
A Component Assignment Framework for Improved
Capacity and Assured Performance in Web Portals

Nilabja Roy, Yuan Xue, Aniruddha Gokhale, Larry Dowdy and Douglas C. Schmidt

Electrical and Computer Science Department Vanderbilt University

Abstract. Web portals hosting large-scale internet applications have become pop-
ular due to the variety of services they provide to their users. These portals are
developed using component technologies. Important designchallenges for de-
velopers of web portals involve (1) determining the component placement that
maximizes the number of users/requests (capacity) withoutincreasing hardware
resources and (2) maintaining the performance within certain bounds given by
service level agreements (SLAs). The multitude of behavioral patterns presented
by users makes it hard to identify the incoming workloads.
This paper makes three contributions to the design and evaluation of web portals
that address these design challenges. First it introduces an algorithmic frame-
work that combines bin-packing and modeling-based queuingtheory to place
components onto hardware nodes. This capability is realized by the Component
Assignment Framework for multi-tiered internet applications (CAFe). Second, it
develops a component-aware queuing model to predict web portal performance.
Third, it provides extensive experimental evaluation using the Rice University
Bidding System (RUBiS). The results indicate that CAFe can identify opportu-
nities to increase web portal capacity by 25% for a constant amount of hardware
resources and typical web application and user workloads.

1 Introduction

Emerging trends and challenges.Popular internet portals, such as eBay and Amazon,
are growing at a fast pace. These portals provide many services to clients, including
casual browsing, detailed reviews, messaging between users, buyer and seller reviews,
and online buying/bidding. Customers visiting these web portals perform various types
of behaviors, such as casual browsing, bidding, buying, and/or messaging. The broader
the variety of services and user behavior a web portal supports, the harder it is to analyze
and predict performance.

Performance of web portals can be quantified by average response time or through-
put, which are functions of incoming load. In turn, the load generally corresponds to the
arrival rate of user sessions or the concurrent number of clients handled by the portal.
As the number of clients increases, performance can degradewith respect to customer’s
response time.

Service level agreements (SLAs) could be provided to bound the performance, such
as an upper bound on response time. In such a case, a web portalneeds to meet per-
formance within the bounds given by the SLA. The capacity of such a web portal is

defined as the maximum number of concurrent user sessions or the maximum request
arrival rate handled by applications with performance within the SLA bound.

The goal of portal designers is to deploy the given web portalto maximize its ca-
pacity,i.e., maximize the number of users in the system while maintaining the average
response time below the SLA limit. In turn, this goal helps maximize the revenue of the
portal since more users can be accommodated. Portal capacity is generally proportional
to the hardware,i.e., more/better hardware means more/better capacity. Web portal de-
signers are constrained by system procurement and operational costs, however, which
yields the following questions: (1) for a fixed set of hardware, can web portals serve
more clients and is the current hardware utilized in the optimal way?

To answer these questions, it is important to understand theway contemporary web
portals are implemented. Component-oriented development(such as J2EE or .NET) is
generally used to develop web portals by using the “divide and conquer” method. Each
basic functionality (such as a business logic or a database query) is wrapped within a
component, such as a Java class. Several components are thencomposed together to
implement a single service, such as placing bids in an auction site or booking air tickets
in a travel site.

A service is realized by deploying the assembly of components on the hardware re-
sources. Maximizing the utilization of resources and meeting client SLA requirements
can be achieved by intelligently placing the components on the resources. For exam-
ple, colocating a CPU-intensive component with a disk-intensive component may yield
better performance than two CPU-intensive components together.

Application placement in clustered servers has been studied extensively [1–6]. For
example, [4–6] estimate resource usage of components and place components onto
nodes by limiting their sum of resource usage within available node resource. They
do not check response time of applications. On the other hand, [1] checks the response
time while placing components. Their model is based on linear fitting and the effect of
colocating components is estimated approximately. Other work [2, 3] checks response
time while provisioning resources using queuing theory.

In most related work, however, the functional granularity is modeled at the tier
level, not at the component level. The downside of using the coarser granularity is that
resources can remain unutilized in nodes where components could be configured, but
tiers may not. If the models are component aware, available resources in the nodes can
be better utilized by proper placement. Algorithms become more complicated, however,
since the solution space is increased.

Solution approach→ Intelligent component placing to maximize capacity . This
paper presents theComponent Assignment Framework for multi-tiered internet appli-
cations (CAFe), which is an algorithmic framework for increasing capacity of a web
portal for a fixed set of hardware resources by leveraging thecomponent-aware design
of contemporary web portals. The goal of CAFe is to create a deployment plan that
maximizes the capacity of the web portal so their performance remains within SLA
bounds. It consists of a mechanism to predict the application performance coupled with
an algorithm to assign the components onto the nodes.

CAFe complements related work by (1) introducing the concept of a performance
bound through a SLA that acts as an additional constraint on the placement prob-

lem, which requires estimating and evaluating applicationperformance against the SLA
bound at every step, (2) creating service- and component-aware queuing models to es-
timate component resource requirements that predict overall service performance, (3)
devising an algorithmic framework that combines a queuing model with a bin-packing
algorithm to iteratively compute component placement while maximizing capacity of
the application, and (4) showing how to balance resource usage across nodes in the
network to deliver better performance.

Paper organization.The rest of the paper is organized as follows: Section 2 dis-
cusses an example to motivate intelligent component placement and formulate the prob-
lem CAFe is solving; Section 3 examines CAFe’s algorithmic framework in detail; Sec-
tion 4 empirically evaluates the performance of CAFe; Section 5 compares CAFe with
related work; and Section 6 presents concluding remarks.

2 Motivating the Need for CAFe

This section presents an example to motivate intelligent component placement and for-
mulate the problem CAFe is solving.

2.1 Motivating Example

The motivating example is modified from [7] to show how intelligently mapping the
components of a web portal to available hardware nodes increases performance by sev-
eral factors. The portal is an online bidding system (similar to eBay) that provides mul-
tiple services, such as browsing, bidding, and creating auctions. The portal is structured
as a 3-Tier application with web-server, business logic, and database tiers.

Each service in the web portal consists of three components,one in each tier of the
application. For example, the functionality of creating auctions is implemented by a ser-
vice that is composed of three components: (1) a web service component that handles
incoming requests, (2) a business tier component that implements application logic, and
(3) a database component to make database calls. The web portal is deployed using a
default deployment strategy with each tier placed on a single node. The portal perfor-
mance is analyzed using an analytical model presented in [7].

Server CPU %Disk %
Web Server 0.510 0.568
BT Node 0.727 0.364
DB Server 0.390 0.997

(a) Original Deployment

Server CPU %Disk %
Web Server 0.510 0.568
BT Node 0.822 0.554
DB Server 0.294 0.806

(b) After Reallocation
Table 1:The Utilization of resources

The response times are given in Table 2, 2nd column. Most services have an unduly
high response time,e.g., Place Bid has a response time of 30 secs, which is unaccept-
able in an online bidding system. The CPU and disk utilizations of each node is given
in Table 1a. Table 1a shows that the DB Server is disproportionately loaded. In partic-
ular, the DB Server disk is overloaded, whereas the BusinessTier (BT) Server disk is

underloaded. One solution would be to move some components from the DB Server to
the Business Tier Server so disk usage is more uniform acrossthe nodes.

The database component for the “Login” service is chosen at random to move to
the BT node. To analyze the new deployment, the analytic model is changed and the
new utilization of the resources are given in Tables 1b, which shows that the resources
are more evenly utilized,e.g., the DB_Server disk is now only 80% utilized. The cor-
responding response times are given in the Table 2, 3rd ,column. The percent decrease

Services Response TimeNew Response Time% Decrease
Home 0.086 0.086 0.00
Search 12.046 0.423 96.49

View Bids 6.420 0.530 91.78
Login 17.230 0.586 96.60

Create Auction 27.470 0.840 96.95
Place Bid 30.800 0.760 97.53

Table 2: The Response Times of the Services Before and After Reallocation

in the response times are given in the right-most column. These results show that the
response times are reduced significantly.

The analysis clearly shows that the response time of all services can be improved
significantly by placing the components properly. Proper placement can be achieved via
two approaches. First, component-aware analytical modelscan be used to evaluate the
impact of co-located components. Traditional models have looked at performance from
the granularity of a tier [2] or have overlooked the effect ofco-locating components [1].
Second, resource utilization can be balanced between the various nodes to ensure the
load on any one resource does not reach 100%. This approach can be aided by analyzing
performance at the component level (since components help utilize available resources
more effectively) and using a placement routine that maps components to nodes so that
the resources are utilized uniformly and none utilize 100% of any resource. Section 3
shows how CAFe combines both approaches to develop a component mapping solution
that improves web portal capacity.

2.2 Problem Formulation and Requirements

As discussed in Section 1, the problem CAFe addresses involves maximizing the capac-
ity (user requests or user sessions) of a web portal for givenhardware resources, while
ensuring that the application performance remains within SLA bounds. This problem
can be stated formally as follows: The problem domain consists of the set ofn compo-
nents C, {C1,C2,Cn}, the set ofm nodes P {P1,P2...Pm}, and the set ofk services
{ S1,S2...Sk}. Each component has Service Demand D {D1,D2...Dn}. Each service has
response time RT {RT1,RT2...RTk}. The capacity of the application is denoted by either
the arrival rate,λ for each service {λ1.....λk} or the concurrent number of customers
M { M1,M2,Mk}. SUi,r gives the utilization of resourcer by componenti. The SLA
gives an upper bound on the response times of each servicek{ RTsla,1...RTsla,k}.

CAFe must therefore provide a solution that places then components inC to them
nodes P such that the capacity (eitherλ or M) is maximized while the response time
is within the SLA limit RT < RTsla. To achieve this solution, CAFe must meet the
following requirements:

Place components onto nodes to balance resource consumption in polynomial
time. Application components must be placed onto the available hardware nodes such
that application capacity is maximized while the performance is within the upper bound
set by a SLA. Since this is an NP-Hard problem [8] it is important to find out efficient
heuristics that can find good approximate solutions. Section 3.1 describes how CAFe
uses an efficient heuristic to place the components onto the available nodes and also
ensuring that the resource utilization is balanced.

Estimate component requirement and application performance for various place-
ment and workload. To place the components in each node, the resource requirement
of each component is required. Moreover, for each placementstrategy, the applica-
tion performance must be compared with the SLA bound. Both vary with workload
and particular placement. We therefore need a workload- andcomponent-aware way of
component resource requirement and application performance estimation. Section 3.2
describes how CAFe develops an analytical model to estimatecomponent resource re-
quirement and application performance.

Co-ordinate placement routine and performance modeling tomaximize capac-
ity. For each particular placement, the application performance need to be estimated
to check if it is within the SLA limit. Conversely, performance estimation can only be
done when a particular placement is given. Placement and performance estimation must
therefore work closely to solve the overall problem. Section 3.3 describes how CAFe
designs a algorithmic framework to co-ordinate the actionsof a placement routine and
an analytical model in a seamless fashion.

3 CAFe: A Component Assignment Framework for Multi-Tiered
Web Portals

This section discusses the design of CAFe and how it addresses the problem and re-
quirements presented in Section 2.2. CAFe consists of two components: the placement
algorithm and analytical model, as shown in Figure 1. The input to CAFe includes the
set of application components and their inter-dependancy,as shown by the box on the
left in Figure 1 and the set of available hardware nodes shownon the right. The output
from CAFe is a deployment plan containing the mapping of application components to
nodes. This mapping will attempt to maximize the application capacity. The rest of this
section describes each element in CAFe.

3.1 Allocation Routine

As mentioned in Section 2.2, there is a need to develop efficient heuristics to place
components onto nodes. Placing components to hardware nodes can be mapped as a
bin-packing problem [9], which is NP-Hard in the general case (and which is what our
scenarios present). Existing bin-packing heuristics (such as first-fit and best-fit) can be
used to find a placement that is near optimal.

Component

Assignment

Algorithm

Simple

Analytic

Model

Component

Assignment

Framework

Application

Components

Server

ServerServerServer

ServerServer

Available

Hardware

Fig. 1: The CAFe Component Assignment Framework Architecture

The motivating example in Section 2 describes the intuitionbehind the allocation
routine, which is that performance increases by balancing the resource utilization be-
tween the various nodes and not allowing the load of any resource to reach 100%. We
use worst-fit bin packing since it allocates items to bins by balancing the overall usage
of each bin.

Algorithm 1 gives the overall allocation routine, which is awrapper around the

Algorithm 1 : Allocate
C: Set of components
foreach L:Set of Components that should remain local do

D← Sum the Service Demands of all components inL
Replace all components in L with D in C

end
DP = worst_ f it_bin_packing(C,P)

worst-fit Algorithm 2. Algorithm 1 groups together components that are constrained to
remain co-located in one machine. For example, they could bethe database components
that update the tables and need to be connected to the master instance of a database and
hence msut be allocated to a single node. Algorithm 1 sums theService Demands of
the components that must be collocated and then replaces them by a hypothetical single
component. A call to theworst_ f it routine is made at the end of algorithm 1.

The worst-fit routine is given in Algorithm 2. The componentsare first ordered ac-
cording to their resource requirements (Line 2). The algorithm then runs in an iterative
fashion. At each step an item is allocated to a bin. All bins are inspected and the least
utilized bin is selected.

3.2 Component- and Service-aware Analytical Modeling

Section 2.2 also discusses the need for performance estimation to place components.
This estimation process involves (1) predicting the resource requirements of each com-
ponent for certain application loads, (2) predicting the response time of each service for

Algorithm 2 : Worst-Fit Bin Packing
begin

Order_Components(C) // Order the Components by resource requirement
foreachCi ∈C,1≤ i≤|C| do1

// For all components2

Pk← The node with the maximum slack3

PlaceCi on toPk4

end5

end

a particular placement, and (3) computing the overall resource utilization of each node.
As application components move among the various nodes, theperformance of each
service in the application will vary. Performance also depends upon the components
that are collocated.

CAFe provides a queuing model that provides average case performance analysis of
a system. It also models the interaction of collocated multiple components by modeling
the queuing delay for resource contention. CAFe uses this information to transform a
deployment plan produced by Algorithm 1 into a multiple class queuing model that
maps each service as a class in the model. The components of a single class that are
placed in the same node are considered as a single entity. Their Service Demands are
summed together. After the model outputs the results, CAFe maps the performance
parameters of each class onto the services.

Figure 2 shows the process of creating a model of the application. The input to such

Servers

CAFe
Workload Parameters

 : Arrival Rate

M: Concurrent Users

Z:Think Time

P: Arrival Distribution

Component &

Service aware

Queuing Model

Component Placement

with Service Demand

Fig. 2: Create Models of Application

a process consists of the component placement map (mapping of application compo-
nents to nodes) along with their Service Demands and the workload parameters, such
as arrival rate of transactions and number of concurrent user sessions.

Depending upon the workload characteristics, a closed or anopen model of the
application is constructed. An open model assumes a continuous flow of incoming re-
quests with a given average inter-arrival time between clients. A closed model assumes
a fixed number of user sessions in steady state. The sessions are interactive and users
make requests, then think for some time, and then make a subsequent request. If an
application consists of independent requests arriving andbeing processed, it can be

modeled as an open model. If there are inter-dependent sequences of requests coming
from a single user, however, it must be modeled using a closedmodel.

These analytical model can be solved using standard procedures. In CAFe, the Mean
Value Analysis (MVA) algorithm [7] is used to solve closed models, while an algorithm
based on the birth-death system is used to solve open models [7]. The solution to the
analytical model provides the response times of the variousservices and also the uti-
lization of the resources such as processor or disk usage in the various nodes.

3.3 Algorithmic Framework to Co-ordinate Placement and Performance
Estimation

Section 2.2 also discusses the need for close co-ordinationbetween placing the compo-
nents and performance estimation. To meet this requirementCAFe provides a frame-
work that standardizes the overall algorithm and defines a standard interface for com-
munication between the placement and performance estimation. This framework also
allows the configuration of other placement algorithms, such as integer programming
and different analytical models like models based on worst case estimation. Different
algorithms or analytical models can be configured in/out to produce results pertaining
to the specific application domain or scenario.

CAFe uses an analytical model of the application and a placement routine to de-
termine a mapping of the application components onto the available hardware nodes.
CAFe attempts to maximize the capacity of the web portal, while ensuring that the
response time of the requests is within the SLA bounds.

Algorithm 3 describes the component assignment framework.The algorithm alter-
nates between invoking the placement algorithm and an evaluation using the analytic
model. In each step, it increases the number of clients in thesystem by a fixed amount
and rearranges the components across the nodes to minimize the difference in resource
utilization. It then verifies that the response time is belowthe SLA limit using the an-
alytical model and iterates on this strategy until the response time exceeds the SLA
limit.

CAFe takes as input the details (such as the Service Demands of each component
on each resource) of theN components to deploy. Service Demand is the amount of re-
source time taken by one transaction without including the queuing delay. For example,
a single Login request takes 0.004 seconds of processor time in the database server. The
Service Demand for Login on the database CPU then takes 0.004 seconds. As output,
the framework provides a deployment plan(DP, estimated response (RT) time and total
utilization (U) of each resource.

The initial capacity is an input (Init_Cap, Line 2). The value ofM is set equal to
Init_Cap. This capacity is an arrival rate for an open model or “numberof users” for
a closed model. The capacity (M) is increased in each step by an incremental stepincr
(Line 9) which also can be parameterized (Incr). At each iteration, the response time
of all services is compared with the SLA provided upper bound(inner while loop at
Line 4).

Inside the inner loop, the framework makes a call to the Allocate module (Line 6),
which maps the components to the nodes. This mapping is then presented to the Model
(Line 7) along with the Service Demand of each component. TheModel computes the

Algorithm 3 : Component Assignment Framework
Input :

C←set of N components to be deployed,
D←set of Service Demands for all components,Di,r ←Service Demand of componenti on the devicer
P←set of K available nodes
RTsla set of response time values for each service as specified by the SLA

Output :
Deployment planDP← set of tuples mapping a component to a node,
M: Total Number of concurrent clients
RT ←set of response times for all components
RTi: Total response time of servicei
Ur: Total Utilization of each resourcer in the nodes
SUi,r: Utilization of resourcer by componenti
SU ← set of resource utilization of all components
Incr: Incremental capacity at each step
InitCap:Initial Capacity

begin1
Intially, DP = {},M = InitCap,SU = U,RTi = ∑r Di,r, incr = Incr2
while incr > 10do3

while @i : RTi > RTsla,i do4
// Check if any service RT is greater than SLA bound5

DP = Allocate(SU,P) // Call Placement routine to get a placement6
(RT,SU,U) = Model(M,D,DP)// Call model to estimate performance for current placement7
last_M←M // Save the previous capacity8
M←M + incr // Increment the capacity for the next iteration9

end10
// At least one service has Response Time greater than SLA bound for current capacity11
M← last_M // Rollback to previous iteration’s capacity12
incr← incr/2 // Decrease incr by half13
M←M + incr // Now Increase capacity and repeat14

end15
// while(incr > 10)16

end17

estimated response time of each service and the utilizationof each resource by each
component. It also outputs the total utilization of each resource.

The inner loop of Algorithm 3 exits when response time of any service exceeds the
SLA provided upper bound (i.e., M reaches maximum capacity), at which pointincr is
set to a lower value (one-half) and the algorithm continues from the previous value of
M (Line 12). If the inner loop exits again, the value ofincr is lowered further (Line 13).
The algorithm ends when the value ofincr is less than 10.

The output of the algorithm is that value ofM, which yields the highest capacity
possible and also a deployment plan (DP) that maps the application components onto
the nodes. Though not provably optimal, the algorithm is a reasonable approximation.
An optimal algorithm would require an integer programming routine [10] to obtain the
mapping of the components to the nodes. Such an implementation would be NP-Hard,
however, and thus not be feasible for large applications. CAFe therefore uses an intuitive
heuristic based on the popular worst-fit bin packing algorithm [9].

4 Experimental Evaluation

4.1 Rice University Bidding System

This section describes our experimental evaluation of CAFe, which used the Java servlets
version of the Rice University Bidding System (RUBiS) [11] to evaluate its effective-
ness. RUBiS is a prototype of an auction site modeled after ebay that has the features

of an online web portal studied in this paper. It provides three types of user sessions
(visitor, buyer, and seller) and a client-browser emulatorthat emulates users behavior.

A RUBiS session is a sequence of interactions for the same customer. For each
customer session, the client emulator opens a persistent HTTP connection to the Web
server and closes it at the end of the session. Each emulated client waits for a certain
think time before initiating the next interaction. The nextinteraction is determined by a
state transition matrix that specifies the probability to gofrom one interaction to another
one. The load on the site is varied by altering the number of clients.

CAFe requires an analytical model of the application. Once the model is constructed
and validated, it can be used in CAFe to find the appropriate component placement.
The steps required to build the model are (1) compute ServiceDemand for each ser-
vice provided for each customer type such as visitor or buyerand (2) build a customer
behavior modeling graph of user interactions and calculatethe percentage of requests
for each service. For our experiments, a workload representing a set of visitor clients
were chosen, so the workload consists of browsing by the users and is thus composed of
read-only interactions. The components for each service inRUBiS is given in Table 3.

Services Home Browse Browse_Cat Browse_Reg Br_Cat_Reg
Naming BT_H _ BT_B _ BT_BC DB_BC BT_BR DB_BR BT_BCR DB_BCR

Services Srch_It_Cat Srch_It_Reg View_Items Vu_Usr_Info Vu_Bid_Hst
Naming BT_SCDB_SC BT_SRDB_SRBT_VI DB_VI BT_VU DB_VU BT_BH DB_BH

Table 3: Component Names for Each Service

The RUBiS benchmark was installed and run on the ISISLab testbed (www.isislab.
vanderbilt.edu) at Vanderbilt University using 3 nodes. One for the client emulators,
one for the "Business Tier" and the other for "Database Tier". Each node has 2.8 GHz
Intel Xeon processor, 1GB of ram, and 40GB HDD running FedoraCore 8.

4.2 Computing Service Demand

The Service Demand of each of the components must be capturedto build an analytical
model of the application. The RUBiS benchmark was run with increasing clients and
its effect on various CPU, memory, and disk were noted. The memory and disk usages
are shown in Figures 3a and 3b. Disk usage is low (∼0.2%) and memory usage was
∼40%. Moreover, these utilizations remained steady even as the number of clients are
increased. Conversely, CPU usages increased as number of clients grew (the Actual line
in the Figure 5a).

The results in Figures 3a and 3b show that CPU is the bottleneck device. The Service
Demands were computed for the CPU and the disk. Since memory was not used fully,
it is not a contentious resource and will not be used in the analytical model. Moreover,
the CAFe placement routine ignores disk usage since it remains steady and is much less
than CPU usage. The CAFe placement routine thus only uses oneresource (CPU) to
come up with the placement.

RUBiS simplifies the calculation of Service Demand. It includes a client-browser
emulator for a single client and makes requests on one service at a time. During the
experiment, the processor, disk and memory usages were captured. After the experiment
finished we used the Service Demand law [7] to calculate the Service Demand for that

Memory Utilization

0

5

10

15

20

25

30

35

40

45

50

250 500 750 1000

Clients

%
 U

ti
l

Memory Utilization

(a) Memory Utilization

Disk Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 500 750 1000

Clients

%
 U

ti
l

Disk Util %

(b) Disk Utilization

Fig. 3:The Utilization of Memory and Disk for RUBiS Benchmark

service. In some services (such as “Search Items in Categories”) the Service Demand is
load dependent. For such services the number of clients was increased and the Service
Demands were measured appropriately.

The Service Demands of CPU for all the services measured in such a way are given
in Table 4. Each service in RUBiS is composed of multiple components, with a compo-

Service Business Tier DB Server Description
Component(secs)Component(secs)

home 0.002 0 Home Page
browse 0.002 0.0 Browse Main Page

browse_cat 0.0025 0.0005 Browse Categories
browse_reg 0.0025 0.0005 Browse Regions
br_cat_reg 0.003 0.0007 Browse Categories in Regions
Srch_it_cat 0.004 0.028 Search Items in Categories
Srch_it_reg 0.0021 0.027 Search Items in Regions
view_items 0.004 0.0009 View Items
vu_usr_info 0.003 0.001 View User Info
vu_bid_hst 0.004 0.004 View Bid History

Table 4: CPU Service Demand for Each Component
nent in the middle (Business) tier and one in the Database Tier. Each component has its
own resource requirements or Service Demands.

4.3 Customer Behavior Modeling Graph

For the initial experiment, the workload was composed of visitor type of clients. A
typical user is expected to browse across the set of servicesand visit different sections
of the auction site. A transition probability is assumed fora typical user to move from
one service to the other.

The various transition probabilities are given in Table 5. Here elementpi, j (at row
i and columnj) represents the probability of theith service being invoked after the
jt h service is invoked. For example, a user in the web page “browse_cat”(browsing
categories) has a 0.0025% chance of going to the “home” page and a 99% chance for
moving on to "Search_it_cat"(searching for an item in a category).

homebrowsebrowse_catbrowse_regbr_cat_regSrch_it_catSrch_it_regview_itemsvu_usr_infovu_bid_hstview_items_regvu_usr_info_regvu_bid_hst_regProbabilities
home 0 0.01 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0026

browse 1 0 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0100
browse_cat 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0.0070
browse_reg 0 0.29 0 0 0 0 0 0 0 0 0 0 0 0.0029
br_cat_reg 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0.0029
Srch_it_cat 0 0 0.99 0 0 0.44 0 0.74 0 0 0 0 0 0.3343
Srch_it_reg 0 0 0 0 0.99 0 0.44 0 0 0 0.74 0 0 0.1371
view_items 0 0 0 0 0 0.55 0 0 0.8 0 0 0 0 0.2436
vu_usr_info 0 0 0 0 0 0 0 0.15 0 0.99 0 0 0 0.0747
vu_bid_hst 0 0 0 0 0 0 0 0.1 0.19 0 0 0 0 0.0386

view_items_reg 0 0 0 0 0 0 0.55 0 0 0 0 0.8 0 0.0999
vu_usr_info_reg 0 0 0 0 0 0 0 0 0 0 0.15 0 0.99 0.0306
vu_bid_hst_reg 0 0 0 0 0 0 0 0 0 0 0.1 0.19 0 0.0158

Table 5: Transition Probabilities Between Various Services

The steady state probability (percentage of user sessions)for each service type is
denoted by the vectorπ. The value ofπi denotes the percentage of user requests that
invoke the theith service. The vectorπ can be obtained by using a technique is similar
to the one in [12]. Once computed, the amount of load on each service type can be
calculated from the total number of user sessions. The rightmost column in Table 5
gives the steady state probabilities of each service.

4.4 Analytical Modeling of RUBiS Servlets

After the Service Demands and the steady state probability mix for each service is
available, an analytical model of the application can be developed. The RUBiS bench-
mark assumes a client to carry out a session with multiple requests with think times in
between. This type of a user behavior must be modeled with a closed model.

As soon as a client finishes, a new client takes its place. The average number of
clients remains fixed. Figure 4 shows the analytical model ofthe RUBiS Servlets ver-
sion. As mentioned in Section 4.2, the processor is the contentious resource. Each ma-

.

.

.

Client

Terminals

CPU

Disk

CPU

Disk

Web Server/

Business Tier
DB Server

Fig. 4: Closed Queuing Model for Rubis Java Servlets Version

chine is represented by two queues, one for the CPU and the other for the disk.
Figure 4 also shows two queues for each of the two node in the deployment. The

first node is the Business Tier, which also serves as the web server. The second node
is the Database Server. The various client terminals are represented by delay servers. A
delay server is a server that does not have a queue, so clientswanting to use the server
can access it directly it without waiting. This design models user think times since as

soon as a response to a previous request comes back, the user starts working on the next
request.

Figures 5a and 5b compare the results predicted by the analytical model to the ac-
tual results collected from running the benchmark. The benchmark is run using pro-

Processor Utilization: Model Vs Actual

0

10

20

30

40

50

60

70

80

90

250 500 750 1000

Clients

%
 C

P
U

 U
ti

li
z
a

ti
o

n

Actual

Model

(a) CPU usage

Response Time for "Search by Categories"

0

50

100

150

200

250

300

350

400

450

250 500 750 1000

Clients

T
im

e
 (

m
s

e
c

s
)

Actual

Model

(b) Response Time

Fig. 5:Validation of Analytical Model

gressively increasing number of clients for 250,500,750 and 1,000, respectively. The
components are placed in the nodes using RUBiS’s default strategy, which places all
the Business Tier components in the Business Tier node and the entire database in the
database server. The results in these figures show the model accurately predicts the re-
sponse times of the services and the processor utilizationsof the nodes. This model can
therefore be used by CAFe to find the placement of the components that optimizes the
capacity of the deployment.

4.5 Application Component Placement

We now describe how CAFe iteratively places components ontohardware nodes. The
SLA is assumed to have set an upper bound of 1 sec on the response time of all ser-
vices. We use Algorithm 3 from Section 3, which considers CPUas the only resource
since both memory and disk usage is minor compared to CPU usage, as described in
Section 4.

The first iteration of Algorithm 3 uses the initial Service Demands for each appli-
cation component. The Service Demands are given in Table 4. The set of all Service
Demands and the available nodes (in this case 2) are used by theAllocate Algorithm 1.
This algorithm in turn invokes theworst_ f it_bin_packing described in Algorithm 2,
which places components on the two nodes.

As mentioned in Section 4, there are two nodes used for RUBiS benchmark: Busi-
ness Tier Server (BT_SRV) and the Database Server (DB_SRV).The name of the nodes
are given since the default deployment of RUBiS uses the BT_SRV to deploy all the
business layer components and DB_SRV to deploy the database. In fact, such a tiered
deployment is an industry standard [13].

Table 6a shows the placement of the components after the firstiteration of Algo-
rithm 3 in CAFe. The mapping of the components to the nodes, the total number of
clients (100), and the Service Demands of the components areused to build the analyt-
ical model. It is then used to find the response time and processor utilization of the two

BT_SRV DB_SRV
ComponentCPU Util ComponentCPU Util

DB_SC 0.02783 DB_SR 0.02690
BT_VI 0.00405 BT_SC 0.00417
DB_BH 0.00400 BT_BH 0.00400
BT_UI 0.00300 BT_BCR 0.00325
BT_BC 0.00245 BT_BR 0.00253
BT_H 0.00200 BT_SR 0.00210
DB_UI 0.00100 BT_B 0.00200
DB_VI 0.00095 DB_BCR 0.00075
DB_BC 0.00055 DB_BR 0.00047

(a) Component Placement

Service Business Tier DB Server Response
Component%Component% Time

home 0.007 0.000 0.002
browse 0.029 0.000 0.002

browse_cat 0.025 0.005 0.004
browse_reg 0.010 0.002 0.004
br_cat_reg 0.014 0.003 0.005
Srch_it_cat 1.980 13.190 0.049
Srch_it_reg 0.380 5.260 0.041
view_items 1.940 0.490 0.006
vu_usr_info 0.480 0.120 0.005
vu_bid_hst 0.310 0.310 0.009

(b) Utilization and Response Time
Table 6:Component Placement and RUBiS Performance After Iteration1

servers, given in Table 6b. The response time of all the services is well below the SLA
specified 1 sec. CAFe iterates and the processor utilizationof each component found in
the previous iteration is used in theAllocate routine.

In the second iteration, theAllocate Algorithm 1 produces the placement shown in
Table 7.

BT_SRV DB_SRV
ComponentCPU Util ComponentCPU Util ComponentCPU Util

DB_SC 13.19 DB_SR 5.26 BT_B 0.029
BT_SC 1.97 BT_BC 0.025
BT_VI 1.94 BT_BCR 0.014
DB_VI 0.49 BT_BR 0.010
BT_UI 0.48 BT_H 0.007
BT_SR 0.39 DB_BC 0.005
BT_BH 0.31 DB_BCR 0.003
DB_BH 0.31 DB_BR 0.002
DB_UI 0.12

Table 7: Iteration 2:Component Placement by Allocation Routine

In the third iteration, the number of clients,M is increase to 300. The placement
computed by CAFe remains the same, however, and the responsetimes of the two ser-
vices “Search By Category” and “Search by Region” increase with each iteration as
shown in Table 8.
IterationClientshomebroBTebroBTe_catbroBTe_regbr_cat_regSrch_it_catSrch_it_regview_itemsvu_usr_infovu_bid_hst

1 100 0.002 0.002 0.004 0.004 0.005 0.049 0.041 0.006 0.005 0.009
2 200 0.002 0.002 0.004 0.004 0.005 0.050 0.041 0.006 0.005 0.009
5 500 0.002 0.002 0.004 0.004 0.005 0.058 0.044 0.007 0.005 0.010
10 1000 0.002 0.002 0.005 0.005 0.006 0.088 0.049 0.007 0.006 0.011
15 1500 0.002 0.002 0.005 0.005 0.007 0.689 0.055 0.008 0.007 0.012
16 1600 0.003 0.003 0.006 0.006 0.007 1.119 0.057 0.008 0.007 0.012
17 1550 0.003 0.003 0.006 0.006 0.007 0.899 0.056 0.008 0.007 0.012
18 1575 0.003 0.003 0.006 0.006 0.007 1.011 0.057 0.008 0.007 0.012
19 1563 0.003 0.003 0.006 0.006 0.007 0.956 0.056 0.008 0.007 0.012

Table 8: Successive Iterations:Response Time of Each Service

At the value ofM = 1600, the response time of the service “Search by Category”
crosses the SLA limit of 1 sec as shown in iteration 16 in Table8. At that pointincr

variable in Algorithm 3 is reduced by half to 50 andM is reduced to the previous value
of 1500. The algorithm continues from that point. Thus in iteration 17, value ofM is

Response Time of "Search by category"

0

0.5

1

1.5

2

2.5

100 200 250 500 750 1000 1100 1250 1500 1550 1563 1575 1600

Time (secs)

C
li

e
n

ts café

Original

SLA Limit of 1 sec

Fig. 6: Response Time with Increasing Clients

1550 In a similar way, forM equal to 1563, the response time of “Search by Category”
is just below 1 sec (iteration 19). This response time is the maximum capacity of the
application under a SLA response time of 1 sec. Figure 6 showsthe comparison in the
response time of the service “Search By Category,” which is the bottleneck service.

4.6 Implementation of the CAFe Deployment Plan

We now describe how RUBiS uses the new deployment plan recommended by CAFe
and empirically evaluate the performance improvement compared with the default tiered
architecture used by RUBiS. This plan assigns all the Business Tier components in the
BT_SRV and the entire database in the DB_SRV. The deploymentsuggested by CAFe
is shown in Table 7, where component DB_SC is contained in onenode and all the
others are kept in the other node. The component DB_SC is the database component of
the service “Search By Category,” which is a read-only component that invokes a select
query on the database.

One way to implement this assignment is to run a master instance of the database
along with all the other components and run a slave instance of the database in the ma-
chine where DB_SC is run. The corresponding deployment is shown in Figure 7. In this
figure there are two instances of the Database: the master instance is run in the machine
BT_SRV and a slave instance is run in DB_SRV. All Business Tier components and the
web server run in BT_SRV. These components make the databasecall on the master
instance in BT_SRV. Only component DB_SC (which belongs to service “Search By

Workstation

Workstation

Workstation

Workstation

RestRest

Master

DB

Rest DB_SC

Slave

DB

BT_SRV DB_SRV

Client Terminals

Fig. 7: Deployment of CAFe Suggested Assignment

Category”) makes the database call to the slave instance (inDB_SRV). The component
DB_SC is thus moved to DB_SRV, while all other components runin the BT_SRV.

Figure 8a shows the response times of the most loaded service“Search By Cate-
gory” for the CAFe deployment. By comparison, the original response time with the

Response Time for "Search by Category"

0

500

1000

1500

2000

2500

3000

3500

4000

4500

250 500 750 1000 1250 1300

Clients

T
im

e
 (

s
e

c
s

)

café

3-Tier

1 sec SLA

limit

(a) Response Time

Processor Utilization

0

10

20

30

40

50

60

70

80

90

250 500 750 1000 1250

Clients

%
 U

ti
li
z
a
ti

o
n

café DB_SRV

3-Tier DB_SRV

cafe WB_SRV

3-Tier WB_SRV

CAFe DB_SRV

3- Tier DB_SRV

3- Tier WB_SRV

CAFe WB_SRV

(b) CPU Util

Fig. 8:Performance of CAFe Installation

3-Tier deployment is also provided. The comparison shows that the CAFe deployment
increases the capacity of the application. The solid line (Time = 1.0) parallel to the
Client axis signifies the SLA limit of 1 sec. The response times for the 3-Tier deploy-
ment crosses the line just above 1,000 clients. In contrast,the CAFe deployment the
response time graph crosses the line at just over 1250 clients, which provides an im-
provement of∼25% in application capacity.

Figure 8b shows the processor utilization for the two cases.In the CAFe installation
the DB_SRV is less loaded than in the 3-Tier deployment. The WB_SRV utilization also
shows the CAFe installation uses more CPU time than in the 3-Tier installation. This
result is expected since CAFe tends to balance out the component utilizations across
the given machines.

CAFe’s balancing is not perfect,however, since DB_SC (the database component of
the “Search By Category” service) consumes more processor time than all other com-

ponents. This result indicates that load balancing the DB_SRV on multiple components
and moving the components to different machines may be advantageous.

5 Related Work
This section compares CAFe with related work in the area of system modeling and
management.

Analytic models based on linear fitting.Stewart et. al. [1] proposed a profile-
driven performance model for cluster based multi-component online services. They use
this model to perform system management and implement component placement across
nodes in the cluster. The main difference between CAFe and this work is that CAFe’s
modeling is based on queuing theory, whereas theirs is basedon linear fitting. CAFe
uses queuing theory since the impact of co-locating multiple components in the same
node is better captured due to modeling of queuing delays. In[1]’s model, the impact
of co-location is approximate.

Analytical modeling of multi-tiered applications have been pursued extensively
in the research community. Closed queuing models of multi-tier internet application ap-
pear in [2, 3] and [12]. Both model a single tier as a queue and do not have any concept
of a component in their model. CAFe leverages the knowledge of the components in the
system and generates a queuing model out of the component placement mapping. Thus
CAFe uses components as the functional granularity which has the advantage of utiliz-
ing the available resources in the nodes in a much better way,as shown in Section 2.
The work in [3] presents techniques to predict workload thatcould be used along with
CAFe.

A framework for dynamic placement of clustered web applications is presented
by Karve et. al. [4] and Kimbrel et. al. [5]. These approachesconsider multiple re-
sources that are load-dependent and load independent. Theysolve an optimization prob-
lem that attempts to change the component placement at run-time, while minimizing
the number of changes. They characterize resource requirements of components using
a simple model that calculates Service Demands of differentrequests. Urgaonkar et.
al. [6] identify resource needs of application capsule or components by profiling them
and uses it to characterise application Quality of Service (QoS) requirements. They also
define an algorithm for mapping the application capsules on to the platforms or nodes
available. CAFe differs from both these work in terms of its workload and performance
modeling. CAFe defines a queuing model which can model the interaction of several
components co-located in a node. It also models the behaviorof clients using Customer
Behavior Modeling Graphs to characterize incoming workload. The analytical models
developed in CAFe can be used along with the algorithms presented in [4, 5] or [6].

None of the work above (except [2]) has a concept of performance bound. CAFe
introduces the performance bound through the concept of an SLA. The placement of
the components is thus done to maximize capacity while ensuring that the performance
remains within SLA bounds.

6 Concluding remarks
This paper presented aComponent Assignment Framework for multi-tiered Internet Ap-
plications (CAFe), which is a novel algorithmic framework for mapping components
of a multi-tiered application onto hardware nodes in web portals. CAFe helps ensure
that (1) the capacity of the application is potentially maximized and (2) response times

remain within SLA prescribed bounds. CAFe complements research in the area of ap-
plication placement by introducing the constraint of performance bounds. It also uses
queuing-theoretic techniques to co-ordinate component placement and analytical mod-
eling.

The paper also empirically evaluated CAFe against RUBiS, which is an industry-
standard application benchmark. The experimental resultsshowed how the CAFe Al-
location algorithm can improve web portal performance by balancing the resource uti-
lizations across various nodes. The performance improvement was 25%, which means
that a representative web portal can handle more users without purchasing additional
hardware. By using CAFe, therefore, earned revenue can potentially be increased by
25%.

References

1. Stewart, C., Shen, K.: Performance modeling and system management for multi-component
online services. In: Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2 table of contents, USENIX Association Berkeley,
CA, USA (2005) 71–84

2. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical model for
multi-tier internet services and its applications. SIGMETRICS Perform. Eval. Rev.33(1)
(2005) 291–302

3. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier inter-
net applications. In: Autonomic Computing, 2005. ICAC 2005. Proceedings. Second Inter-
national Conference on. (2005) 217–228

4. Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M., Sviridenko, M., Tantawi, A.:
Dynamic placement for clustered web applications. In: Proceedings of the 15th international
conference on World Wide Web, ACM New York, NY, USA (2006) 595–604

5. Kimbrel, T., Steinder, M., Sviridenko, M., Tantawi, A.: Dynamic Application Placement
Under Service and Memory Constraints. In: Experimental AndEfficient Algorithms: 4th In-
ternational Workshop, WEA 2005, Santorini Island, Greece,May 10-13, 2005: Proceedings,
Springer (2005) 391

6. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking and application profiling in a
shared Internet hosting platform. (2009)

7. Menascé, D.A., Almedia, V.A.F., Dowdy, L.W.: Performance by design: Computer Capacity
Planning by Example. Prentice Hall, Upper Saddle River, NJ (2004)

8. Urgaonkar, B., Rosenberg, A., Shenoy, P., Zomaya, A.: Application Placement on a Cluster
of Servers. International Journal of Foundations of Computer Science18(5) (2007) 1023–
1041

9. Coffman Jr, E., Garey, M., Johnson, D.: Approximation algorithms for bin packing: a survey.
(1996)

10. Schrijver, A.: Theory of linear and integer programming. Wiley (1986)
11. Amza, C., Ch, A., Cox, A., Elnikety, S., Gil, R., Rajamani, K., Zwaenepoel, W.: Specifi-

cation and Implementation of Dynamic Web Site Benchmarks. In: 5th IEEE Workshop on
Workload Characterization. (2002) 3–13

12. Zhang, Q., Cherkasova, L., Mathews, G., Greene, W., Smirni, E.: R-capriccio: a capac-
ity planning and anomaly detection tool for enterprise services with live workloads. In:
Middleware ’07: Proceedings of the ACM/IFIP/USENIX 2007 International Conference on
Middleware, New York, NY, USA, Springer-Verlag New York, Inc. (2007) 244–265

13. Eckerson, W., et al.: Three Tier Client/Server Architecture: Achieving Scalability, Perfor-
mance and Efficiency in Client Server Applications. Open Information Systems10(1) (1995)

