

These analytical model can be solved using standard proeedn CAFe, the Mean
Value Analysis (MVA) algorithm [7] is used to solve closed deds, while an algorithm
based on the birth-death system is used to solve open mafelBhe solution to the
analytical model provides the response times of the vasengices and also the uti-
lization of the resources such as processor or disk usage warious nodes.

3.3 Algorithmic Framework to Co-ordinate Placement and Peformance
Estimation

Section 2.2 also discusses the need for close co-ordinatioveen placing the compo-
nents and performance estimation. To meet this require@ARe provides a frame-
work that standardizes the overall algorithm and defineardsird interface for com-
munication between the placement and performance estimathis framework also
allows the configuration of other placement algorithmshsas integer programming
and different analytical models like models based on waaseestimation. Different
algorithms or analytical models can be configured in/outrtmpce results pertaining
to the specific application domain or scenario.

CAFe uses an analytical model of the application and a placémoutine to de-
termine a mapping of the application components onto théadla hardware nodes.
CAFe attempts to maximize the capacity of the web portal|evensuring that the
response time of the requests is within the SLA bounds.

Algorithm 3 describes the component assignment framew®hle algorithm alter-
nates between invoking the placement algorithm and an &tiafuusing the analytic
model. In each step, it increases the number of clients isyetem by a fixed amount
and rearranges the components across the nodes to minfreidéference in resource
utilization. It then verifies that the response time is bethes SLA limit using the an-
alytical model and iterates on this strategy until the resgotime exceeds the SLA
limit.

CAFe takes as input the details (such as the Service Demdiredslo component
on each resource) of tie components to deploy. Service Demand is the amount of re-
source time taken by one transaction without including thheuing delay. For example,
a single Login request takes0®4 seconds of processor time in the database server. The
Service Demand for Login on the database CPU then talk#gtGeconds. As output,
the framework provides a deployment pIBi, estimated responsBT) time and total
utilization U) of each resource.

The initial capacity is an input Git_Cap, Line 2). The value oM is set equal to
Init_Cap. This capacity is an arrival rate for an open model or “nundfarsers” for
a closed model. The capacitylf is increased in each step by an incremental Biep
(Line 9) which also can be parameterizédct). At each iteration, the response time
of all services is compared with the SLA provided upper bo(inder while loop at
Line 4).

Inside the inner loop, the framework makes a call to the Adteanodule (Line 6),
which maps the components to the nodes. This mapping is tlesempted to the Model
(Line 7) along with the Service Demand of each component.Mbédel computes the



Algorithm 3 : Component Assignment Framework

Input:

C —set of N components to be deployed,

D «set of Service Demands for all componeiig, < Service Demand of componeintn the device

P —set of K available nodes

RTya set of response time values for each service as specifiectSiLA
Output:

Deployment plarDP « set of tuples mapping a component to a node,

M: Total Number of concurrent clients

RT —set of response times for all components

RT;: Total response time of service

U, : Total Utilization of each resouraein the nodes

J; ,: Utilization of resource by component

U — set of resource utilization of all components

Incr: Incremental capacity at each step

Initcap:Initial Capacity

1 begin
2 Intially, DP = {},M = Initcap,SJ = U,RT, = 5, D, incr = Incr
3 while incr > 10do
4 while 3i : RT; > RTga; do
5 /I Check if any service RT is greater than SLA bound
6 DP = Allocate(SJ, P) // Call Placement routine to get a placement
7 (RT,9J,U) = Model (M, D, DP)// Call model to estimate performance for current placement
8 last_M « M // Save the previous capacity
9 M « M —+incr // Increment the capacity for the next iteration
10 end
11 /I At least one service has Response Time greater than SLA bound for current capacity
12 M « last_M // Rollback to previous iteration’s capacity
13 incr < incr /2 // Decrease incr by half
14 M «— M +incr // Now Increase capacity and repeat
15 end
16 /I while(incr > 10)
17 end

estimated response time of each service and the utilizafi@ach resource by each
component. It also outputs the total utilization of eaclotese.

The inner loop of Algorithm 3 exits when response time of agnige exceeds the
SLA provided upper bound.g., M reaches maximum capacity), at which paimtr is
set to a lower value (one-half) and the algorithm continuesifthe previous value of
M (Line 12). If the inner loop exits again, the valueindr is lowered further (Line 13).
The algorithm ends when the valueioér is less than 10.

The output of the algorithm is that value bf, which yields the highest capacity
possible and also a deployment pl@P) that maps the application components onto
the nodes. Though not provably optimal, the algorithm isaso@able approximation.
An optimal algorithm would require an integer programmiagtine [10] to obtain the
mapping of the components to the nodes. Such an implememtatuld be NP-Hard,
however, and thus not be feasible for large applications=€#erefore uses an intuitive
heuristic based on the popular worst-fit bin packing algonif9].

4 Experimental Evaluation

4.1 Rice University Bidding System

This section describes our experimental evaluation of GARéch used the Java servlets
version of the Rice University Bidding System (RUBIS) [1a]dvaluate its effective-
ness. RUBIS is a prototype of an auction site modeled aftay #at has the features



of an online web portal studied in this paper. It provideg¢htypes of user sessions
(visitor, buyer, and seller) and a client-browser emulétat emulates users behavior.

A RUBIS session is a sequence of interactions for the samtroes. For each
customer session, the client emulator opens a persistefiPHdnnection to the Web
server and closes it at the end of the session. Each emuléatwaits for a certain
think time before initiating the next interaction. The naxeraction is determined by a
state transition matrix that specifies the probability tdrgo one interaction to another
one. The load on the site is varied by altering the numberientd.

CAFe requires an analytical model of the application. Oheetodel is constructed
and validated, it can be used in CAFe to find the appropriatepcment placement.
The steps required to build the model are (1) compute Se@&mand for each ser-
vice provided for each customer type such as visitor or bayer(2) build a customer
behavior modeling graph of user interactions and calculseercentage of requests
for each service. For our experiments, a workload repraspatset of visitor clients
were chosen, so the workload consists of browsing by thesas®tis thus composed of
read-only interactions. The components for each servi€UJBIS is given in Table 3.

Services Home [Browse| Browse_Cat | Browse_Reg Br_Cat_Reg
Naming BT_H|_ BT_B|_ BT_BC|DB_BC BT_BR|DB_BR BT_BCR|DB_BCR

Services Srch_It_Cat | Srch_It Reg| View_Items | Vu_Usr_Info Vu_Bid_Hst
Naming/BT_SCDB_SC|BT_SRDB_SRBT_VI|DB_VI|BT_VU[DB_VU|BT_BH|DB_BH
Table 3: Component Names for Each Service

The RUBIS benchmark was installed and run on the ISISLabéelsww. i si sl ab.
vander bi | t . edu) at Vanderbilt University using 3 nodes. One for the cliemtéators,
one for the "Business Tier" and the other for "Database Tkeath node has.2 GHz
Intel Xeon processor, 1GB of ram, and 40GB HDD running Fe@oee 8.

4.2 Computing Service Demand

The Service Demand of each of the components must be captubedd an analytical
model of the application. The RUBIS benchmark was run wittréasing clients and
its effect on various CPU, memory, and disk were noted. Theang and disk usages
are shown in Figures 3a and 3b. Disk usage is 16W0.2%) and memory usage was
~40%. Moreover, these utilizations remained steady eveheaaumber of clients are
increased. Conversely, CPU usages increased as numbiemni$ ¢gjrew (the Actual line
in the Figure 5a).

The results in Figures 3a and 3b show that CPU is the bottkedmdce. The Service
Demands were computed for the CPU and the disk. Since menasyet used fully,
it is not a contentious resource and will not be used in théyéinal model. Moreover,
the CAFe placement routine ignores disk usage since it r1s¢ady and is much less
than CPU usage. The CAFe placement routine thus only usesesnarce (CPU) to
come up with the placement.

RUBIS simplifies the calculation of Service Demand. It ird#8 a client-browser
emulator for a single client and makes requests on one seatia time. During the
experiment, the processor, disk and memory usages wengredphfter the experiment
finished we used the Service Demand law [7] to calculate tiheic&eDemand for that



‘‘‘‘‘‘‘‘‘‘‘‘‘‘

500 750 1000 250 500 750
::::::

(a) Memory Utilization (b) Disk Utilization
Fig. 3: The Utilization of Memory and Disk for RUBIS Benchmark

service. In some services (such as “Search Items in Caggjptihe Service Demand is
load dependent. For such services the number of clientsneasased and the Service
Demands were measured appropriately.

The Service Demands of CPU for all the services measuredhmaway are given
in Table 4. Each service in RUBIS is composed of multiple congnts, with a compo-

Service | Business Tier DB Server Description
Component(secsgfomponent(secs)

home 0.002 0 Home Page

browse 0.002 0.0 Browse Main Page
browse_cat 0.0025 0.0005 Browse Categories
browse_reg 0.0025 0.0005 Browse Regions
br_cat_reg 0.003 0.0007 Browse Categories in Regigns
Srch_it_ca 0.004 0.028 Search Items in Categories
Srch_it_reg 0.0021 0.027 Search Items in Regions
view_items 0.004 0.0009 View Items
vu_usr_infg 0.003 0.001 View User Info
vu_bid_hst 0.004 0.004 View Bid History

Table 4: CPU Service Demand for Each Component
nent in the middle (Business) tier and one in the DatabaseHaeh component has its

own resource requirements or Service Demands.

4.3 Customer Behavior Modeling Graph

For the initial experiment, the workload was composed oftatisype of clients. A
typical user is expected to browse across the set of seraiwyisit different sections
of the auction site. A transition probability is assumedddypical user to move from
one service to the other.

The various transition probabilities are given in Table &rélelemenp; j (at row
i and columnj) represents the probability of thih service being invoked after the
jth service is invoked. For example, a user in the web page “troeat’(browsing
categories) has a@25% chance of going to the “home” page and a 99% chance for
moving on to "Search_it_cat"(searching for an item in agaitg).



home br _cdbrowse_refpr_cat_refSrch_it_caiSrch_it_redview_itemgvu_usr_inf vuﬁbidfhs}vwewﬁitemsfre fvu_usr_info_rebvu_bid_hst_refProbabilitie:

home 0 | 0.01| 0.0025 0.0025 | 0.0025 | 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0026
browse 1 0 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 0.0075 | 0.0075 0.0075 0.0075 0.0075 0.0100
browse_cat | 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0.0070
browse_reg | 0 | 0.29 0 0 0 0 0 0 0 0 0 0 0 0.0029
br_cat_reg 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0.0029
Srch_it_cat | 0 0 0.99 0 0 0.44 0 0.74 0 0 0 0 0 0.3343
Srch_it_reg | 0 0 0 0 0.99 0 0.44 0 0 0 0.74 0 0 0.1371
view_items 0 0 0 0 0 0.55 0 0 0.8 0 0 0 0 0.2436
vu_usr_info | 0 0 0 0 0 0 0 0.15 0 0.99 0 0 0 0.0747
vu_bid_hst 0 0 0 0 0 0 0 0.1 0.19 0 0 0 0 0.0386
view_items_reg 0 0 0 0 0 0 0.55 0 0 0 0 0.8 0 0.0999
vu_usr_info_reg 0 0 0 0 0 0 0 0 0 0 0.15 0 0.99 0.0306
vu_bid_hst_reg 0 0 0 0 0 0 0 0 0 0 0.1 0.19 0 0.0158

Table 5: Transition Probabilities Between Various Service

The steady state probability (percentage of user sessfionspch service type is
denoted by the vectar. The value ofrg denotes the percentage of user requests that
invoke the tha'" service. The vectom can be obtained by using a technique is similar
to the one in [12]. Once computed, the amount of load on eaclicsetype can be
calculated from the total number of user sessions. Themgbt column in Table 5
gives the steady state probabilities of each service.

4.4 Analytical Modeling of RUBIS Servlets

After the Service Demands and the steady state probabiiityfon each service is
available, an analytical model of the application can besttgyed. The RUBIS bench-
mark assumes a client to carry out a session with multipleests with think times in
between. This type of a user behavior must be modeled witbsedimodel.

As soon as a client finishes, a new client takes its place. Vamge number of
clients remains fixed. Figure 4 shows the analytical mod¢hefRUBIS Servlets ver-
sion. As mentioned in Section 4.2, the processor is the atiotes resource. Each ma-

Web Server/
Business Tier

DB Server

Client
Terminals

Fig. 4: Closed Queuing Model for Rubis Java Servlets Version

chine is represented by two queues, one for the CPU and tkefottthe disk.

Figure 4 also shows two queues for each of the two node in thiogment. The
first node is the Business Tier, which also serves as the wekrs&@he second node
is the Database Server. The various client terminals aresepted by delay servers. A
delay server is a server that does not have a queue, so sliantig to use the server
can access it directly it without waiting. This design madeser think times since as



soon as a response to a previous request comes back, theausaverking on the next
request.

Figures 5a and 5b compare the results predicted by the am@lgtodel to the ac-
tual results collected from running the benchmark. The berark is run using pro-

Processor Utilization: Model Vs Actual Response Time for "Search by Categories”

..............

(a) CPU usage (b) Response Time
Fig. 5: Validation of Analytical Model

gressively increasing number of clients for 2500 750 and 1000, respectively. The

components are placed in the nodes using RUBIS’s defaaliegly, which places all

the Business Tier components in the Business Tier node &nelntire database in the
database server. The results in these figures show the nmmebgely predicts the re-
sponse times of the services and the processor utilizatitth® nodes. This model can
therefore be used by CAFe to find the placement of the compsttieat optimizes the

capacity of the deployment.

4.5 Application Component Placement

We now describe how CAFe iteratively places components batdware nodes. The
SLA is assumed to have set an upper bound of 1 sec on the resporsof all ser-
vices. We use Algorithm 3 from Section 3, which considers GRRlhe only resource
since both memory and disk usage is minor compared to CPUsusaglescribed in
Section 4.

The first iteration of Algorithm 3 uses the initial Servicerdands for each appli-
cation component. The Service Demands are given in Tablénd s&t of all Service
Demands and the available nodes (in this case 2) are useeé Bif titate Algorithm 1.
This algorithm in turn invokes theorst_fit_bin_packing described in Algorithm 2,
which places components on the two nodes.

As mentioned in Section 4, there are two nodes used for RUBIgHmark: Busi-
ness Tier Server (BT_SRV) and the Database Server (DB_SRé)name of the nodes
are given since the default deployment of RUBIS uses the RV ® deploy all the
business layer components and DB_SRV to deploy the datalmafsest, such a tiered
deploymentis an industry standard [13].

Table 6a shows the placement of the components after thétéiration of Algo-
rithm 3 in CAFe. The mapping of the components to the nodestdtal number of
clients (100), and the Service Demands of the componentssactto build the analyt-
ical model. It is then used to find the response time and psocesilization of the two



BT SRV OB SRy ]| e | renticomponenth Time. |
ComponeniCPU Util[|ComponentCPU Util P P
home 0.007 0.000 0.002
DB_SC | 0.02783|| DB_SR | 0.02690
= = browse 0.029 0.000 0.002
BT VI 0.00405|| BT_SC | 0.00417
= = browse_cat  0.025 0.005 0.004
DB _BH | 0.00400|| BT _BH | 0.00400 browse red 0.010 0.002 0.004
BT Ul |0.00300]| BT_BCR | 0.00325 Sk B : :
= = br_cat_reg 0.014 0.003 0.005
BT BC | 0.00245 BT _BR | 0.00253 :
Srch_it_ca 1.980 13.190 0.049
BT H 0.00200|| BT_SR | 0.00210 -
= = Srch_it_red 0.380 5.260 0.041
DB_UI ]0.00100] BT_B | 0.00200] ore=somd—7 545 0490 | 0.006
DB_VI | 0.00095|| DB_BCR | 0.00075 VU u;r infd 0.480 0'120 0'005
DB_BC | 0.00055]] DB_BR | 0.00047] == rai—6.310 0.310 | 0.009

(2) Component Placement (b) Utilization and Response Time

Table 6:Component Placement and RUBIS Performance After Iterationl

servers, given in Table 6b. The response time of all the sesvs well below the SLA
specified 1 sec. CAFe iterates and the processor utilizafieach component found in
the previous iteration is used in tiAél ocate routine.

In the second iteration, th&llocate Algorithm 1 produces the placement shown in
Table 7.

BT_SRV DB_SRV
ComponerftCPU Utill| ComponentCPU Util[[ComponentCPU Util

DB_SC 13.19 DB_SR 5.26 BT B 0.029
BT _SC 1.97 BT BC 0.025
BT _VI 1.94 || BT_BCR| 0.014
DB _VI 0.49 BT BR 0.010
BT Ul 0.48 BT H 0.007
BT SR | 0.39 || DB_BC | 0.005
BT BH 0.31 DB BCR| 0.003
DB _BH 0.31 DB _BR 0.002
DB_UI 0.12
Table 7: Iteration 2:Component Placement by Allocation titau

In the third iteration, the number of clients] is increase to 300. The placement
computed by CAFe remains the same, however, and the respoeseof the two ser-
vices “Search By Category” and “Search by Region” increaih wach iteration as
shown in Table 8.

IterationClientg home broBTebroBTe_catbroBTe_regbr_cat_re¢Srch_it_catSrch_it_regview_itemgvu_usr_infgvu_bid_hs
1 100 |0.00Z 0.002| 0.004 0.004 0.005 0.049 0.041 0.006 0.005 0.009
2 200 |0.002 0.002| 0.004 0.004 0.005 0.050 0.041 0.006 0.005 0.009
5 500 [0.002 0.002| 0.004 0.004 0.005 0.058 0.044 0.007 0.005 0.010
10 1000 |0.002 0.002| 0.005 0.005 0.006 0.088 0.049 0.007 0.006 0.011
15 1500 |0.002 0.002| 0.005 0.005 0.007 0.689 0.055 0.008 0.007 0.012
16 1600 |0.003 0.003| 0.006 0.006 0.007 1.119 0.057 0.008 0.007 0.012
17 1550 |0.003 0.003| 0.006 0.006 0.007 0.899 0.056 0.008 0.007 0.012
18 1575(0.003 0.003| 0.006 0.006 0.007 1.011 0.057 0.008 0.007 0.012
19 1563 |0.003 0.003| 0.006 0.006 0.007 0.956 0.056 0.008 0.007 0.012

Table 8: Successive Iterations:Response Time of Eachcervi

At the value ofM = 1600, the response time of the service “Search by Category”
crosses the SLA limit of 1 sec as shown in iteration 16 in Tabl&t that pointincr



variable in Algorithm 3 is reduced by half to 50 aktlis reduced to the previous value
of 1500. The algorithm continues from that point. Thus imdten 17, value oM is

Response Time of "Search by category”

2.5 4

—e—café
—&— Original

Clients

-

SLA Limit of 1 sec

0.5

100 200 250 500 750 1000 1100 1250 1500 1550 1563 1575 1600
Time (secs)

Fig. 6: Response Time with Increasing Clients

1550 In a similar way, foM equal to 1563, the response time of “Search by Category
is just below 1 sec (iteration 19). This response time is tlh@imum capacity of the
application under a SLA response time of 1 sec. Figure 6 sliogvsomparison in the
response time of the service “Search By Category,” whicheddottleneck service.

”

4.6 Implementation of the CAFe Deployment Plan

We now describe how RUBIS uses the new deployment plan reended by CAFe
and empirically evaluate the performance improvement @egwith the default tiered
architecture used by RUBIS. This plan assigns all the Bgsifiger components in the
BT_SRV and the entire database in the DB_SRV. The deploysaggested by CAFe
is shown in Table 7, where component DB_SC is contained innmake and all the
others are kept in the other node. The component DB_SC isatiadase component of
the service “Search By Category,” which is a read-only congmt that invokes a select
query on the database.

One way to implement this assignment is to run a master iostahthe database
along with all the other components and run a slave instahttealatabase in the ma-
chine where DB_SC is run. The corresponding deploymentwstin Figure 7. In this
figure there are two instances of the Database: the mastanagsis run in the machine
BT_SRV and a slave instance is run in DB_SRV. All Business dagnponents and the
web server run in BT_SRV. These components make the databfsen the master
instance in BT_SRV. Only component DB_SC (which belongsatwise “Search By



&

Workstation

Rest ||

Workstation
j E Master j E Slave
DB

us]

Workstation

BT_SRV DB_SRV
Client Terminals

Workstation

Fig. 7: Deployment of CAFe Suggested Assignment

Category”) makes the database call to the slave instan&RirsRV). The component

DB_SC is thus moved to DB_SRV, while all other componentsinuhe BT_SRV.
Figure 8a shows the response times of the most loaded séBéaech By Cate-

gory” for the CAFe deployment. By comparison, the originedponse time with the

Processor Utilization

©
"
5 Terds.sny
s
© - <
. Shreon v
//

_/ ™
P -

Response Time for "Search by Category”

H

2500

nnnnn

38

chchchchch

(a) Response Time (b) CPU Util
Fig. 8: Performance of CAFe Installation

3-Tier deployment is also provided. The comparison shoasttte CAFe deployment
increases the capacity of the application. The solid linenéT= 10) parallel to the

Client axis signifies the SLA limit of 1 sec. The response 8rfar the 3-Tier deploy-

ment crosses the line just above 1,000 clients. In contif@astCAFe deployment the
response time graph crosses the line at just over 1250 glieshiich provides an im-
provement 0~25% in application capacity.

Figure 8b shows the processor utilization for the two cdsetbe CAFe installation
the DB_SRV is less loaded than in the 3-Tier deployment. TiBe BRV utilization also
shows the CAFe installation uses more CPU time than in theeBifistallation. This
result is expected since CAFe tends to balance out the coempartilizations across
the given machines.

CAFe’s balancing is not perfect,however, since DB_SC (titalthse component of
the “Search By Category” service) consumes more processerthan all other com-



ponents. This result indicates that load balancing the D%/ & multiple components
and moving the components to different machines may be éalyaous.

5 Related Work

This section compares CAFe with related work in the area sefesy modeling and
management.

Analytic models based on linear fitting. Stewart et. al. [1] proposed a profile-
driven performance model for cluster based multi-compbaogline services. They use
this model to perform system management and implement coerm@lacement across
nodes in the cluster. The main difference between CAFe andubrk is that CAFe’s
modeling is based on queuing theory, whereas theirs is basdidear fitting. CAFe
uses queuing theory since the impact of co-locating meltjgmponents in the same
node is better captured due to modeling of queuing delay$1]s model, the impact
of co-location is approximate.

Analytical modeling of multi-tiered applications have been pursued extensively
in the research community. Closed queuing models of mieltititernet application ap-
pearin[2,3]and [12]. Both model a single tier as a queue anuod have any concept
of a component in their model. CAFe leverages the knowledltfeeccomponents in the
system and generates a queuing model out of the componeptpéat mapping. Thus
CAFe uses components as the functional granularity whistttmadvantage of utiliz-
ing the available resources in the nodes in a much better agaghown in Section 2.
The work in [3] presents techniques to predict workload tioatld be used along with
CAFe.

A framework for dynamic placement of clustered web applications is presented
by Karve et. al. [4] and Kimbrel et. al. [5]. These approacbessider multiple re-
sources that are load-dependent and load independents@hveyan optimization prob-
lem that attempts to change the component placement aimap-vhile minimizing
the number of changes. They characterize resource recgritsraf components using
a simple model that calculates Service Demands of diffenemiests. Urgaonkar et.
al. [6] identify resource needs of application capsule anponents by profiling them
and uses it to characterise application Quality of Serv@@S) requirements. They also
define an algorithm for mapping the application capsulesodhé platforms or nodes
available. CAFe differs from both these work in terms of igrlwoad and performance
modeling. CAFe defines a queuing model which can model tlegdntion of several
components co-located in a node. It also models the behafvatients using Customer
Behavior Modeling Graphs to characterize incoming worilloEhe analytical models
developed in CAFe can be used along with the algorithms ptedén [4, 5] or [6].

None of the work above (except [2]) has a concept of perfonadiound. CAFe
introduces the performance bound through the concept ofL@n Bhe placement of
the components is thus done to maximize capacity while argthrat the performance
remains within SLA bounds.

6 Concluding remarks

This paper presentedZomponent Assignment Framework for multi-tiered I nternet Ap-
plications (CAFe), which is a novel algorithmic framework for mappingngponents
of a multi-tiered application onto hardware nodes in wehtader CAFe helps ensure
that (1) the capacity of the application is potentially nmied and (2) response times



remain within SLA prescribed bounds. CAFe complementsaie$ein the area of ap-

plication placement by introducing the constraint of parfance bounds. It also uses
gueuing-theoretic techniques to co-ordinate componewgphent and analytical mod-
eling.

The paper also empirically evaluated CAFe against RUBIS¢chvis an industry-
standard application benchmark. The experimental reshtisred how the CAFe Al-
location algorithm can improve web portal performance bipibeing the resource uti-
lizations across various nodes. The performance impromewas 25%, which means
that a representative web portal can handle more userswiihwchasing additional
hardware. By using CAFe, therefore, earned revenue camfelig be increased by
25%.

References

1. Stewart, C., Shen, K.: Performance modeling and systenagement for multi-component
online services. In: Proceedings of the 2nd conference omp8gium on Networked Sys-
tems Design & Implementation-Volume 2 table of contentsEN8X Association Berkeley,
CA, USA (2005) 71-84

2. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, Mntawi, A.: An analytical model for
multi-tier internet services and its applications. SIGMHTS Perform. Eval. Re\83(1)
(2005) 291-302

3. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dyngrovisioning of multi-tier inter-
net applications. In: Autonomic Computing, 2005. ICAC 20B%oceedings. Second Inter-
national Conference on. (2005) 217-228

4. Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Stder, M., Sviridenko, M., Tantawi, A.:
Dynamic placement for clustered web applications. In: Bedings of the 15th international
conference on World Wide Web, ACM New York, NY, USA (2006) 5894

5. Kimbrel, T., Steinder, M., Sviridenko, M., Tantawi, A.: yBamic Application Placement
Under Service and Memory Constraints. In: Experimental Effatient Algorithms: 4th In-
ternational Workshop, WEA 2005, Santorini Island, Gredtay 10-13, 2005: Proceedings,
Springer (2005) 391

6. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource oveitgpakd application profiling in a
shared Internet hosting platform. (2009)

7. Menascé, D.A., Almedia, V.A.F., Dowdy, L.W.: Performarizy design: Computer Capacity
Planning by Example. Prentice Hall, Upper Saddle River,20D4)

8. Urgaonkar, B., Rosenberg, A., Shenoy, P., Zomaya, A.:liégjion Placement on a Cluster
of Servers. International Journal of Foundations of Comp8ciencel8(5) (2007) 1023—
1041

9. Coffman Jr, E., Garey, M., Johnson, D.: Approximatioroaltpms for bin packing: a survey.
(1996)

10. Schrijver, A.: Theory of linear and integer programmikligiley (1986)

11. Amza, C., Ch, A,, Cox, A., Elnikety, S., Gil, R., Rajamali, Zwaenepoel, W.: Specifi-
cation and Implementation of Dynamic Web Site Benchmarks.5th IEEE Workshop on
Workload Characterization. (2002) 3—-13

12. Zhang, Q., Cherkasova, L., Mathews, G., Greene, W.,rntir: R-capriccio: a capac-
ity planning and anomaly detection tool for enterprise mew with live workloads. In:
Middleware '07: Proceedings of the ACM/IFIP/USENIX 200&dmational Conference on
Middleware, New York, NY, USA, Springer-Verlag New York,dn(2007) 244—-265

13. Eckerson, W., et al.: Three Tier Client/Server Architee. Achieving Scalability, Perfor-
mance and Efficiency in Client Server Applications. Opewinfation System$0(1) (1995)



