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Abstract

Advanced distributed interactive simulations have stringent
quality of service (QoS) requirements for throughput, latency,
and scalability, as well as requirements for a flexible com-
munication infrastructure to reduce software lifecycle costs.
The CORBA Event Service provides a flexible model for asyn-
chronous communication among distributed and collocated
objects. However, the standard CORBA Event Service spec-
ification lacks important features and QoS optimizations re-
quired by distributed interactive simulation systems.

This paper makes five contributions to the design, imple-
mentation, and performance measurement of distributed inter-
active simulation systems. First, it describes how the CORBA
Event Service can be implemented to support key QoS fea-
tures. Second, it illustrates how to extend the CORBA Event
Service so that it is better suited for distributed interactive
simulations, such as the next-generation Run Time Infrastruc-
ture (RTI-NG) implementation for the Defense Modeling and
Simulation Organization’s (DMSO) High Level Architecture
(HLA). Third, it describes how to develop efficient event dis-
patching and scheduling mechanisms that can sustain high
throughput. Fourth, it describes how to use multicast protocols
to reduce network traffic transparently and to improve system
scalability. Finally, it illustrates how an Event Service frame-
work can be strategized to support configurations that facil-
itate high throughput, predictable bounded latency, or some
combination of each.

Keywords: Scalable CORBA event systems, object-
oriented communication frameworks, DMSO HLA RTI.

1 Introduction

Overview of distributed interactive simulations. Interac-
tive simulations are useful tools for training personnel to op-

�This work was supported in part by DMSO, SAIC, and Siemens.

erate equipment or to experience situations that are too expen-
sive, impractical, or dangerous to execute in the real world.
The advent of high-speed LANs and WANs has enabled the
development ofdistributed interactive simulations, where par-
ticipants are dispersed geographically. For example, military
units stationed around the world can participate in joint train-
ing exercises, with human-in-the-loop airplane and tank sim-
ulators. Massively multiplayer online gaming is another form
of distributed interactive simulation. In both examples, hetero-
geneous LAN-based computer systems can be interconnected
by high-speed WANs, as depicted in Figure 1.

Figure 1:Distributed Interactive Simulation Architecture

The quality of service (QoS) requirements on the software
that supports distributed interactive simulations can be quite
demanding. This software must combine

1. Aspects of distributed real-time computing, such as low-
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latency and high-throughput, with
2. The need for highly scalable multi-sender/multi-receiver

communication over a wide-range of autonomous and in-
terconnected networks.

Meeting these challenges requires an efficient and scalable
communication infrastructure, which is the focus of this pa-
per.

Distributed interactive simulation systems, such as DIS [1],
have historically been based on Publish/Subscribe patterns [2].
Participants in a simulation declare the data that they supply
and consume. Typically, each participant in theseevent-driven
systems supplies and consumes only a subset of the possible
events in the system. These systems can vary dynamically,
however,e.g., publishers and subscribers can join and leave
at arbitrary times. Likewise, the set of events published or
subscribed to can also vary during the lifetime of a simulation.

It is common for large-scale simulations, such as synthetic
theater of war training (STOW) activities, to be composed of
hundreds or thousands of publishers and subscribers that gen-
erate enormous quantities of events in real-time. Simulation
communication infrastructures must therefore scale up to han-
dle large event volumes, while simultaneously conserving net-
work resources by minimizing the number of duplicated events
sent to separate subscribers. In addition, the system must avoid
wasteful computation. For instance, it should avoid sending
events to subscribers who are not interested, as well as quickly
rejecting those events if they are received. Moreover, com-
munication infrastructures must be flexible to cope with sim-
ulation styles that require different optimization points, such
as reduced latency, improved throughput, low network utiliza-
tion, and reliable or best-effort delivery.

Towards a middleware-based solution. Given sufficient
time and effort, it is possible to achieve the specific require-
ments of distributed interactive simulation applications by de-
veloping these systems entirely from scratch. In practice, how-
ever, this is unrealistic because:

� The economic context in which these systems are devel-
oped places increasingly stringent constraints on time and
effort expended on developing software.

� The increasing scarcity of qualified software profession-
als exacerbates the risk of failing to complete mission-
critical projects.

It is rarely realistic to develop complex simulation systems
from scratch, therefore, unless the scope of software devel-
opment required for each project can be constrained substan-
tially.

For these reasons, it is necessary that distributed interactive
simulation systems be assembled largely from reusablemid-
dleware components. Middleware is software that resides be-
tween applications and the underlying operating systems, pro-
tocol stacks, and hardware in complex distributed systems to

enable or simplify how these components are connected [3].
When middleware is commonly available for acquisition or
purchase, it becomes commercial-off-the-shelf (COTS).

Employing COTS middleware shields software develop-
ers from low-level, tedious, and error-prone details, such as
socket-level programming [4]. Moreover, it provides a con-
sistent set of higher level abstractions [5, 6] for developing
more flexible and adaptive systems. In addition, it amortizes
software lifecycle costs by leveraging previous design and de-
velopment expertise and reifying key design patterns [7] into
reusable frameworks and components.

COTS middleware has achieved substantial success in cer-
tain domains, such as avionics mission computing [8] and
business applications. There is a belief in some parts of the
distributed interactive simulation community, however, that
the efficiency, scalability, and predictability of COTS middle-
ware, such as CORBA [9], is not suitable for advanced large-
scale simulation applications. Thus, if it can be demonstrated
that the overhead of COTS middleware implementations can
be removed, the resulting benefits make it a compelling choice
as the communication infrastructure for large-scale distributed
interactive simulation systems.

Our previous research on middleware has examined many
dimensions of high-performance and real-time CORBA ORB
endsystem design, including static [10] and dynamic [5]
scheduling, event processing [8], I/O subsystem [11] and plug-
gable protocol [12] integration, synchronous [13] and asyn-
chronous [14] ORB Core architectures, systematic bench-
marking of multiple ORBs [15], patterns for ORB extensibil-
ity [7], and ORB performance [16]. This paper extends our
previous work [8] on real-time extensions to theCORBA Event
Service [17] as follows:
� We describe the patterns that guided the design and opti-

mization of a flexible and scalable Event Service frame-
work that allows developers to select implementation
strategies that are most appropriate for their application
domain.

� We show how the CORBA Event Service can be en-
hanced to support the QoS requirements of large-scale
distributed interactive simulations by using UDP/IP mul-
ticast to federate multiple event channels and conserve
network resources.

� We describe how an implementation of the TAO Event
Service has been used in the U.S. Defense Modeling
and Simulation Organization (DMSO)’s next-generation
High-Level Architecture (HLA) [18] Run-time Infras-
tructure (RTI-NG) reference implementation to support
large-scale distributed interactive simulations.

� We evaluate the performance and scalability of TAO’s
Real-time Event Service implementation empirically.

The remainder of this paper is organized as follows: Sec-
tion 2 presents an overview of CORBA and TAO’s Real-
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time Event Service; Section 3 describes how TAO’s Real-time
Event Service has been used to implement the standard DMSO
HLA RTI; Section 4 describes the patterns and optimizations
we applied to TAO’s Real-time Event Service to support scal-
able RTI-based distributed interactive simulation applications;
Section 5 shows the results of benchmarks conducted on our
implementation under different workloads; Section 6 com-
pares our work with related research; and Section 7 presents
concluding remarks.

2 Overview of CORBA and TAO’s
Real-time Event Service

CORBA is a distributed object computing middleware spec-
ification [19] being standardized by the Object Management
Group (OMG). CORBA supports the development of flexible
and reusable service components and distributed applications
by
� Separating interfaces from (potentially remote) object

implementations and
� Automating many common network programming tasks,

such as object registration, location, and activation; re-
quest demultiplexing; framing and error-handling; pa-
rameter marshaling and demarshaling; and operation dis-
patching [20].

Figure 2 illustrates the primary components in the OMG
CORBA architecture. The ACE ORB (TAO) [10] is our freely

in args
operation()
out args +

return

Figure 2:OMG CORBA Architecture

available, open-source implementation of CORBA.
Many distributed applications exchange asynchronous re-

quests usingevent-based execution models [21, 22, 23, 24], of-
ten called Publisher/Subscriber architectures. To support these
common use-cases, the OMG defined a CORBA Event Service
component, which is shown in Figure 3.
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Figure 3:CORBA Event Service Architecture

The CORBA Event Service defines three roles:

1. Suppliers, which produce event data,i.e.they play the
publisher role

2. Consumers, which receive and process event data,
i.e.they play the subscriber role, and

3. Event channels, which are mediators [25] through which
multiple consumers and suppliers communicate asyn-
chronously.

Events are generally transferred via standard CORBA two-
way operations from suppliers to an event channel, which in
turn forwards the events to consumers. Some Event Service
implementations transfer events using one-way operations, but
this can cause flow control and reliability problems due to the
semantics of CORBA one-way operations [14].

There are four general models of component collaboration
in the OMG Event Service architecture. Figure 4 shows the
collaborations between suppliers, consumers, and event chan-
nels in each of the models outlined below:

A. The canonical push model: In this model, event sup-
pliers initiate the transfer of event data to consumers. As
shown in Figure 4(A), suppliers are the active initiators and
consumers are the passive targets of the requests. Event chan-
nels play the role ofnotifier, as defined by the Observer pat-
tern [25], where observers of an object are notified whenever
the object changes its state. Active suppliers therefore use
event channels to push data to passive consumers that have
registered with event channels.
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Figure 4:Delivery Models in the CORBA Event Service

B. The canonical pull model: In this model, consumers
request events from suppliers. As shown in Figure 4(B), con-
sumers are the active initiators and suppliers are the passive
targets of the pull requests. Event channels play the role of
procurer since they obtain events on behalf of consumers. Ac-
tive consumers therefore can pull data explicitly from passive
suppliers via an event channel.

C. The hybrid push/pull model: In this model, con-
sumers request events that are queued at a channel by suppli-
ers. As shown in Figure 4(C), both suppliers and consumers
are the active initiators of the requests. Event channels play the
role of aqueue. Active consumers therefore can pull data that
is explicitly deposited by active suppliers via an event channel.

D. The hybrid pull/push model: In this model, a channel
pulls events from suppliers and pushes them to consumers. As
shown in Figure 4(D) suppliers are passive targets of pull re-
quests and consumers are the passive targets of pushes. Event
channels play the role ofintelligent agent. Active event chan-
nels therefore can pull data from passive suppliers and push
that data to passive consumers.

2.1 Overcoming Limitations with the CORBA
Event Service

Although the CORBA Event Service specification provides a
standard way to decouple event suppliers and event consumers
and support asynchronous communication, it lacks several im-
portant features required by large-scale distributed interactive
simulations. Chief among these missing features include:

� Centralized event filtering and event correlations1

1Correlation allows an event channel to wait for aconjunction of events

� Efficient and predictable event dispatching and
� Efficient use of network and computational resources.

To resolve these limitations we have developed aReal-time
Event Service [8] as part of the TAO project [10] at Wash-
ington University, St. Louis and the University of California,
Irvine. TAO’s Real-time Event Service extends the CORBA
Event Service specification to satisfy the quality of service
(QoS) needs of real-time applications in many domains, such
as avionics, telecommunications, process control, and dis-
tributed interactive simulations (which is the focus of this pa-
per). The following discussion summarizes the features miss-
ing in the CORBA Event Service and outlines how TAO’s
Real-time Event Service supports them.

Support for centralized event filtering and event correla-
tion. In large-scale distributed interactive simulations, con-
sumers may not be interested in all events generated by sup-
pliers. Although it is possible to let each application perform
its own filtering, this solution wastes network and computing
resources and requires extra work by application developers.
Ideally, the Event Service should therefore send an event to a
particular consumer only if the consumer has subscribed for
it explicitly. Care must be taken, however, to ensure that the
algorithms used to support filtering do not cause undue burden
on distributed system resources.

It is possible to implement filtering using standard CORBA
event channels. For instance, channels can be chained together
to create an event filtering graph that consumers use to re-
ceive a subset of the total events in the system. However,
filter graphs defined using standard CORBA event channels
increase the number of hops a message must travel between

before sending it to consumer(s).
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suppliers and consumers. This increased traversal overhead
may be unacceptable for applications with low latency require-
ments. Likewise, it hampers system scalability because addi-
tional processing is required to dispatch each event.

To alleviate these scalability problems, TAO’s Real-time
Event Service provides filtering and correlation mechanisms
that allow consumers to specify logicalOR andAND event de-
pendencies. When the designated conditions are met, the event
channel will dispatch all events that satisfy each consumer’s
dependencies.

Efficient and predictable event dispatching. To improve
scalability and take advantage of advanced hardware it may
be desirable to have multiple threads within an event chan-
nel forwarding events to their consumers. TAO’s Real-time
Event Service can be configured with an application-specified
strategy to assign the number and priority of threads that will
dispatch events. The standard distribution also includes sev-
eral application-specified strategies to cover the most common
cases. Since an event can be assigned to a thread with the ap-
propriate OS priority, the same dispatching component can be
used to achieve greater predictability and enforce scheduling
decisions at run-time.

Efficient use of network and computational resources.
Näive implementations of an Event Service will send one mes-
sage for each remote consumer interested in the event. This
design can suboptimally utilize network resources since the
same data is transmitted multiple times, often to the same tar-
get host. The strategies by which TAO’s Real-time Event Ser-
vice can be configured to minimize network traffic include:
� Using multicast protocols to avoid duplicate network traf-

fic and
� Building federations of Event Services that share filtering

information to minimize or eliminate the transmission of
unwanted events to a remote entity.

2.2 TAO’s Real-time Event Service Architec-
ture

TAO’s Real-time Event Service is implemented using the Me-
diator pattern [25]. The heart of the Real-time Event Service
service is the event channel shown in Figure 5. The features of
TAO’s event channel are defined by anEvent Channel IDL
interface and implemented by a C++ class of the same name.
This class also plays a mediator role by serving as a “location
broker” so the rest of an event channel’s components can find
each other as they are being composed at initialization-time.

When aProxyPushConsumer receives an event from an
application the following activities occur:

1. It iterates over the set ofProxyPushSuppliers that
represent the potential consumers interested in that event.
Section 4.2 describes how this set is determined.

Dispatching Module

Consumer Admin

Supplier Admin

Figure 5:TAO’s Real-time Event Service Architecture

2. EachProxyPushSupplier then checks to see if the
event is relevant for its consumer. This check is per-
formed by thefilter hierarchy described in Section 4.1.

3. If a consumer is interested in the event, adispatching
strategy selects the thread that will dispatch the event to
the consumer. Section 4.6 discusses various tradeoffs to
consider when selecting the dispatching thread strategy.

4. For real-time applications that require periodic event
processing, the Event Service can contain an optional
Timer Module. Section 4.14 outlines several strate-
gies for generating timer events. Each strategy possesses
different predictability and performance characteristics
and different resource requirements.

3 Applying TAO’s Real-time Event
Service to DMSO’s HLA RTI-NG

TheHigh Level Architecture (HLA) [18] is a standard for dis-
tributed simulation middleware promulgated by the the U.S.
Defense Modeling and Simulation Office (DMSO). Every im-
plementation of this standard is referred to as aRun-time In-
frastructure (RTI). Early RTI’s demonstrated the viability of
the HLA specification, so DMSO commissioned the develop-
ment of anext-generation RTI (RTI-NG).
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The architecture of the HLA RTI-NG is centered around
TAO’s Real-time Event Service. Fundamentally, HLA spec-
ifies publish/subscribe distributed middleware, so TAO is an
excellent foundation. Some elements of the HLA are not well-
suited to the publish/subscribe model, such as elements involv-
ing the control of event data dissemination. These elements
use normal CORBA remote operation invocations, as provided
by TAO’s real-time implementation of CORBA. This discus-
sion of the RTI-NG will only consider the publish/subscribe
elements, however.

In HLA parlance, a group of participants cooperating in a
distributed simulation is afederation.2 A federate is the term
describing a participant of a federation. A given process may
contain one or more federates, each one belongs to a federa-
tion. Although every federate belongs to only a single federa-
tion, the federates in a multi-federate process need not all be-
long to the same federation, as shown in Figure 6. Moreover,

 : Host

 : Host

 : Process  : Process

 : Federate

 : Federate  : Federate

 : Host

 : Process

 : Federate

 : Federate

 : Host

 : Process : Process  : Process

 : Federate

 : Federate

 : Federate  : Federate

 : Federate

 : Federate

 : Federate

 : Federate

Figure 6:Examples of Configurations for Federations, Fed-
erates, and Processes

a single process may have more than one federate, possibly
joined to different federations. Federates not in the same fed-
eration cannot communicate using the HLA standard.3

Since there is no need to support communication between

2Strictly speaking,federation execution is the name given to the group of
participants while they are actually running, to draw distinction between a
running simulation and a simulation that is not running (e.g., being planned).

3It is possible to bridge communication between HLA federates, although
such bridging is not standardized by the HLA specification.

federates in different federations, every RTI-NG process con-
tains a separate instance of the event data dissemination mech-
anisms for each of the federations with which the process com-
municates. This event data dissemination mechanism uses
three TAO real-time event channels, as well as several gate-
ways described in Section 4.9 and a single multicast gateway
described in Section 4.11.

The HLA specifies the following four combinations of event
transport and ordering:

1. Reliable/receive-ordered
2. Reliable/time-stamp-ordered
3. Best-effort/receive-ordered and
4. Best-effort/time-stamp-ordered.

The multiple event channels and gateways support these four
combinations of transport and ordering efficiently. Two of the
event channels and the gateways support the reliable transport
(both receive- and time-stamp-ordered). The third event chan-
nel and the multicast gateway support best-effort transport.

For the reliable transport, one event channel is used to han-
dle outbound (reliable) events. The other event channel and the
gateways are used to handle inbound events. As discussed in
Section 4.10, event channel subscriptions and publications can
change frequently. Using separate event channels for inbound
and outbound communication allows publications (subscrip-
tions) to change concurrently with the receipt (transmission)
of events.

Figure 7 illustrates a configuration with two processes that
contain federates in the same federation, processA and pro-
cessB. The outbound event channel inA is connected to
a gateway in processB that supplies events to processB’s
inbound event channel. The RTI can select between reliable
and unreliable communication by selecting either the Internet
Inter-ORB Protocol (IIOP)-based Event Service or by using a
multicast-based Event Service.

To support the reliable and time-stamp-ordered event deliv-
ery required by the HLA, the RTI-NG uses a distributed snap-
shot algorithm that accounts for everyreliable event that is sent
and received [26]. To accomplish this, the RTI-NG extended
TAO’s ProxyPushSupplier to count every reliable event
that is transmitted to a remote gateway. Likewise, TAO’s event
channel gateway was extended to count every reliable event
that is received. This information is then provided to the dis-
tributed snapshot algorithm.

For simplicity, best-effort events are transmitted via UDP/IP
multicast directly,i.e., without the use of the TAO’s event
channel. However, best-effort events are received using TAO’s
mulicast event channel gateway. Each multicast gateway
passes the events it receives to an inbound multicast event
channel. Once again, this design minimizes the impact of pub-
lication and subscription changes on best-effort and reliable
events.
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Figure 7:Use of TAO’s Event Service Gateways in the RTI

In addition to four combinations of event transport and or-
dering, the HLA specifies that programmers developing a fed-
eration have the ability to logicallysegment the events ex-
changed amongst federates in order to minimize unwanted
network traffic. Ideally, the implementation of programmer-
defined segmentation would be perfect and each subscriber
would receive only the events it wants. In practice, however,
the implementation of the user-defined segmentation is rarely
perfect, so unwanted events must be filtered by the receiver.
Note that each supplier supplies only one type of event.

The RTI-NG has various static mappings between these
programmer-defined segmentations and TAO suppliers. We
describe the various mappings on the sender- and receiver-side
below:

� On the sender, the RTI-NG maps a given programmer-
defined segmentation onto a set of TAO suppliers. In the
case of reliable transport, these suppliers push events onto
the reliable outbound event channel. The outbound reli-
able event channel uses the consumer filtering scalability
improvements described in Section 4.2. In the case of
best-effort transport, there is only one specialized sup-
plier. This supplier collaborates with an address server
described in Section 4.11 to transmit events to the multi-
cast group dictated by the statically determined mapping.

� On the receiver, the RTI-NG instantiates one consumer
for every federate in the process. The inbound event

channels (both reliable and multicast) deliver their events
to these consumers. The inbound event channels there-
fore serve to dispatch an event to a potentially large num-
ber of co-located consumers.

Events exchanged by the RTI-NG do not carry CORBA
Any’s, as specified in the OMG Event Service Specification.
Instead, they carry CORBA octet sequences. This is an impor-
tant optimization that eliminates the overhead incurred when
sending and receiving CORBA Any’s.

4 Applying Patterns to Resolve Com-
mon Design Challenges

Section 2.2 outlined the core components of the CORBA
Event Service that are defined by IDL interfaces. This sec-
tion describes the following design challenges that we identi-
fied prior to and during the development of TAO’s Real-time
Event Service:

1. Implementing an Extensible and Efficient Filtering
Framework

2. Improving Consumer Filtering Scalability

3. Reducing Memory Footprint

4. Supporting Re-entrant Calls while Dispatching Event

5. Reducing Synchronization Overhead

6. Selecting the Thread to Dispatch an Event

7. Configuring Event Channel Strategies Consistently

8. Supporting Rapid Testing and Run-time Changes in the
Configuration

9. Exploiting Locality in Supplier/Consumer Pairs

10. Updating the Gateway Subscriptions and Publications

11. Further Improving Network Utilization

12. Exploiting Hardware- and Kernel-level Filtering

13. Breaking Event Cycles in Event Channel Federations

14. Providing Predictable and Efficient Periodic Events

These challenges and the solutions we applied to address them
are discussed below. We focus on our systematic application
of key patterns, such as Builder, Command, Composite, and
Strategy from the GoF book [25] and Strategized Locking and
Component Configurator from the POSA2 book [27], to tackle
the design and implementation challenges posed when cus-
tomizing TAO’s Real-time Event Service for the HLA RTI-
NG described in Section 3. Since these patterns are applicable
to many related distributed real-time systems, we document
these patterns were applied and composed in TAO to achieve
our performance and scalability goals.
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4.1 Implementing an Extensible and Efficient
Filtering Framework

Context. TAO’s real-time Event Service provides several fil-
tering primitives, e.g., a consumer can only accept events
of a given type or from some particular source [8]. Not
all applications require all filtering mechanisms provided by
the Real-time Event Service, however. For example, many
distributed interactive simulations do not require correlation.
Likewise, some Event Service applications do not require fil-
tering. Moreover, consumers often compose several filtering
criteria into their subscription list,e.g., they request to receive
any event from a given list or a single notification whenall the
events in a list are received.

Problem. An event channel should support the addition of
new filtering primitives flexibly and efficiently. Examples of
such primitives include

� Receiving a single notification when a set of events are
received in a particular order or

� Accepting any event whose type matches a designated
bitmask.

Solution ! Use the Composite pattern [25]. This pattern
allows clients to treat individual objects and compositions of
objects uniformly. Usually, the composition forms a tree struc-
ture, which in our case is called afilter composition tree. New
filtering primitives can be implemented as leaves in the com-
position tree. These primitives provide applications with sub-
stantial expressive power,e.g., they can can create complex fil-
ter hierarchies using disjunction and conjunction composites,
as shown in Figure 8.

EC:: EC::EC:: +children

1..*

+parent

1

EC::EC::

EC::

Figure 8: Composite Event Service Filters Used to Build
Composition Trees

To control the creation of the concrete filters, we use the
Builder Pattern [25], which separates the construction of a
complex object from its representation. Currently applications

describe the filter hierarchy using a sequence of IDL struc-
tures. However, the patterns described above can use a de-
scription based on a filtering language, such as the CORBA
Extended Trader Constraint Language [28]. One important
consequence of using the Builder pattern is that changing from
one description format to another does not affect the overall
architecture of TAO’s Event Service framework.

4.2 Improving Consumer Filtering Scalability

Context. In some distributed interactive simulation applica-
tions, only a small percentage of consumers are interested in a
particular event.

Problem. As the number of consumers grows, an event
channel implementation that queries the complete list of con-
sumers to check if they are interested in a particular event will
scale poorly, since the time required to dispatch an event will
increase linearly with the number of consumers tested.

Solution! Pre-compute the set of consumers for each sup-
plier. Because each supplier attaches to the Event Channel
via a uniqueProxyPushConsumer each one of this objects
can keep a separate list of consumers, that only includes con-
sumers interested in events generated by the supplier. The set
can be computeda-priori using (1) the list of event types gen-
erated by the supplier and (2) the pre-computer filter attached
to each consumer. In TAO’s Event Service these sets are com-
puted by theSupplier Filter class shown in Figure 9.

+push()
+disconnect()

EC::

+push()

EC::

EC::

+push()

EC::

1..*
0..*

«create»

0..* 1

EC::

1 0..*

EC::

EC::

Figure 9:TAO’s Real-time Event Service Supplier Filters

4.3 Reducing Memory Footprint

Context. In other distributed interactive simulation applica-
tions, a large percentage of consumers may be interested in the
events generated by each supplier. In such cases, it is counter-
productive to use the pre-computation optimization described
in Section 4.2. Instead, it may be more efficient to use a single
global consumer set, which reduces the memory footprint and
minimizes the time required to update the consumer set.
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Problem. Using a per-supplier consumer set can result in ex-
cessive memory allocations. However, the per-supplier con-
sumer set offers the best performance for applications with
medium range consumer set sizes.

Solution! Use the Strategy Pattern [25]. In this pattern,
a family of algorithms is represented by classes that share a
common base class. Clients access these algorithms via the
base class, which enables them to select different algorithms
without requiring changes to themselves. We use this pattern
in TAO’s Real-time Event Service framework to encapsulate
the exact algorithm that controls the number of consumer sets,
as well as how these sets are updated. Note that the varia-
tions mentioned thus far are not exhaustive,e.g., we can store
a separate consumer set for each eventtype. The framework
implemented in TAO’s Real-time Event Service supports this
use case, as well.

4.4 Supporting Re-entrant Calls while Dis-
patching Events

Context. To dispatch an event to multiple con-
sumers, an event channel must iterate over its set of
ProxyPushSupplier objects. Some distributed inter-
active simulation cannot use multi-threaded configurations
because the RTI is used as part or calls legacy code. In such
cases reactive dispatching strategies described in Section 4.6
must be used. Therefore, the same thread that iterates over
a consumer set executes theupcall,4 as shown in Figure 10.
Consumers can then push new events, add or remove con-

 : EC::ProxyPushConsumer  : EC::ProxyPushSupplier

 : RtecEventComm::PushConsumer : EC::Supplier_Filter

disconnect

push

push

push

push

Changing the set of ProxyPushSuppliers inside
the Supplier_Filter would invalidate the iteration
and crash the system.  Using a lock would produce
a deadlock in collocated scenarios.

disconnect

Figure 10:An Example of a Reentrant Call During the Dis-
patch Sequence

sumers and suppliers, and call back into the event channel and
its internal components.

4An upcall is the invocation of an application-provided function by the
middleware.

Problem. An event channel should support re-entrant calls
during event dispatching, regardless of which concurrency
model is being used. However, many iterator implementations
become invalidated when their data structure is modified [29].
TheProxyPushSupplier set therefore cannot be changed
when a thread is iterating over it. Simply locking the set is in-
appropriate because the application will either deadlock if the
upcall changes the set or will invalidate iterators if recursive
locks are used. Another inappropriate alternative is to copy
theProxyPushSupplier setbefore starting the iteration.
Although this strategy works for small sets, it performs poorly
for large-scale distributed interactive simulation applications.

Solution ! Apply lazy evaluation to delay certain opera-
tions. TAO’s event channel tracks the number of threads it-
erating over each set ofProxyPushSupplier objects. Be-
fore performing changes that would invalidate other iterators,
it checks to ensure no concurrent iterations are occurring. If
iterations are in progress, the operation is stored as a command
object [25]. When no threads are iterating on the set, all de-
layed command operations can be executed sequentially.

To avoid starving a delayed operation indefinitely, limits can
be placed on the number of iterations started after a pending
modification occurs. After this limit is reached, all new threads
must wait on a lock until the modification completes.

Although the lazy evaluation solution described above is
functionally correct, it increases synchronization overhead
along the critical path of the event filtering and dispatch-
ing algorithms. TAO’s real-time event channels can there-
fore be configured to decouple (1) threads that iterate over the
ProxyPushSupplier sets from (2) threads that perform
consumer upcalls. These configurations do not suffer from the
concurrency problems described earlier. Moreover, this design
has other benefits since it:

� Yields more predictable behavior in hard real-time sys-
tems

� Allows event channels to re-order the events,e.g., in or-
der to perform dynamic scheduling [5] and

� Isolates event suppliers from the execution time of con-
sumer upcalls.

Although this design may increase context switch overhead,
many applications can tolerate overhead if event channels al-
ready use separate threads to perform upcalls.

4.5 Reducing Synchronization Overhead

Context. Excessive synchronization overhead can be a sig-
nificant bottleneck when it occurs in the critical path of a con-
current system.

Problem. The synchronization protocols described in Sec-
tion 4.4 incur more synchronization overhead than a simple
critical section. This will produce a reduction in performance
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Figure 11: Dispatching Strategies Supported in TAO’s
Real-time Event Channel

for Event Service configurations that can work with a simpler
synchronization strategy.

Solution ! Use the Strategy Pattern [25]. TAO’s event
channel uses this pattern to strategize the dispatching algo-
rithm and minimize overhead in applications that do not re-
quire complex concurrency and re-entrancy support. For com-
plex use-cases, TAO’s event channel uses a special lock that
updates the state in the set to indicate that a thread is perform-
ing an iteration. When this lock is released, any operations
delayed while the lock was held are executed.

4.6 Selecting the Thread to Dispatch an Event

Context. After an event channel has determined that a par-
ticular event should be dispatched to a consumer, it must de-
cide which thread will perform the dispatching. As shown
in Figure 11, there are several alternatives. Using the same
thread that received the event is efficient,e.g., it reduces con-
text switch, synchronization, and data copying overhead [16].
However, this design may expose an event channel to mis-
behaving consumers. Moreover, to avoid priority inversions
in real-time systems, events must be dispatched by a thread
at the appropriate priority. Likewise, highly-scalable systems
may want to use a pool of threads to dispatch events, thereby
leveraging advanced hardware and overlapping I/O and com-
putation.

Problem. No single dispatching algorithm is appropriate
across all applications. For example, single-threaded appli-
cations can only use reactive dispatching. However, this will
result in poor scalability on multi-processor systems. Like-
wise, a real-time system would require multiple dispatching
queues or priority based queues to avoid unbounded priority
inversions.

Solution!Use the Strategy Pattern [25]. This pattern can
be applied to encapsulate the algorithm used to choose the dis-
patching thread. The selected dispatching strategy is respon-
sible for performing any data copies that may be necessary
to pass the event to a separate thread. The current imple-
mentation of TAO’s event channel exploits several optimiza-
tions, such as reference counting, in the TAO ORB to reduce
those data copies. In applications with stringent real-time re-
quirements, the dispatching strategy collaborates with TAO’s
Scheduling Service [10, 5] to determine the appropriate queue
and thread to process the event. When the same thread is used
for receptionand dispatching, the strategy collaborates with
the ProxyPushSupplier to minimize locking overhead,
as described in Section 4.5.

4.7 Configuring Event Channel Strategies Con-
sistently

Context. As discussed in the previous sections, TAO’s real-
time event channel provides many strategies that can be con-
figured flexibly by application developers. Often, the choice of
one strategy affects other strategies. For example, if an event
channel’s dispatching strategy always uses a separate thread
to process the event there is no risk of having re-entrant calls
from the consumers modifying theProxyPushSupplier
sets. A simpler strategy to manipulate those sets can therefore
be used.

Problem. Due to TAO’s Real-time Event Service configura-
bility, selecting a suitable combination of strategies can im-
pose an undue burden on the developer and yield inefficient
or semantically incompatible strategy configurations. Ideally,
developers should be able to choose from a set of configura-
tions whose strategies have been pre-approved to achieve cer-
tain goals, such as minimizing latency, avoiding priority inver-
sion, or improving system scalability.

Solution ! Use the Abstract Factory Pattern [25]to con-
trol the creation of all the objects in an event channel. In this
pattern, a single interface creates families of related dependent
objects. We use an abstract factory to provide a single point
to select all event channel strategies and to avoid semanti-
cally incompatible configurations. Concrete implementations
of this abstract factory ensure that strategies and components
are compatible semantically and collaborate correctly.

4.8 Supporting Rapid Testing and Run-time
Changes in the Configuration

Context. Some applications may be used in multiple envi-
ronments, with different event channel strategies configured
for each environment. During application development and
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Figure 12:A Centralized Configuration of the TAO Real-
time Event Service

testing, it may be necessary to evaluate multiple configura-
tions to ensure that the application works in all of them or to
identify the most efficient/scalable configurations.

Problem. If an event channel is configured statically, it is
hard to evaluate various combinations without time consuming
recompiling/relinking.

Solution! Use the Component Configurator Pattern [27].
This pattern allows applications to dynamically and/or stat-
ically configure service implementations into an application
process. We use this pattern to load abstract factories dynam-
ically and use them to create various event channel configura-
tions. Our implementation includes a default abstract factory
that employs the scripting features of the ACE Service Config-
urator framework [30], which is a platform-independent C++
implementation of the Component Configurator pattern. By
using this default, developers or end-users can modify event
channel configurations during their initialization by simply
changing entries in a configuration file.

4.9 Exploiting Locality in Supplier/Consumer
Pairs

Context. TAO’s event channels can be accessed transpar-
ently across distribution boundaries since they are based on
CORBA. Many applications want to be shielded from distri-
bution aspects, while simultaneously achieving high perfor-
mance.

Problem. There are use-cases where distribution trans-
parency may not yield the mosteffective configuration. For ex-
ample, Figure 12 illustrates a scenario where most or all con-
sumers for common events reside in the same process, host, or
network with the supplier. Thus, sending an event to a remote
event channel—only to have it sent back to the same process
immediately—wastes network resources and increases latency
unnecessarily. Likewise, there may be multiple remote con-
sumers expecting the same event. Ideally, bandwidth should

Figure 13:A Federated Event Channel Configuration

be conserved in this case by sending a single message across
the network to all those remote consumers.

Solution! Federate Event Channels. Figure 13 illustrates
a federated group of event channels. Suppliers and consumers
connect only to their local event channel, while event channel
instances talk to each other via the CORBA bus. This design
reduces average latency for all the consumers in the system
because consumers and suppliers exhibit locality-of-reference,
i.e., most consumers for any event are in the same domain as
the supplier generating the event. Moreover, if multiple remote
consumers are interested in the same event only one message
is sent to each remote event channel, thereby minimizing net-
work utilization.

A straightforward and portable way to implement this ar-
chitecture is to use agateway between each event channel. As
shown in Figure 14, such gateways play both the consumer and
supplier roles and mediate between two event channels. They
connect, in their consumer role, to one of the event channels,
ideally subscribing only for the events that are interesting for
the participants in the second event channel. When a gate-
way receives an event it forward the event to the second event
channel, where it has connected to using its supplier role.

The application developer can configure the location of the
gateway with respect to its event channels to minimize the uti-
lization of network resources. For example, collocating the
gateway with its sink event channel,i.e.the one it connects to
as a supplier, eliminates the need to transmit events that are
not interesting for the sink event channel. However, collocat-
ing the gateway with its source event channel can avoid event
cycles (see Section 4.13) more efficiently than the previous
configuration.
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Figure 14:Using a Gateway to Connect two Event Chan-
nels

4.10 Updating the Gateway Subscriptions and
Publications

Context. In a dynamic environment, subscriptions can
change continually.

Problem. To use network resources efficiently, the event
channel gateways described in Section 4.9 must avoid sub-
scribing to all events generated by each remote event channel.

Solution! Use the Observer Pattern [25]. In this pattern,
all dependents (observers) of an object are notified whenever
the object changes its state. When this pattern is applied to
TAO’s Real-time Event Service framework, the changes in the
subscription and publication lists are propagated to all inter-
ested consumers and suppliers. Gateways can use this infor-
mation to receive only the events that will be of interest to
consumers in the sink event channel.

In some applications the subscriptions do not change dy-
namically, or the application may not register any observers to
an event channel. In this case, the overhead, however small,
required to propagate changes in the subscriptions and publi-
cations list should be eliminated completely. TAO’s Real-time
Event Service uses the strategy pattern to achieve this goal.

4.11 Further Improving Network Utilization

Context. In distributed interactive simulations, it is common
that an event will be dispatched to multiple hosts in the same
network.

Problem. Network bandwidth is often a scarce resource for
large-scale simulations, particularly when they are run over a
wide-area network (WAN). As the number of nodes increase,
therefore, sending the same event multiple times across a net-
work may not scale.

Solution ! Use a multicast or broadcast protocol:
TAO’s event channel can be configured to use UDP to mul-
ticast events. As with the gateways described in Section 4.10,
a special consumer can subscribe to all the events generated

by local suppliers, as shown in Figure 15. This consumer uses

Figure 15:Using Multicast in Federated Event Channels

multicast to send events to selected channels in the network.
On each receiver, a designated supplier re-publishes all events
that are of interest for local consumers. This supplier receives
remote multicast traffic, converts it into an event, and forwards
the event to its local consumers via an event channel. For both
consumers and suppliers, the observer interface described in
Section 4.10 is used to modify the subscriptions and publica-
tions of multicast gateways dynamically.

4.12 Exploiting Hardware- and Kernel-level
Filtering

Context. If different types of events can be partitioned onto
different multicast groups, consumer hosts only receive a sub-
set of the multicast traffic. In large-scale distributed interac-
tive simulations it may be necessary to disseminate events over
several multicast groups. This design avoids unnecessary in-
terrupts and processing by network interfaces and OS kernels
when receiving multicast packets containing unwanted infor-
mation.

Problem. An event channel must select the multicast group
used for each type of event in a globally consistent way. How-
ever, the mapping between events and multicast groups may
be different for each application. Applications can use differ-
ent mechanisms to achieve that goal. For instance, some use
pre-established mappings between their event types and the
multicast groups, whereas others use a centralized service to
maintain this mapping. Moreover, applications that require
highly scalable fault tolerance may choose to distribute the
mapping service across a network. An event channel must be
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able to satisfy all these scenarios, without imposing an ineffi-
cient one-size-fits-all implementation strategy.

Solution! Use a user-supplier callback object. Applica-
tion developers can implement anaddress server, which is a
CORBA object that event channel gateways query to re-direct
events to the appropriate multicast group. Gateways on the
receiver-side consult this service to decide which multicast
groups they need to subscribe to, based upon the current set
of event-type subscriptions in their sink event channel. Ad-
vanced operating systems and network adapters can use this
information to process only the multicast traffic that is rele-
vant to them.

To avoid single points of failure and to improve scalability,
application developers can replicate address servers across a
network. If developers use a static mapping between events
and multicast groups, there is no need to communicate state
between address services. Conversely, if mappings change dy-
namically, applications must implement mechanisms to prop-
agate these changes to all address servers. One solution is to
use an Event Service itself to propagate this information.

4.13 Breaking Event Cycles in Event Channel
Federations

Context. In a complex distributed interactive simulation, the
same event could be important for both local and remote con-
sumers. For instance, a local supplier can generatevehicle
position events. If both a local and remote consumer are in-
terested in these events, the gateways could continuously send
the event between two federated event channels.

Problem. Consumers for a particular event can be present
in multiple channels in the federation. In this case, gateways
will propagate events between the peers of the federation in-
definitely due tocycles in the event flow graph. One approach
would be to add addressing information to each event and en-
hance the routing logic in each event channel. This design
would complicate the gateway architecture for simpler use-
cases, however, and would require additional communication
among the peers.

Solution! Use atime-to-live (TTL) counter. This counter
is stored in each event and decremented each time an event
passes through a gateway. If the TTL counter becomes zero the
event is deallocated and not forwarded. Usually event channel
federations are fully connected,i.e., all event channels have a
gateway to each of their peers. Setting the TTL counter to 1
therefore eliminates all cycles because no event traverses more
than one gateway link. In more complex distributed configura-
tions, however, the TTL can be set to a higher number, though
events may loop before being discarded. To further improve
performance, the TAO event channel has been optimized to re-
duce data copying,e.g., only the event header requires a copy

to change the TTL counter, the payload, that usually contains
most of the data, is not touched.

4.14 Providing Predictable and Efficient Peri-
odic Events

Context. Real-time applications require an event channel to
generate events at particular times in the future. For instance,
applications can use these events to detect missed dead-lines
in non-critical processing or to support hardware that requires
watchdog timers to identify faulty equipment. In addition,
some applications require periodic events to initiate periodic
tasks and to detect that periodic tasks complete before their
deadline.

Applications with hard real-time requirements may assign
different priorities to their timer events. To avoid priority in-
versions, therefore, events should be generated and dispatched
by threads at the appropriate priorities. Soft real-time appli-
cations or best-effort applications often impose no such strict
requirements on timer priorities and can therefore be better
served by simpler strategies that conserve memory and CPU
resources. Other applications require no timers at all and ob-
viously single-threaded applications cannot use this technique
to generate periodic events.

Problem. Implement predictable periodic events for hard
real-time applications without undue overhead for applications
with less stringent predictability requirements.

Solution!Use the Strategy Pattern [25]to select the mech-
anisms used to generate timeout events dynamically. In TAO’s
event channel, theConsumerFilterBuildercreates spe-
cial filter objects that adapt theTimer Module used to gen-
erate timeouts with consumers that expect the IDL structures
used to represent events.

5 Empirical Performance Evaluation

This section describes the methodology and results of a series
of experiments that evaluate empirically the solutions we ap-
plied to resolve the design challenges presented in Section 4.
The tests are designed to assess the performance of TAO’s
Real-time Event Service with respect to some critical metrics
in distributed interactive simulations, such as latency, scala-
bility, and overhead relative to the underlying communication
mechanism.

5.1 Hardware and Software Overview

Our experiments were performed using two identically con-
figured systems. Each was equipped with an 866Mhz Pentium
III, with a 256Kb cache and 512Mb of RAM. The nodes had a
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Fast Ethernet (100 Mbps) network adapter and were connected
via an Ethernet hub. Aside from our tests, the network had no
significant traffic nor was any other processing taking place on
these hosts.

We ran the tests described below using Timesys Linux/RT
v.2.2.14, which adds a resource kernel (RK) [31] to the core
Linux kernel. Linux/RT enhances the real-time capabilities
of Linux by providing fixed-priority scheduling with priority-
inheritance and higher-resolution timers. Linux/RT is also
binary compatible with Linux,i.e., it is possible to have
Linux and Linux/RT on the same hardware. Booting with
the Linux/RT kernel starts the Linux/RT OS. The rest of the
OS, e.g., file-systems, C-libraries, compiler, and command-
line tools, behaves just like regular Linux.

The tests are also based on the upcoming TAO 1.2 re-
lease, compiled using gcc-2.95.2, with the highest level
of optimization possible (-O3). To improve predictabil-
ity and performance, the tests were statically linked and
native C++ exception handling was disabled. The list of
compile-time options included:Wpointer-arith, O3,
fno-implicit-templates, D_POSIX_THREADS,
D_POSIX_THREAD_SAFE_FUNCTIONS, and
D_REENTRANT.

5.2 Performance Test Descriptions and Results

We conducted the following tests:
1. Measuring event service latency — This test evaluates

the the baseline performance of TAO’s Real-time Event
Service.

2. Measuring event service overhead — This test measures
the amount of overhead incurred by TAO’s Real-time
Event Service.

3. Measuring consumer latency scalability — This test eval-
uates the scalability of TAO’s Real-time Event Service
with respect to the number of consumers.

Our goal in these experiments is to show that the federate
architecture proposed in Section 4.9 does not impose undue
overhead when compared to a more traditional implementation
of the service. The experiments also show empirically how
TAO’s Real-time Event Service architecture scales linearly as
the number of consumers increases. Moreover, our federated
architecture proposed in Section 4.9 is an order of magnitude
better than the more traditional centralized approach.

5.2.1 Measuring Event Service Latency

Overview. An important metric for any event service is
event latency, i.e., the time elapsed from when a supplier sends
an event until the last consumer interested in the event receives
it. RTI-NG application developers often have stringent re-
quirements on this metric and cannot use an event service that

incurs high latencies. Event latency varies according to the
number of consumer and suppliers, the types of filters that are
configured, and the configuration of the system and network.
We therefore created a test to evaluate theminimum event la-
tency of the TAO Real-time Event Service.

Experimental setup description. Measuring the latency in
the event service is hard since events are delivered via a
uni-directional flow of communication from suppliers to con-
sumers. As shown below, event delivery time and jitter is com-
parable to the network propagation delay, because a distributed
clock precision is bounded by the jitter (see [32]) measuring
the latency in the configurations show on Figures 12 and 13 is
impossible.

Fortunately, the latency for the centralized configuration can
be measured directly using a consumer located in the same
host as the supplier and measuring the roundtrip delay as
shown in Figure 16.

Figure 16:Experimental Setup to Measure Event Service
Latency

Our first experiment sends events from a supplier to a re-
mote event channel. The event channel then delivers the event
to a consumer located in the same host as the supplier. Since
messages are timestamped by the supplier, the consumer can
measure the roundtrip delay simply by comparing the times-
tamp with the current time. For all our measures we use the
high-resolution timer (under 2 nanosecond resolution) avail-
able on Pentiums. This timer is implemented via a special
register that counts the number of clock ticks since the CPU
was reset.

A different testbed is required to estimate the latency over
a federated configuration of the event channel. As shown in
Figure 17, our benchmark uses two event channels located in
separate nodes. On the first node a supplier generates events
of type A and a consumer subscribes for events of typeB.
Meanwhile, in the opposite node the configuration is reversed,
i.e., the consumer subscribes for events of typeA and the sup-
plier generates events of typeB. One of the suppliers (e.g., on
the first node) generates and timestamps an event. Since the
only consumer interested in the event is on the remote node
the event service must send this event to its peer. Upon ar-
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Figure 17: Measuring Latency in a Simple Event Service
Configuration

rival to the remote consumer, the event type is modified (from
A to B), and pushed through the local event channel. At this
point the event is sent back to the remote consumer and the
total roundtrip delay is calculated. Notice that with this con-
figuration the message is sent twice through the event chan-
nel, first the theA ! B direction and next in the opposite
direction. In each case the event goes through the complete
set of operations required to deliver it in the federated archi-
tecture. Therefore, the roundtrip delay measured through this
experiment is comparable to two times the event latency in the
federated architecture.

Despite this fact we present the roundtrip delay in the tables
and figures below, we believe that this allows us to compare the
results of all the experiments directly, and makes comparisons
in the predictability and scalability of each configuration more
intuitive.
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Figure 18: Histogram for the Event Service Roundtrip De-
lay Results

Minimum event latency results. The experiments take
50,000 samples and computes the average, minimum, maxi-
mum and standard deviation (or jitter) roundtrip delay, which
are shown below in �secs:

Configuration Avg Min Max Jitter
Centralized 271 260 4,173 36.89
Federated 351 343 1,756 12.89

As shown in the table, the estimated latency for the federated
event channel (175:5�secs = 351=2�secs) is significantly
lower than the measured latency for the centralized configu-
ration (271 �secs). The tests save all the samples, which we
show in Figure 18. This figure also shows that a large number
of samples are close to the average, and only a few samples
are over one standard deviation from the average.
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Figure 19: Accumulated Histogram for the Event Service
Roundtrip Delay Results

Figure 19 illustrates the results of using the cumulative his-
togram.5 This figure shows how over 99% of the samples
in the centralized configuration are under 307 �sec, which is
less than one standard deviation from the average. More than
99.9% of the samples are under 343 �secs, which is less than
2 standard deviations over the average. Likewise, over 97% of
the samples in the federated configuration are under one stan-
dard deviation from the average (363 �secs) and over 99% of
the samples are under two standard deviations from the aver-
age.

Results synopsis. Minimum event latency is an important
measure of event service performance. Our experiment mea-
sures the minimum latency of the centralized event service and
shows that for simple configurations it adds little or no jit-
ter over the underlying network and ORB. Although the fed-
erated Event Service roundtrip delay is higher than the cen-
tralized configuration, the event latency is considerably lower.

5The cumulative function is obtained from a histogram by plotting the re-
sult of adding all the values smaller or equal than a given value, i.e. if f(x)
is the histogram function then F (x) =

R
x

0
f(u)du is the cumulative his-

togram. This representation facilitates the quantitative analysis of a system
predictability.
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Although the Federated Event Service adds some measurable
overhead over the centralized configuration it scales better, as
we discuss in Section 5.2.3.

5.2.2 Measuring Event Service Overhead

Overview. Another metric to be considered in an evaluation
of an event service is the amount of overhead introduced over
the underlying communication mechanisms. In this context
we will deem any extra communication delay over the un-
derlying transport mechanism overhead, we must therefore
consider the roundtrip delay of sending a message over our
CORBA implementation. For completeness, we also consider
the roundtrip delay over TCP/IP.

 : CORBA Server

 : Test::Server

 : CORBA Client

 : Test::Callback

Request/Response sequence
repeated 50,000 times

set_callback

request

response
request

response

Figure 20: Measuring Latency Over the ORB

Experimental setup description. To measure TAO’s Event
Service overhead we implemented two benchmarks that mea-
sure the roundtrip delay over the following infrastructures:

� TCP/IP — This test consists of a client and server appli-
cation. The client sends a small 64 byte message to the
server over a TCP/IP socket. When the server receives
the message it responds by sending a reply message back
across the same socket. The client and server repeat this
procedure 50,000 times and the client records the delay
for each request/response pair.

� The ORB using a callback object — This test also con-
sists of a client and a server, which is shown in Fig-
ure 20. To approximate the behavior of the event service,
the client (1) creates a callback object and connects it to
the remote server and then (2) sends a CORBA one-way
request to the server. The server responds to the client

via the callback interface configured earlier. As in the
previous benchmark, the client in the ORB callback test
records the roundtrip delay for each message.
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Figure 21: Compared Roundtrip Delay Results for TCP/IP,
the ORB, and the Event Service

Event Service overhead results. The results of the TAO
event service overhead experiments are summarized in the fol-
lowing table:

Transport Avg Min Max Jitter
TCP/IP 96 95 10,096 45.32
ORB Callback 201 191 3,198 31.49
Centralized EC 271 260 4,173 36.89
Federated EC 351 343 1,756 12.89

These results show that a significant portion of the event la-
tency is due to the underlying ORB communication. In fact,
for the centralized event service, over 60% of the propaga-
tion delay can be attributed to the ORB communication over-
head. Moreover, as shown in Figure 21 all the experiments
have a similar distribution, thus the Event Service does not
introduce any additional jitter over the underlying ORB and
TCP/IP transport mechanisms.

5.2.3 Measuring Consumer Latency Scalability

Overview. This experiment characterizes the event delivery
latency as the number of consumers increases. Real-time ap-
plications need to determine the maximum latency over all the
consumers connected to the event service. In a quality event
service implementation, the maximum latency will increase
linearly with the number of consumers. The average latency
per consumer is the metric used to compare different event ser-
vice architectures.
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Experimental setup description. To perform these mea-
surements, we extend the benchmarks described in Sec-
tion 5.2.1. In particular, as shown in Figures 22 and 23 we
create and connect multiple consumers for both tests. The test

Figure 22: Experimental Setup to Measure Scalability wrt
to the Number of Consumers

proceeds to timestamp and send messages as before. On each
iteration, however, we record the worst case latency over the
set of consumers. The number of consumers is increased from
5 to 100, in increments of 5. For a fixed number of consumers,
the test performs 50,000 iterations and records the minimum,
maximum, average and standard deviation.

2

6

Figure 23: Experimental Setup to Measure Scalability in
the Federated Architecture

Consumer latency scalability results. Figure 24 shows the
results of the experiment described above. This figure illus-
trates how both architectures scale linearly with the number of
consumers. As expected, however, the federated architecture
scales better as a result of the reduced network overhead.

To estimate the cost-per-consumer, we apply linear regres-
sion over the data described above. Linear regression is an
statistical technique that determines the best linear approxima-
tion for a set of data points. The results of a linear regression
are thus the slope of such best linear approximation, the dis-
placement on the abscissa and the correlation factor. This last
value provides a measure of the confidence on the linear ap-
proximation, the closer the correlation factor is to 1 the better
the approximation.
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Figure 24: Average Roundtrip for Last Consumer

We use the slope of the linear approximation to estimate the
cost-per-consumer, as shown in the following table:

Configuration �secs of Latency Correlation
per-consumer Factor

Centralized EC 212.9 0.999
Federated EC 8.8 0.999

Results synopsis. The cost per-consumer in the event ser-
vice is an important metric to evaluate its performance.
Though the centralized architecture can scale linearly with the
number of consumers, our results show that a federated archi-
tecture can be at least an order of magnitude better with respect
to this metric.

6 Related Work

There are several commercial CORBA-compliant Event Ser-
vice implementations available from multiple vendors, such
as IONA and Inprise. IONA also produces OrbixTalk, which
is a messaging service based on UDP/IP multicast. Since the
CORBA Event Service specification does not address issues
critical for real-time applications, the QoS behavior of these
implementations are not acceptable solutions for many appli-
cation domains.

The OMG has issued an specification for a Notification Ser-
vice [33], which is a superset of the CORBA Event Service
that adds interfaces for event filtering, configurable event de-
livery semantics (e.g., at least once or at most once), security,
event channel federations, and event delivery QoS. We believe
that the patterns and techniques used in the implementation
of TAO’s Real-time Event Service can be used to improve the
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performance and predictability of Notification Service imple-
mentations. Based on that idea, we have implemented a No-
tification Service for TAO [34] and used it to validate the fea-
sibility of building reusable components for the Notification
Service, CORBA Event Service and TAO’s Real-time Event
Service.

COBEA [22] is a CORBA-based event architecture service
that generates parameterized events, which are published by a
trading service. For scalability, clients must register their inter-
est with the service, at which point an access control check is
performed. Subsequently, whenever a matching event occurs,
the client is notified. As with TAO’s Real-time Event Service
the authors propose a number of extensions to support event
filtering and correlation. However, the COBEA does not takes
advantage of the broadcast capabilities of modern networks to
reduce traffic, nor does COBEA use multicast to offload pro-
cessing from the CPU to the network cards.

In [21] the authors study the fault tolerance capabilities pro-
vided by the CORBA Notification Service and propose a con-
figuration that can achieve the highest event delivery guaran-
tees. The authors then examine the performance of such con-
figuration of the Notification Service under different loads.
TAO’s Real-time Event Service has been designed to sat-
isfy the requirement of high-performance real-time systems
and of highly-scalable distributed interactive simulations. In
these environments, reliability is commonly obtained via other
means, such as hardware redundancy. Nevertheless, we be-
lieve that extending TAO’s Real-time Event Service to provide
higher degrees of reliability is possible, and we are pursuing
this topic in our future work.

Rajkumar, et al., describe a real-time publisher/subscriber
prototype developed at CMU SEI [23]. Their Publisher/Sub-
scriber model is functionally similar to the CORBA Event Ser-
vice, though it uses real-time threads to prevent priority in-
version within the communication framework. An interesting
aspect of the CMU model is the separation of priorities for
subscription and event transfer so that these activities can be
handled by different threads with different priorities. How-
ever, the model does not utilize any QoS specifications from
publishers (suppliers) or subscribers (consumers). As a result,
the message delivery mechanism does not assign thread pri-
orities according to the priorities of publishers or subscribers.
In contrast, the TAO Event Service utilizes QoS parameters
from suppliers and consumers to guarantee the event delivery
semantics determined by a real-time scheduling service.

The OMG Messaging specification [35] gives application
developers control over several QoS parameters, such as one-
way reliability and timeouts, and introduces type-safe asyn-
chronous method invocation (AMI) models [14]. The CORBA
AMI specification solves many problems with the original
CORBA invocation model, but it does not address anonymous
or single-point-to-multiple-point communication. The Mes-

saging specification can complement implementations of the
CORBA Event Service, for example, it defines several levels
of reliability for one-way calls, this feature could be used in
Event Service implementations to improve decoupling of the
clients, without risking lost messages. We have augmented
TAO with the features [14] defined by the Messaging specifi-
cation, which complement its Real-time Event Service imple-
mentation.

7 Concluding Remarks

Many distributed interactive simulation applications require
support for asynchronous, event-based communication. The
CORBA Event Service provides a flexible object-oriented
model where event channels dispatch events to consumers on
behalf of suppliers. TAO’S Real-time Event Service described
in this paper augments this model with event channels that sup-
port

� Source and type-based filtering
� Event correlations
� Event channel federations
� Hardware and kernel-level filtering based on UDP/IP

multicast and
� Large numbers of suppliers and consumers.

Our performance results in Section 5 demonstrate that using
a single event channel for distribution yields poor scalability
and high latency. We present an architecture to build federa-
tions of event channels that yields near optimal performance
for collocated supplier/consumer pairs and does not affect re-
mote event performance significantly. Moreover, the same ar-
chitecture can be used to exploit multicast protocols, improv-
ing both the performance and scalability of the service. In gen-
eral, our results illustrate that it is feasible to apply CORBA
Object Services to develop high-performance, large-scale sys-
tems, complementing previous results where we show how
CORBA can be used to build real-time embedded avionics sys-
tems [8].

The implementation of TAO’s Real-time Event Service de-
scribed in this paper is written in C++ and provided as a ser-
vice in TAO [10]. TAO’s Real-time Event Service is currently
used as part of the HLA RTI-NG, which is the next-generation
Run Time Infrastructure (RTI) implementation for the Defense
Modeling and Simulation Organization’s (DMSO) High Level
Architecture (HLA). The source code and documentation for
TAO and its Real-time Event Service implementation are
freely available at URL http://ace.cs.wustl.edu/
Download.html. Additional information about the HLA
is available at URL http://hla.dmso.mil. The RTI-
NG is available at URL http://hlasdc.dmso.mil/
RTISUP/hla_soft/hla_soft.htm.
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