
Towards Real-time Fault-Tolerant CORBA Middleware

Aniruddha S. Gokhale, Balachandran Natarajan Joseph K. Cross
Douglas C. Schmidt

{gokhale,bala, schmidt}@isis-server.isis.vanderbilt.edu joseph.k.cross@lmco.com
Institute for Software Integrated Systems

Vanderbilt University Lockheed Martin Tactical Systems
Box 1829, Station B PO Box 64525, M S U2N29
Nashville, TN 37235 St. Paul, MN 55164-0525

Abstract

An increasing number of applications are being developed us-
ing distributed object computing (DOC) middleware, such as
CORBA. Many of these applications require the underlying
middleware, operating systems, and networks to provide de-
pendable end-to-end quality of service (QoS) support to en-
hance their efficiency, predictability, scalability, and reliabil-
ity. The Object Management Group (OMG), which standard-
izes CORBA, has addressed many of these application require-
ments individually in the Real-time CORBA (RT-CORBA) and
Fault-tolerant CORBA (FT-CORBA) specifications. Though
the implementations of RT-CORBA are suitable for mission-
critical commercial or military distributed real-time and em-
bedded (DRE) systems, the usage of FT-CORBA with RT-
CORBA implementations are not yet suitable for systems that
have stringent simultaneous dependability and predictability
requirements.

This paper provides three contributions to the study
and evaluation of dependable CORBA middleware for
performance-sensitive DRE systems. First, we provide an
overview of FT-CORBA and illustrate the sources of unpre-
dictability associated with conventional FT-CORBA imple-
mentations. Second, we discuss the QoS requirements of an
important class of mission-critical DRE systems to show how
these requirements are not well served by FT-CORBA today.
Finally, we empirically evaluate new dependability strategies
for FT-CORBA that can help make the use of DOC middleware
for mission-critical DRE systems a reality.
Keywords: CORBA, Fault-Tolerant CORBA, Real-time
CORBA, DRE systems

1 Introduction

Commercial-off-the-shelf (COTS) components based on dis-
tributed object computing (DOC) middleware, such as the
Common Object Request Broker Architecture (CORBA) [1],
are increasingly used to develop a wide variety of distributed
real-time embedded (DRE) systems, such as commercial

avionics systems, military combat systems, and supervisory
control and data acquisition (SCADA) systems. CORBA is
a DOC middleware standard defined by the Object Manage-
ment Group (OMG) that allows clients to invoke operations on
remote objects without concern for where the objects reside
or what language the objects are written in [2]. In addition,
CORBA shields applications from non-portable details related
to the OS/hardware platform they run on or the communica-
tion protocols and networks used to interconnect distributed
objects. These features make CORBA well suited to provide
the core communication infrastructure for DRE systems and
applications.

DRE systems demand dependable quality of service (QoS)
support from their middleware, including efficiency, pre-
dictability, scalability, and reliability. The CORBA [1] stan-
dard addresses many of these challenges via the following
specifications:
Real-time CORBA (RT-CORBA). RT-CORBA [3] pro-
vides capabilities to ensure predictable behavior end-to-end
for requests that traverse from one object to another. To deliver
these capabilitiesvertically (i.e., network interface↔ appli-
cation layer) andhorizontally(i.e., peer-to-peer), RT-CORBA
defines standard interfaces and QoS policies that allow ap-
plications to configure and control the following types of re-
sources:

• Processor resourcesvia thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling
service for real-time applications with fixed priorities,

• Communication resourcesvia protocol properties and ex-
plicit bindings to server objects using priority bands and
private connections, and

• Memory resourcesvia buffering requests in queues and
bounding the size of thread pools.

Although RT-CORBA is oriented towards applications with
hard real-time requirements, such as process control and
weapons systems, it also supports applications with strin-
gent soft real-time requirements, such as telecommunication
call processing. A comprehensive overview of RT-CORBA

1

appears in [4]. Implementations of RT-CORBA including
TAO [5] and ORBExpress (www.ois.com) have been eval-
uated positively [6] for their suitability to DRE systems that
require end-to-end predictability and real-time assurance. RT-
CORBA ORBs have also been used to
• Improve situation awareness for prosecuting time-critical

targets [7], such as mobile missile launchers and tanks,
and

• Control avionics mission computing application process-
ing in real-time [8, 9].

Fault-tolerant CORBA (FT-CORBA). FT-CORBA [1] de-
fines services and strategies to enhance the dependability of
CORBA applications. The fault tolerance mechanism used by
FT-CORBA to detect and recover from failures is based on
entity redundancy– in particular, the replication of CORBA
objects. In general, research on fault tolerance for CORBA
ORBs and its applications can be divided into the following
three strategies [10]:
• The integrationstrategy, where the ORB is modified to

provide the necessary fault tolerance support and the ex-
tent of the modifications depends on the level of fault-
tolerance support that is being added. Orbix+Isis [11]
and Electra [12] are examples of the integration strategy.

• The interceptionstrategy, where requests made by client
objects are capturedexternally to the ORB via an OS-
level interceptor [13], which can enhance the application
by providing support to tolerate faults. The Eternal sys-
tem [14], and the AQuA framework [15] are examples of
the interception strategy.

• The servicestrategy, where a set of interfaces and ob-
jects are defined as a CORBA service that provides the
policies and mechanisms for delivering fault tolerance to
applications. The Distributed Object-Oriented Reliable
Service (DOORS) [16, 17, 18] and Object Group Service
(OGS) [19] are examples of this strategy.

The FT-CORBA implementations outlined above also lever-
age many patterns and protocols pioneered from earlier R&D
efforts, including NewTop [20], Interoperable Replication
Logic (IRL) [21], and FRIENDS [22].

Unfortunately, mission-critical DRE systems, such as ship-
board combat control systems and avionics mission comput-
ing systems, that require support for multiple QoS properties
simultaneously are not yet well supported by FT-CORBA for
the reasons explained shortly. These mission-critical DRE sys-
tems are typified by the following characteristics:
• Stable applications– Most DRE systems have a longer

life than their commercial counterparts, which requires
that the infrastructure for DRE systems provide stable in-
terfaces [23]. This in turn provides DRE systems with the
flexibility to modify the underlying infrastructure as long
as the interfaces remain compatible.

• End-to-end timeliness and dependability require-
ments – DRE systems have stringent latency and de-
pendability requirements. Latency requirements com-
monly bound the time from the occurrence of an external
event until the system delivers an externally observable
response, whereas dependability requirements are often
expressed as a probabilistic guarantee that the require-
ments will be met.

• Heterogeneity– DRE systems often run on a wide vari-
ety of computing platforms that are interconnected by dif-
ferent types of networking technologies. The efficiency
of execution of the different infrastructure components
on which the DRE systems operate varies with the type of
computing platform and its interconnection technology.

Simultaneously providing dependability and predictability
properties for the class of DRE systems outlined above is hard
since the combination of these properties is often in conflict, as
explained in Section 3. For example, FT-CORBA implementa-
tions can spend an unpredictable amount of time detecting and
recovering from faults. This in turn conflicts with the bounds
on latency for message invocation since FT-CORBA must ac-
count for the time spent on fault detection and recovery. Con-
sequently, providing both these QoS requirements simultane-
ously requires a careful blend of protocols, patterns [24], and
design constraints and tradeoffs, which transcends the present
capabilities of COTS DOC middleware.

Our prior research on CORBA middleware has explored
the efficiency, predictability, scalability and dependability as-
pects of ORB endsystem design, including static [25] and
dynamic [26] scheduling, event processing [9], I/O sub-
system [27] and pluggable protocol [28] integration, syn-
chronous [29] and asynchronous [30] ORB Core architectures,
systematic benchmarking of multiple ORBs [31], and opti-
mization principle patterns for ORB performance [32]. This
paper extends our previous work by focusing on the following
dimensions in the ORB endsystem design space:
• Identifying key aspects of CORBA implementations that

deliver both real-time and fault tolerant properties simul-
taneously

• Evaluating the suitability of FT-CORBA as the depend-
ability infrastructure for DRE systems and

• Designing and empirically evaluating architectural en-
hancements to FT-CORBA for use in DRE systems.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the FT-CORBA specification; Section 3 de-
scribes key challenges that must be resolved when designing
dependable DRE systems using CORBA; Section 4 proposes a
replication style that addresses the key challenges outlined in
Section 3; Section 5 evaluates and compares the technique de-
scribed in Section 4 with existing FT-CORBA strategies; Sec-
tion 6 compares related work with our research; and Section 7

2

presents concluding remarks and outlines our future research
directions.

2 Overview of Fault Tolerant CORBA

The Fault Tolerant CORBA (FT-CORBA) [1] specification de-
fines a standard set of interfaces, policies, and services that
provide robust support for applications requiring high relia-
bility. The fault tolerance mechanism used in FT-CORBA
to detect and recover from failures is based onentity redun-
dancy. Since FT-CORBA is a DOC middleware standard, the
redundant entities are replicated CORBA objects. This section
presents an overview of the FT-CORBA specification.

2.1 Overview of the FT-CORBA Architecture

Fault tolerance for CORBA objects is achieved viareplication,
fault detection, andrecovery. Replicas of a CORBA object are
created and managed as a “logical singleton” [24] composite
object, which allows greater flexibility in configuration man-
agement of the replicas. Such a collection of replicas is called
anobject group. Figure 1 illustrates the key components in the
FT-CORBA architecture. All components shown in the fig-

CORBA

ORB

FAULT

DETECTOR

CORBA

ORB

FACTORY

CORBA

ORB

SERVER

OBJECT 1

create_object ()

is_alive ()

FAULT

NOTIFIER

CORBA

ORB

FACTORY

CORBA

ORB

FAULT

DETECTOR

CORBA

ORB

CORBA

ORB

SERVER

OBJECT 2

is_alive ()

create_object ()

FAULT

DETECTOR

CORBA

ORB

Workstation
 Workstation

Workstation

fault

reports

is_alive ()

Workstation

APP.

OBJECT

CORBA

ORB

Workstation

fault notifications

set properties

send IOR

create_object ()

IIOP

PROFILE1

IIOP

PROFILE2

MULTIPLE

COMPONENTS PROFILE

PUBLISH IOGR

PROPERTY

MANAGER

GROUP

MANAGER

GENERIC FACTORY

REPLICATION MANAGER

CORBA ORB

LOGGING &

RECOVERY

MECHANISM

request &

reply

Figure 1:The Architecture of FT-CORBA

ure are implemented as standard CORBA objects,i.e., they
are defined using CORBA IDL interfaces and implemented
using servants that can be written in standard programming

languages, such as Java, C++, C, or Ada. The functionality
of each component is described below. Sidebar 1 explains the
requirements placed by the FT-CORBA standard on the under-
lying CORBA ORB middleware.

2.1.1 Interoperable Object Group References (IOGRs)

CORBA standardizes the format of interoperable object refer-
ences (IOR) used for the individual replicas. An IOR is a flexi-
ble addressing mechanism that identifies a CORBA object [1].
Additionally, FT-CORBA takes advantage of CORBA’s no-
tion of a multi-profile IOR, where each profile contains a
path to the location of the object, and defines an IOR for
composite objects called theinteroperable object group refer-
ence(IOGR), which is illustrated in Figure 2. In FT-CORBA,

IIOP

VERSION

TYPE_ID

NUMBER OF

PROFILES

IIOP_PROFILE
 MULTIPLE COMPONENT

PROFILE

IIOP_PROFILE

PROFILE

BODY

TAG_INTERNET_IOP

H
OST
 PORT

OBJECT

KEY

COMPONENTS

NUMBER OF

COMPONENTS

TAG

PRIMARY

COMPONENT

TAG GROUP

COMPONENT

OTHER

COMPONENTS

TAG_FT_PRIMARY

NUMBER OF

COMPONENTS

TAG GROUP

COMPONENTS

OTHER

COMPONENTS

TAG_FT_GROUP
 COMPONENT

BODY

tag_group

version

ft_domain

id

object_group

id

object_group

version

Figure 2:Example of an IOGR

each profile is interpreted to be the replica of the object. An
IOGR contains multipleTAG INTERNET IOP profiles, any of
which can be used to reach the server object group. The
TAG FT GROUPcomponent is contained in every profile of the
reference. TheTAG FT PRIMARY component is contained in
only one profile of the reference.

FT-CORBA servers can publish IOGRs to clients, which
then use these IOGRs to invoke operations on servers. The
client ORB transmits the request to the appropriate server ob-
ject that handles the request. The client application need not be
aware of the existence of server object replicas. If a server ob-
ject fails, the client ORB iterates through the object references
contained in the IOGR until the request is handled success-
fully by a replica object. The IOGR is considered invalid only
if all server replicas fail, in which case an exception is prop-
agated to the client application. The FT-CORBA specifica-

3

tion [1] contains the details of the exceptions that are returned
and the mechanisms available to populate the client with the
new IOGR when the old one becomes stale.

2.1.2 Replication Manager

TheReplicationManageris responsible for managing replicas
and contains the following three components:
1. PropertyManager. This manager allows properties of
an object group to be selected. Common properties include
the replication style, membership style, consistency style, and
initial/minimum number of replicas. Replication styles sup-
ported by FT-CORBA include the following:

• COLD PASSIVE, where the replica group contains a single
primary replica that responds to client messages. If the
primary fails, then an idle replica is selected and the state
of the failed primary is loaded into that replica, which
then becomes the new primary.

• WARM PASSIVE, same asCOLD PASSIVE, except that the
state of the primary is periodically loaded into the backup
replicas, so that only a (hopefully minor) update to that
state will be needed for failover.

• ACTIVE, where all replicas are primary and handle client
requests independently of each other. FT-CORBA uses
reliable multicast group communication [20, 33, 34, 19]
to provide ordered delivery of messages and to maintain
state consistency among all replicas. The infrastructure
sends a single reply to the client by detecting and sup-
pressing duplicate replies generated by multiple members
of the object group.

• ACTIVE WITH VOTING, which is a planned extension to
FT-CORBA where replicas behave similarly toACTIVE

style, but the middleware selects a reply by conducting
anelectionamong the multiple replies, and dispatches the
selected reply to the client.

Either the FT-CORBA infrastructure or applications can
control membership of an object group and the data consis-
tency of the group members. FT-CORBA standardizes both
application-controlled and infrastructure-controlled member-
ship and consistency styles.1

2. GenericFactory. The ReplicationManager uses
the GenericFactory to create object groups and indi-
vidual members of an object group for the infrastructure-
controlled membership style.
3. ObjectGroupManager. For the application-controlled
membership style, applications use theObjectGroup-
Manager interface to create, add, or delete members of an
object group.

1FT-CORBA does not standardize the actual implementation details for
application-controlled membership or consistency styles.

2.1.3 Fault Detector and Notifier

FaultDetector s are CORBA objects responsible for
detecting faults via either apull-based or a push-based
mechanism. Apull-based monitoring mechanism polls
applications periodically to determine if their objects are
“alive.” FT-CORBA requires application objects to imple-
ment aPullMonitorable interface that exports anis_
alive() operation. The FT-CORBA specification does not
limit the number or arrangement ofFaultDetectors in a
domain, which is explained in Section 2.1.5. For example,
a large system spanning multiple hosts and supporting many
objects in a hierarchical structuring ofFaultDetectors is
more scalable and efficient.

A FaultDetector reports the faults it identifies to a
FaultNotifier . In turn, aFaultNotifier propagates
these notifications to theReplicationManager , which
performs recovery actions. Other applications in the system
that are interested in monitoring fault activity can also register
with theFaultNotifier s to receive fault notifications.

Complex applications can provideFaultAnalyzer s
to expand, correlate, condense, and analyze fault reports.
The functionality provided byFaultAnalyzer s is usually
platform- and application-specific. For example, a sequence
of fault reports can be correlated to identify a single failure
condition.

2.1.4 Logging and Recovery

Applications that select the application-controlled consistency
style are responsible for their own failure recovery. For ap-
plications that select the infrastructure-controlled consistency
style, however, FT-CORBA defines a logging and recovery
mechanism. This mechanism intercepts and logs CORBA
GIOP messages from client objects to servers. Figure 3 illus-
trates how the logging mechanism operates during normal op-
eration. As part of the recovery action after a fault occurs, the

CORBA

ORB

SERVER

OBJECT 1

CORBA

ORB

SERVER

OBJECT 2

LOGGING &

RECOVERY

MECHANISM

PRIMARY

LOGGING &

RECOVERY

MECHANISM

BACKUP

CORBA

ORB

CLIENT

LOGGING PROCESS IN WARM_PASSIVE STATE

Figure 3: Operation of the FT-CORBA Logging Mecha-
nism

4

messages that are recorded are played back to the new primary
so its state is consistent with that of the old primary before the
failure occurred.

Figure 4 illustrates how the recovery mechanism applies
messages from the log to the replica to synchronize it with the
current state. In theWARM PASSIVE replication style, backup

CORBA

ORB

SERVER

OBJECT 1

CORBA

ORB

SERVER

OBJECT 2

LOGGING &

RECOVERY

MECHANISM

PRIMARY

LOGGING &

RECOVERY

MECHANISM

BACKUP

CORBA

ORB

CLIENT

RECOVERY PROCESS IN WARM_PASSIVE STATE

Figure 4: Operation of the FT-CORBA Recovery Mecha-
nism

members in the object group should receive state updates at
constant intervals of time during normal operation. When a
backup member is promoted to a primary after failure, how-
ever, the FT-CORBA recovery mechanism only applies recent
state updates on the failed primary to the backup member, af-
ter the last successful update. For an object group configured
with the COLD PASSIVE replication style, a backup is created
and the recovery mechanism applies the complete log to the
backup.

After all replicas are consistent, the FT-CORBA recov-
ery mechanism then reinvokes the operations that were made
by the client, but which did not execute due to the primary
replica’s failure. These FT-CORBA logging and recovery
mechanisms ensure that failovers are transparent to applica-
tions.

2.1.5 Fault Tolerance Domains

To manage large and complex distributed systems, the FT-
CORBA standard definesfault tolerance domains, which are
designed to allow applications to scale to arbitrary sizes. A
single fault tolerance domain consists of one or more hosts
and one or more object groups, as illustrated in Figure 5.
In addition, hosts can be part of several domains simulta-
neously. Complex, large-scale applications consist of sev-
eral object groups that often span one or more fault toler-
ance domains. All object groups within a single fault toler-
ance domain are managed by a single logical domain-specific
ReplicationManager . Objects without knowledge of
FT-CORBA and/or that reside outside the domain can commu-

B1

A3 B2

Host3

A2

B3 D1

Host5

A1

Host4

Host6

D2
Host2

GW

C

Host1 New York FT DomainLos Angeles FT
Domain

ORB Without
FT Support

Wide Area Domain

IIOP

Figure 5:FT-CORBA Domains

nicate with replicated objects inside a domain via aGateway .
TheGateway can use a group communication protocol, such
as Totem [33], to multicast the IIOP call from the client out-
side the domain.

3 Limitations of FT-CORBA for DRE
Systems

The majority of computational cycles today are expended to
control DRE systems, including commercial and military air-
craft and satellites, automobile engines, chemical and manu-
facturing plants, and hospital patient monitoring equipment.
Due to constraints on weight, power consumption, memory
footprint, and performance, DRE systems are harder to de-
velop, maintain, and evolve than mainstream desktop and en-
terprise software. During the past decade, a substantial amount
of R&D effort has focused on developing distributed object
computing (DOC) middleware as a means to simplify the de-
velopment and reuse of DRE systems.

The characteristics of DRE systems described in Section 1
motivate the integration of implementations of RT-CORBA
and FT-CORBA as the infrastructure for DRE systems. This
DOC middleware provides open standard interfaces that sim-
plify the development of DRE systems requiring dependability
and predictability. As discussed below, however, their com-
bined use in today’s ORBs lacks certain features and have
semantically incompatible strategies that make them unsuit-
able for important types of DRE systems. The remainder of
this section describes the challenges associated with integrat-
ing the RT-CORBA and FT-CORBA specifications to meet the
QoS requirements of DRE systems.

3.1 Challenge 1: Unpredictable and Expensive
Replication Strategies

Context. Application objects use replication to achieve
transparent fault tolerance. As discussed in Section 2.1.2, FT-
CORBA specifies theCOLD PASSIVE, WARM PASSIVE, AC-
TIVE, andACTIVE WITH VOTING replication styles to tolerate

5

Sidebar 1: Requirements of the FT-CORBA
Standard

FT-CORBA imposes the following requirements on the underlying
CORBA ORB middleware:
Preserving the CORBA object model. For the infra-
structure-controlled consistency style, the behavior of a replicated
object should appear as though it is a single non-replicated CORBA
object.
Enhancements to the CORBA object reference model.
FT-CORBA defines three newtagged componentsinto the object
reference model to denote multiple components in a replicated ob-
ject reference. The standard mandates that ORBs not supporting
FT-CORBA should be able to handle such object references. In
addition, objects hosted by such ORBs should be able to invoke
operations on these multiple profile object references.
No single point of failure. FT-CORBA is designed to pre-
vent single points of failure within a distributed system. As a re-
sult, each component described above must itself be replicated and
mechanisms provided to deal with potential failures and recovery.
Periodic Fault detection and notification. The FT-
CORBA standard mandates periodic fault detection and notifica-
tion of faults to theReplicationManager and subsequent re-
covery from failures.
Transparent failovers. Recovery from failure and the number
of replicas in an object group should be transparent to clients mak-
ing requests to the object group. Moreover, as mentioned earlier,
client applications should not need to distinguish between sending
requests to a replicated object or a non-replicated object.
Transparent client redirection and reinvocation. As ex-
plained earlier, the standard defines an IOGR that a client ORB
uses to send requests to object group replicas. If a failure oc-
curs when a client communicates with an IOR within the IOGR,
the client ORB redirects the request to other IORs within the
IOGR. The client ORB systematically reinvokes the request until
the request succeeds. This redirection and reinvocation of requests
should be transparent to client applications. Sidebar 2 explains how
theat-most-oncesemantics of CORBA requests are maintained.

faults transparently. With the exception ofCOLD PASSIVEand
WARM PASSIVE, these replication styles require that replicas
maintain consistent state after every invocation.

Problem. In COLD PASSIVE and WARM PASSIVE systems,
the recovery time needed to switch to a backup replica can be
unacceptably high for DRE systems with stringent timing con-
straints, as shown in Section 5. Likewise, inACTIVE replica-
tion the cost associated with providing totally ordered reliable
multicast and the time needed to synchronize via proprietary
group communication mechanisms can be unacceptable [35].

Using an ACTIVE replication for applications based on
“push-pull” architectures, such as the CORBA Event Ser-
vice [9], can introduce non-determinism and unpredictability
when trying to handle multiple events. Moreover, the replicas

Sidebar 2: Preventing Multiple Invocations

To maintain theat-most-oncesemantics of the CORBA object
model, the FT-CORBA standard defines aREQUESTservice con-
text that a client ORB includes in application requests. This service
context includes a uniqueclient ID for the client, aretention ID,
and anexpiration timeprovided by the client. The client ID and
retention ID together uniquely identify a request. This mechanism
is used by the server ORB to identify duplicate requests. For any
duplicate request that has already been successfully serviced be-
fore, the server ORB sends identical replies as before from the log
of requests and corresponding replies it maintains. The expiration
time is used to determine the amount of time that a server ORB
should maintain the log for a request and its corresponding reply,
if any.

FT-CORBA also defines aGROUP VERSION service context
that a client ORB can send with a request. This service context
includes the group version number of the replica group to which it
sends a request. A server ORB uses this information to determine
if its associated client ORB has an obsolete IOGR for the server
object group. If the IOGR is obsolete, the server ORB sends a
LOCATE FORWARD PERMmessage to the client ORB with the new
IOGR.

in ACTIVE replication must behave identically and determin-
istically if they are used in DRE systems. Special negotia-
tions (which impose high overhead) are needed to enforce the
consistent execution order of messages among all the repli-
cas. Preemption of requests, such as responding to an alarm
condition, in ACTIVE replication can make the system non-
deterministic, which can be avoided only via complex proto-
cols that consume significant system resources.

FT-CORBA also requires strong replica consistency, which
for ACTIVE replication means that all members of the object
group must have the same state at the end of each method
invocation. It is conceivable, however, that application ob-
jects required to be fault tolerant will also make outcalls, such
as reading the real-time clock or responding to arbitrary ex-
ternal events. Under these circumstances, it is unlikely that
consistent state can be maintained across the replicated ob-
jects, which suggests that a conforming implementation must
severely constrain the ways in which objects can interact with
their environment.

In Section 4 we describe theSEMI-ACTIVE replication style
that provides the following benefits:
• Fast and predictable failure detection times
• Predictable state synchronization strategy that eliminates

the need for protocols with high overhead
• No restriction placed on the ways in which an application

can interact with its environment, and
• Can be standardized as an enhancement to the present FT-

CORBA specification.

6

3.2 Challenge 2: Dealing with Semantic Incom-
patibilities Between RT-CORBA and FT-
CORBA Features

Context. Requirements on DRE systems are commonly ex-
pressed in terms of external stimuli and responses. For exam-
ple, consider a tactical display system that uses radars as sen-
sors and that presents an operator with a graphical representa-
tion of the geographical area, including the present locations
of moving objects, such as missiles or tanks. In such systems,
a common requirement isradar to glass in one second, which
means that at most one second may elapse between a radar
pulse bouncing off the surface of a target and the correspond-
ing observation being displayed to the operator.

Similarly, dependability requirements are often expressed
in terms of the probability that one or few of the many re-
quirements will fail to hold over a specific period of operation.
DRE systems, such as the tracker outlined above, require si-
multaneous stringent QoS properties, including predictability
and dependability, for their correct operation.
Problem. Although combining the power of RT- and FT-
CORBA seems a promising approach, the requirements on
DRE systems illustrate a significant semantic gap between
• End-to-end predictability and dependability require-

ments, such as 500 milli-second response times even in
the presence of crash faults, and

• Capabilities, such as propagating priorities and replicat-
ing server objects.

The ability to engineer a good fault tolerant solution requires
tradeoffs that may compromise a DRE system’s ability to meet
real-time deadlines, and vice versa. For example, a non-trivial
amount of communication and processing costs are incurred to
accomplish failover from one replica to another. This overhead
presents a hard choice between accounting for failover in every
message transmission versus preparing for time budgets to be
violated during failover.

In general, the variation in performance and latency inher-
ent in an elaborate FT solution is fundamentally antithetical
to the predictable behavior required in a DRE system. The
effect of choices made to support a requirement in one area
can have complex and unforeseen consequences in the other.
For DRE systems to leverage the advantages of open, standard
interfaces, therefore, a solution that can mask the semantic in-
compatibility between FT-CORBA and RT-CORBA solutions
is needed.

Schemes like [36, 37, 38] have been developed and de-
ployed that address the conflict between real-time and fault-
tolerance capabilities of non-CORBA systems. We propose
and evaluate a strategy in Section 4 for CORBA systems
that provides bounded fault-tolerance capabilities, while also
maintaining the real-time properties essential to develop de-
pendable DRE systems.

3.3 Challenge 3: Lack of Standards to Handle
Byzantine and Partial Failures

Context. Partial failures are not uncommon in distributed
systems. A component interacting with another component
often cannot distinguish whether a delay in response is due
to failure of the remote component or due to a slow or parti-
tioned network. A system is considered reliable if it performs
its designated function, even in the face of partial failures.
Problem. The FT-CORBA model for failure detection and
recovery emphasizes a certain type of failure, namelycompo-
nent failure, which is also calledcrash failure. In this type of
failure the individual component ceases all interactions with
its environment. The policies and detection mechanisms in
FT-CORBA, such as the use of heartbeats and timeouts, ac-
knowledge this limited view implicitly.

A more subtle form of failure is one where interactions
among components cause the system to fail. For example, a
corrupted component may request services more frequently
than allowed for in the design, thereby denying other com-
ponents access to critical resources. Heartbeats and timeouts
cannot protect against this type of failure. Given the inabil-
ity to detect this difference, the requirement that objects us-
ing ACTIVE replication maintain consistent state in a bounded
time between method invocations may be infeasible to achieve
in the general case.

Section 7 discusses the future work that is needed to resolve
this challenge.

3.4 Challenge 4: Lack of Standard QoS Se-
mantics

Context. For designers of DRE systems, the primary ben-
efit of an open standard is the promise of a stable inter-
face between the application and the services provided by the
middleware, since this simplifies porting to a different ser-
vice implementation. In particular, when a service is part of
the infrastructure—and the infrastructure is built with COTS
products—system designers are highly motivated to consider
both the cost of upgrades and penalties associated with COTS
obsolescence [23]. It is therefore important that DRE systems
interact with the infrastructure through syntactically and se-
mantically stable interfaces, such as those defined in the RT-
CORBA and FT-CORBA specifications. CORBA also helps
improve the portability and interoperability of applications
built using such interfaces.
Problem. The RT-CORBA and the FT-CORBA specifica-
tions provide the mechanisms by which real-time and fault-
tolerant behavior can be achieved for DRE systems. CORBA
does not, however, guarantee that two implementations con-
forming to the RT-CORBA and FT-CORBA specification will
provide equivalent QoS properties. For example, assume that

7

a system implemented on ORBA (which is compliant with
the RT-CORBA and FT-CORBA specifications) successfully
meets the requirement that sensor data from the navigation
subsystem be propagated to all interested recipients at 35 mil-
lisecond (ms) intervals, even when certain faults occur in the
system. It is highly unlikely, however, that if ORBA were re-
placed by ORBB , the 35 ms propagation interval will be main-
tained, even if ORBB also complies with the RT-CORBA and
FT-CORBA specifications. To establish that the modified sys-
tem continues to meet its requirement would require thorough
testing, possible reengineering, and expensive re-certification.

In general, the absence of a QoS standard makes the exist-
ing RT-CORBA and FT-CORBA specifications inadequate for
certain types of DRE systems. Moreover, the implementation
freedom that arises from a purely functional interface specifi-
cation means that performance characteristics of various com-
pliant products may vary greatly. Such performance variations
are problematic when ORBA is replaced by a different (yet
still functionally compliant) ORBB . For instance, one prod-
uct may choose to use an inter-process communication (IPC)
mechanism, such as shared memory, to communicate between
objects collocated on the same computer, whereas another may
pass the message through an IPC loopback device. These two
mechanisms can produce radically different levels of perfor-
mance. Replacing or updating an ORB may therefore require
costly redesign, reimplementation, and revalidation of DRE
systems.

Section 7 discusses the future work that is needed to resolve
this challenge.

4 Overview of the SEMI-ACTIVE Repli-
cation Style

Section 3 described the challenges of using FT-CORBA and
RT-CORBA together to build DRE systems. Though the chal-
lenges in Sections 3.3 and 3.4 must be addressed to build ro-
bust, reliable and long-running DRE systems, the challenges
in Sections 3.1 and 3.2 should be addressed first, since they
are more fundamental and form the basis by which the oth-
ers can be addressed. This section presents theSEMI-ACTIVE

replication style to address these challenges.
SEMI-ACTIVE replication is based on the European Delta-

4 (XPA) architecture [36] (where this term was coined). It is
designed to enhance active replication and passive replication
styles to support predictable program execution and failover
times, without incurring the overhead, unpredictability and
non-determinism of the standard FT-CORBA strategies out-
lined in Section 2.1.2. This section describes our efforts to in-
tegrateSEMI-ACTIVE replication into FT-CORBA. Section 5
then comparesSEMI-ACTIVE replication with existing repli-

cation styles supported by FT-CORBA.

Sidebar 3: An Overview of SEMI-ACTIVE
Replication

The key features of theSEMI-ACTIVE replication style are outlined
below:
• The replicas are arranged as a list of nodes, where each

replica except the primary is connected through a connection-
oriented transport-level connection to the one ahead in the
queue.

• The list of replicas are created at server startup time.
• The replica at the head of the list is designated the primary.
• When the primary fails, the next secondary replica in the list

is promoted to become the primary.
• Failures are detected by the next replica in the list when

transport-level connections close. Connection closure, which
is an event in the system, is used to detect failures. This is
done by making the secondaries wait on open connections
using an event demultiplexing mechanism.

• The promotion of the secondary to the primary is done by the
secondary when it detects a failure.

• All client invocations to the primary are reliably multicast
by the primary to the secondaries, such that secondaries con-
sume messages in the same order that the primary consumes
them, maintaining replica consistency.

• More generally, replica consistency can be maintained by
reliably multicasting state synchronization messages to all
replicas.

• The multicast protocol that is used for request invocation or
state transfer needs to enforce message ordering. A simple
reliable model that ensures data delivery alone is not suffi-
cient.

• An ordered list of references is passed to the client, which
must honor the order of the list.

• No additional threads are created for sending heartbeats or
monitoring server objects.

Sidebar 3 describes the key features of this replication style.
Figure 6 illustrates how the replicas are arranged to tolerate
faults in SEMI-ACTIVE replication. TheSEMI-ACTIVE repli-
cation style resolves the following challenges with the existing
mechanisms described in Section 3.1 and 3.2:

• The efficient and predictable failure detections ensure
faster and more predictable recovery times when com-
pared toCOLD PASSIVEandWARM PASSIVEreplication.

• No need for additional protocols based on algorithms like
priority based total ordered multicast [39], which enforce
inter-replica coordination required to guarantee priority-
based message ordering among replicas for theACTIVE

replication style. The complexity and overhead of these
protocols is avoided bySEMI-ACTIVE replication.

• Reduced heartbeat and poll messages on the network
since they are not used for detecting failures.

8

S1 S2 S3 S4

SERVER
REFERENCES

SERVER 3

Workstation

Workstation

SERVER 1 SERVER 4

SERVER 2

Workstation
Workstation

CLIENT
OBJECT

O
P

E
N

 C
O

N
N

E
C

T
IO

N O
P

E
N

 C
O

N
N

E
C

T
IO

N

OPEN CONNECTION

INVOCATION

RELIABLE
MULTICAST
MANAGER

CORBA INVOCATION
and/or

STATE INFORMATION

MULTICAST
MULTICAST

MULTICAST

Figure 6:The Architecture of the SEMI-ACTIVE Replication
Style

• The RT-CORBA mechanisms and policies can be used
easily with this strategy.

Despite the advantages outlined above,SEMI-ACTIVE replica-
tion style has the following disadvantages:

• If a non-primary replica fails, the replica just following
the failed replica could declare itself as a primary and
wait for messages to be processed, which can potentially
partition the list. To prevent partitioning, a remote token
manager should disseminate tokens to replicas and pro-
mote them as primaries in a predictable manner.

• When a primary fails, the FT-CORBA model does not
place any restriction on the client’s choice of a backup
from the list of replica references to make the invoca-
tion. The SEMI-ACTIVE replication style could restrict
the client to use the list of references as an ordered list,
which is not compliant with the FT-CORBA spec.

• As with all replication styles other thanCOLD PASSIVE,
applications must provide their own replica consistency
mechanisms if their state changes due to operations other
than regular CORBA requests.2 Similarly with SEMI-
ACTIVE replication, applications choosing to multicast
state information instead of multicasting requests could
use interceptors that pass state information to the multi-
cast mechanisms. Application developers are responsible
for installing these mechanisms. In other words, applica-

2There is a class of DRE systems whose object state changes are triggered
by occurrence of events, such as time triggers or alarm conditions, rather than
exclusively from CORBA requests.

tion developers have to program to this replication strat-
egy.

Fortunately, the disadvantages outlined above do not affect the
SEMI-ACTIVE replication style’s predictability, which makes
it a good candidate for use in DRE systems. Section 5 empiri-
cally evaluates key properties of this replication style.

5 Empirically Evaluating Semi-Active
Replication

This section compares the performance of theSEMI-ACTIVE

replication style described in Section 4 with the FT-CORBA
replications styles discussed in Section 3. We also illustrate
how the SEMI-ACTIVE replication style compares favorably
with the FT-CORBA replication styles. Our experiments as-
sume a single-failure model with no nested failures. The faults
occuring in our experiments are assumed to be crash failures
injected at random. We explain below the methodology we
adopted for inducting crashes.

5.1 Comparing Semi-Active Replication with
Warm Passive Replication

Below, we describe the results of empirical benchmarking
studies conducted to measure how well theSEMI-ACTIVE

replication style compares to theWARM PASSIVE replication
style in providing real-time and fault-tolerance support to DRE
systems. A key goal in conducting these benchmarks is to
evaluate the predictability of theSEMI-ACTIVE replication
style in terms of its

1. Detection timeto recognize failures and
2. Response timerequired for clients to connect to a new

primary after an existing primary fails.

To evaluate theSEMI-ACTIVE style, we built several tests
that demonstrate specific use cases for these benchmarks. The
tests were based on ACE [40, 41] and TAO [25], versions 5.2.2
and 1.2.2, respectively. The tests were run on a single endsys-
tem – a 930 MHz Pentium III processor with 512 MB RAM
running version 2.4.9 of the Linux kernel in the FIFO real-time
scheduling class.3 For theWARM PASSIVE replication we use
data collected from our previous benchmarking experiments
in [18]. We compare only the trend in data and not the abso-
lute numbers in the following sections.

3Although we use TCP to benchmark theSEMI-ACTIVE replication style
in our experiments, the stream control transmission protocol (SCTP) [42] and
Myrinet [43] are more effective transports for DRE systems in practice since
they provide better fault detection times and better real-time guarantees than
TCP.

9

5.1.1 Comparing Failure Detection Time on the Server

Rationale. We define thefailure detection timeon the server
as the time taken to detect a failure, which includes the time
taken by the infrastructure to detect the failure of the primary.
This value is important since it affects the time taken by the
middleware infrastructure to detect and react to faults.
Methodology for SEMI-ACTIVE. To model the replicas, we
used a server based on the Acceptor and Connector [41] frame-
work components in ACE. The primary waits for input re-
quests from the client on a specified port and sends a response
to the client to mark the end of an invocation. In addition
to waiting for connections from the client, the secondary also
connects to the primary, as shown in Figure 6. The client es-
tablishes connections to all the replicas since this reduces the
jitter due to connection establishment during failover.

A script creates the primary and all the other replicas. We
then allow a client to connect to the replicas and invoke some
random number of remote operations. At this point we invoke
the primary object’sshutdown() operation, which crashes
the primary. This crash initiates a detection process in the sec-
ondary, which promotes itself to the primary and waits to re-
ceive invocations.

We measure the failure detection time as the time between
the failure of the primary replica and the time when the sec-
ondary actually detects a failure. To measure the failure detec-
tion time, we recorded two time stamps:
• The first time stamp was recorded when the primary was

killed.
• The second timestamp was recorded when the secondary

detected that its connection to the primary was closed.

We conducted several iterations of this experiment by killing
the primary replica at randomly selected times.
Methodology for WARM PASSIVE. To model the replicas
underWARM PASSIVE replication we used the infrastructure
provided by DOORS [16, 17, 18], which is our prototype im-
plementation of the FT-CORBA spec. A manager program
requests theReplica Manager to start the replicas. After
the replicas are running, theFaultDetector s begin polling
them at constant intervals of time. We then allow a client to
connect to the primary replica and invoke a random number of
remote operations. At this point, we invoke the server object’s
shutdown() operation, which initiates the fault detection
process in theFaultDetector .

We measure the failure detection time as the time between
the failure of the primary replica and the time when the
FaultDetector actually detects a failure. To measure the
failure detection time, we recorded two time stamps:

1. The first time stamp was recorded when the primary was
killed.

2. The second timestamp was recorded when the
FaultDetector detects the failure of the primary.

Analysis of failure detection time. Figure 7 shows the vari-
ation of detection times of theSEMI-ACTIVE replication over
several iterations. Figure 8 shows the minimum, average, and
maximum failure detection times for different polling intervals
underWARM PASSIVEreplication style.

0

300

600

900

1200

1500

1800

2100

Iterations

D
et

ec
tio

n
Ti

m
es

 in
 u

se
c

Detection Times Avg. Detection time (1754 usec)

Upper Bound (1896 usec) Lower Bound (1612 usec)

Figure 7: Average and Bounds on Failure Detection Time
within the Object Group for SEMI-ACTIVE Replication

0 2.5 5 7.5 10 12.5 15 17.5

Polling Interval (seconds)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fa
ul

t D
et

ec
tio

n
T

im
e

(s
ec

on
ds

)

min
avg
max

Figure 8: Effect of Different Polling Intervals on Failure
Detection Times forWARM PASSIVEReplication

The results in the above figures indicate the following:

• Failure detection is in the millisecond range for theSEMI-
ACTIVE, and for theWARM PASSIVE style is dependent
on the polling interval.

• The bounds are in a narrow range and approximately
±4-5% of the average inSEMI-ACTIVE and for the
WARM PASSIVE is around± 100%.

The results fromWARM PASSIVE illustrate that polling in-
tervals should be minimized for applications requiring fast

10

failover. But overly small polling intervals increase the num-
ber of messages in the network, however, which may be prob-
lematic over low-speed network links. The bounded nature of
the detection times exhibited by theSEMI-ACTIVE replication
styles are characteristics that DRE systems require.

5.1.2 Comparing Fault Detection and Recovery Times on
the Client

Rationale. A client invoking a remote operation will expe-
rience some delay if its server fails during the operation. This
delay has three parts:

1. The time taken by the infrastructure to detect the fault
2. The time taken by the infrastructure to promote a backup

to become the primary, and
3. The time taken by the client to detect a failed primary and

make invocations on the secondary.

Below, we describe the experiment conducted to compare
the combination of these times for theSEMI-ACTIVE and the
WARM PASSIVEstyle. This time actually indicates the bounds
on latency that the client will experience when faults occur.

Methodology for SEMI-ACTIVE. The experimental setup is
similar to the one described in Section 5.1.1. To measure the
effect of failures—and to compute the total recovery time—
we allow the client to shutdown the primary by invoking the
server object’sshutdown() operation.

We measure the failure detection time as the time interval
between when the client invoked theshutdown() operation
to the time when the client can make the next request to the
secondary. The time interval includes the error handling and
the time needed for the client to retrieve an established con-
nection and make the request to the secondary.

Methodology for WARM PASSIVE. As described in Sec-
tion 5.1.1, to measure the effect of failures, and to compute
the total recovery time, we allow clients to connect to the pri-
mary replica. After clients connect to the primary replica, we
terminate the primary replica by invoking the server object’s
shutdown() operation. For the client failover measurement,
we start a timer in the client when theshutdown() opera-
tion is invoked.

When the DOORS’sFaultDetector detects a failure it
reports this failure to theReplicationManager . In turn,
theReplicationManager selects a backup copy amongst
the replicas and promotes it to become the new primary. Si-
multaneously, theReplicationManager creates a new
backup to maintain a consistent replica group size. It then noti-
fies the new primary of its change in status by invoking the pri-
mary’s become_primary() operation, which enables the
new primary to respond to client requests. At this point, we
stop our client timer and compute the failover time observed
by the client.

0

500

1000

1500

2000

2500

Iterations

D
et

ec
tio

n
Ti

m
e

in
 u

se
c

Detection Time Avg. Detection Time (2040 usec)

Upper Bound (2188 usec) Lower Bound (1892 usec)

Figure 9: Average and Bounds on Recovery Time for the
Client in SEMI-ACTIVE Replication for a Stateless CORBA
Server

Analysis of failure detection time. Figure 9 shows the
variation of detection times over several iterations for the
SEMI-ACTIVE. The recovery times measured for the
WARM PASSIVEbenchmark are shown in Figure 10. Figures 9

0 2.5 5 7.5 10 12.5 15 17.5

Polling Interval (seconds)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

R
ec

ov
er

y
T

im
e

(s
ec

on
ds

)

min
avg
max

Figure 10: Effect of Different Polling Intervals on Recov-
ery Times for WARM PASSIVE Replication for a Stateless
CORBA Server

and 10 shows behavior similar to the one described in sec-
tion 5.1.1. Bounded and predictable detection times on the
client offered by theSEMI-ACTIVE style suggest that this style
is better suited to DRE systems than theWARM PASSIVEstyle.

5.2 Comparing Semi-Active Replication with
Active Replication

This section describes the results of the empirical benchmark-
ing studies we conducted to measure how well theSEMI-

11

ACTIVE replication style compares to theACTIVE replication
style in providing real-time and fault-tolerance support to DRE
systems. The goal of this benchmark is to show the pre-
dictability in thesynchronization timerequired to synchronize
the state during every invocation. The infrastructure is similar
to the one explained in Section 5.1.

Rationale. A client invoking a remote operation will expe-
rience additional delay if the server multicasts the requests or
multicasts the state updates reliably to all the replicas, in ad-
dition to executing the invocation on the primary. Below, we
describe the experiment conducted to measure the combined
time, which is the actual delay experienced by a client for ev-
ery invocation.

This experiment measures the latency experienced by the
client when making invocations on an object group possess-
ing state synchronization capabilities using theSEMI-ACTIVE

replication style. We assume at this point that theACTIVE

replication without any extra protocols is not predictable, as
shown in [35].
Methodology. Rather than modeling a communication sub-
system that makes invocations to all the secondaries, we used
TAO’s Real-time Event Channel [9] to propagate state infor-
mation to all the replicas with every invocation. We chose
TAO’s Real-time Event Channel for the following reasons:

1. The Event Channel offers a “push-pull” communication
model, where all the registered event suppliers can pub-
lish events of interest to registered consumers.

2. TAO’s Event Channel has been used in many production
DRE systems, including real-time avionics mission com-
puting [44], distributed interactive simulation [45], and
large-scale network management [46].

The primary in theSEMI-ACTIVE replication style acts as a
supplier of events to the channel and all the replicas subscribe
to the channel as consumers to receive events. To add re-
liability to the delivery of events to the channel through the
push() operation, we use theSYNC WITH SERVERreliable
one-way policy at the ORB level.

We measured the time the client takes to make every invo-
cation on the remote object. We varied the number of replicas
receiving state information and captured the minimum, maxi-
mum, and average times. Eight bytes of data was transferred
from the primary to the secondary. We also calculated the up-
per and lower bounds associated with this.
Analysis of latencies from state transfer. Figure 11 shows
the variation of minimum, average, and maximum latency
associated with communicating with primaries with varying
number of replicas in the configuration outlined above. Fig-
ure 12 shows the average, upper, and lower bounds on the la-
tency in the same experiments. The results in these figures
indicate the following:

0

500

1000

1500

2000

2500

1 2 3 4 5

Number of Replicas

La
te

nc
y i

n
us

ec

Minimum Latency in usec Average Latency in usec

Maximum Latency in usec

Figure 11:Latency on the Client with Increase in Number
of Replicas for SEMI-ACTIVE REPLICATION

0

500

1000

1500

2000

2500

1 2 3 4 5

Number of Replicas

La
te

nc
y i

n
us

ec

Average Latency Lower Bound on Latency

Upper Bound on Latency

Figure 12:Bounds on Latency with Increase in Number of
Replicas for SEMI-ACTIVE Replication

1. The latencies increase with the number of replicas ob-
served by the client and

2. The small variance of latencies is being maintained with
an increase in the number of replicas.

The increase in latency occurs since we use reliable oneways
as opposed to a regular CORBA oneway call. Adding reli-
ability to message transmission to every replica incurs addi-
tional overhead, as indicated by the results. A key engineering
challenge, therefore, is striking the right balance between the
degree of replication and the affordable latency reduction that
developers of DRE systems can afford.

The above experiment indicates that the state transfer times
remain tightly bounded forSEMI-ACTIVE with increase in the
number of replicas. As theSEMI-ACTIVE replication style
does not possess other known sources of unpredictable sim-
ilar to ACTIVE style, we conclude that theSEMI-ACTIVE is
better suited for DRE systems.

12

5.3 Summary of Results and Recommenda-
tions

Based on the results presented above, we now describe some
of the key challenges that theSEMI-ACTIVE replication style
resolves when designing dependable DRE systems. Though
the empirical evaluation is made in the context of dependable
DRE systems, this strategy is applicable to a larger class of
distributed applications requiring dependability support from
DOC middleware.

Challenge 1. A non-trivial amount of time is spent by the
FT middleware to detect and recover from faults, which is an-
tithetical to the latency and performance requirements of DRE
systems.

Resolution. TheSEMI-ACTIVE replication style that we pro-
pose places less overhead on the infrastructure to detect and
recover from faults. Similar to the distributed computing
paradigm which distributes computation between different
nodes, theSEMI-ACTIVE replication style distributes the over-
head of fault detection and recovery between replicas. The de-
tection and recovery times from theSEMI-ACTIVE replication
style are bounded allowing the possibility of accomplishing
critical real-time tasks even in the presence of faults.

Challenge 2. Synchronizing message processing order
across all replicas deterministically using theACTIVE replica-
tion style calls for the usage of protocols with high overhead.

Resolution. The SEMI-ACTIVE replication imposes the pri-
mary’s order of message execution on all the replicas in the
group. The primary decides on the message order based on
the local real-time QoS parameters and imposes that on all the
replicas. The primary could either choose to multicast the re-
quest chosen for processing to all the replicas or choose to
multicast the state information at the end of request process-
ing. This flexibility is particularly useful for a class of DRE
systems where the state of the system changes with external
events in addition to CORBA requests.

Challenge 3. TheACTIVE replication style in order to main-
tain replica consistency could constrain the way in which ap-
plication objects interact with their environment, like prevent-
ing execution threads from doing tasks that could change ob-
ject states not associated with CORBA requests.

Resolution. The SEMI-ACTIVE replication resolves this
challenge by allowing the primary to send state updates to
all its secondaries in addition to CORBA requests from the
clients. This gives applications the necessary flexibility to
schedule and dispatch tasks that could affect the state of the
object. Finally, we present an observation and a recommen-
dation based on our empirical evaluation of theSEMI-ACTIVE

replication style earlier in this section.

Observation. Client latencies tend to increase as a function
of an increasing degree of replication.

Recommendation. Middleware researchers and implemen-
tors should carefully study application use cases, failure rates
of DRE systems, and expected performance from the system
to determine the replication degree automatically. Being able
to configure the degree of replication adaptively would help
simplify the development and deployment of DRE systems.
Likewise, DRE system developers should carefully evaluate
the trade-offs associated with increased replication degrees on
the performance of their systems.

6 Related Work

CORBA is increasingly being adopted as the middleware of
choice for mission-critical, large-scale, and heterogeneous
DRE systems. The need to develop dependable middleware
to support DRE systems has therefore motivated research on
policies and mechanisms for fault-tolerant CORBA. As out-
lined in Section 1, research efforts devoted to enhancing the
fault tolerance of CORBA ORBs and/or CORBA applications
can be categorized into the following three strategies:

1. The integration strategy. This strategy layers the ORB
on top of a reliable multicast communication subsystem. The
ORB is modified to provide the necessary fault tolerance sup-
port, which will likely make the ORB non-compliant with the
CORBA standard. The extent of the ORB modifications de-
pends on the functionality that is being added,e.g., a reli-
able, totally ordered group communication mechanism, such
as Totem [33], could be added to deliver CORBA requests.
For instance, a modified ORB can be linked with the client ap-
plication as shown in Figure 13, and used to convert the ORB

APP.

OBJECT

MODIFIED

CORBAORB
MODIFIED

CORBA ORB

SERVER

OBJECT

MODIFIED

CORBA ORB

SERVER

OBJECT

CORBA

REQUEST

RELIABLE MULTICAST

TOOL KIT

ADAPTER OBJECT

OBJECT

GROUP

MULTICAST

MESSAGE

Figure 13:Integration Fault Tolerance Strategy

requests into multi-cast messages of the underlying toolkit.
Examples of the integration strategy include Orbix+Isis [47,

11] and Electra [47, 12]. Orbix+Isis was the first commer-
cially available system that supported fault-tolerant CORBA-
compliant applications. The fault-tolerance of server imple-
mentations is achieved using active (hot) replication, with re-
liable multicast support from low-level group communication

13

system [11]. Electra was another early implementation of re-
liable CORBA. It differed from Orbix+Isis mainly with re-
spect to its ease of use and its adaptability to other commu-
nication subsystems, such as Horus and Ensemble. The inte-
gration strategy requires modifications to ORB interfaces and
language mappings, however, which reduces the portability of
server and client applications.

2. The interception strategy. In this strategy, requests made
by client objects are capturedexternallyto the ORB,e.g., via
an OS-level interceptor [13], such as the/proc file system
in UNIX. As shown in Figure 14, the interceptor can modify

APP.

OBJECT

 CORBA

ORB

 CORBA

ORB

SERVER

OBJECT

 CORBA

ORB

SERVER

OBJECT

CORBA

REQUEST

RELIABLE MULTICAST TOOL KIT

OBJECT

GROUP

IIOP

INTERCEPTOR
REPLICATION & LOGGING

MANAGER

MULTICAST

MESSAGE

Figure 14:Interception Fault Tolerance Strategy

the client request parameters to alter the behavior of the ap-
plication or to enhance the application with new functionality.
The modified requests are then mapped onto a reliable group
communication messaging system.

The interception strategy is used heavily in the Eternal sys-
tem [10, 48] to construct a reliable ORB environment. Eternal
intercepts system calls made by the client object through the
lower-level I/O subsystem and maps these system calls to the
reliable multicast subsystem. Eternal differs from Orbix+Isis
or Electra in that Eternal does not modify the ORB or the lan-
guage mapping. It therefore ensures the transparency of fault-
tolerance to applications. The AQuA framework [15] also pro-
vides a variant of the interception approach. The AQuA gate-
way acts as an intermediary between the CORBA objects and
the Ensemble group communication subsystem and translates
GIOP messages to group communication primitives. In addi-
tion, AQuA uses the Quality Objects (QuO) [49] framework
to allow applications to specify their reliability/availability re-
quirements.

The Maestro toolkit [34] developed at Cornell University,
uses a combination of interception and integration approaches.
It provides an object-oriented wrapper facade [13] to process-
based group communication systems and supports transparent
client-side failover through the use of multi-profile object ref-
erences. The process group exports a multi-profile IOR to the
client and the client uses a single profile in that IOR to connect
to the primary of the group through an IIOP gateway.

3. The service strategy. In this strategy, a set of interfaces
and objects are defined as a CORBA service that provides the
policies and mechanisms for delivering fault tolerance to ap-
plications. Fault tolerance can therefore be provided as a part
of the standard suite of CORBA Services, without requiring
extensive modifications to CORBA ORBs. Figure 15 illus-
trates this strategy. Anobject groupis registered with the fault

APP.
OBJECT

 CORBA
ORB

FAULT TOLERANCE
SERVICE

get_object_group_id ()

CORBA
REQUEST

register ()

 CORBA
ORB

SERVER
OBJECT

 CORBA
ORB

SERVER
OBJECT

OBJECT
GROUP

Figure 15:Service Fault Tolerance Strategy

tolerant service. Client applications query the service to obtain
the object group and make invocations on the object group.
The service manages the replicas and the state of their associ-
ated objects.

The service strategy is used in the Object Group Service
(OGS) [19]. OGS provides a group of services, including
membership service, monitoring service, consensus service
and messaging service, that work together to enhance the reli-
ability of an application through both active and passive repli-
cation. The DOORS [16] framework described in this paper
is another example of a service-based approach to fault toler-
ance.

Our recent work on DOORS [17, 18] and TAO’s pluggable
protocols framework [28] has focused on a service strategy
that also allows application developers to select the protocol(s)
used to communicate between collaborating ORB endsystems.
The CORBA specification defines a standard transport proto-
col, IIOP, which runs atop TCP. There are many use-cases,
however, particularly in telecommunication and real-time sys-
tems, where ORBs must communicate over non-TCP proto-
cols, such as VME, ATM, SCTP, and shared memory. More-
over, researchers have devised other messaging protocols,
such as HTTP-NG [50] or GIOP-lite [28], that have a smaller
“wire footprint” than the standard CORBA GIOP messaging
protocol.

The three types of research strategies outlined above have
yielded incompatible fault tolerant solutions to the CORBA
model that are not portable or interoperable. To address
this problem, therefore, the OMG devised the Fault-tolerant
CORBA (FT-CORBA) specification [1], which leveraged the
lessons learned from earlier R&D efforts [20, 21, 22, 19, 10,

14

16]. As we pointed out in Sections 1 and 3, however, FT-
CORBA is not yet usable in DRE systems that possess strin-
gent end-to-end QoS constraints. TheSEMI-ACTIVE approach
described in this paper is a step towards adding this important
capability to CORBA.

The SEMI-ACTIVE approach described here has been heav-
ily influenced by the work on Delta-4 (XPA) architecture [36]
and the Fault-Tolerance work on the Distributed Ada-95
project at EPFL [51]. A variation of the passive replica-
tion style called asSEMI-PASSIVE replication was used by
EPFL [52] to improve the recovery time after crash. Though
this methodology can provide predictable detection and re-
covery times, this methodology makes the same assumptions
pointed out in Section 3.1 which makes it unsuitable for DRE
systems. More particularly, theSEMI-PASSIVE style doesn’t
address how state changes associated with real-time events
other than remote invocations can be propagated to the repli-
cas. Further, theSEMI-PASSIVEreplication style is hard to im-
plement without changing the interfaces and semantics of FT-
CORBA. Our work focusses on theSEMI-ACTIVE approach
to support simultaneous dependability and timeliness require-
ments, while complying with the FT-CORBA interfaces and
semantics.

Other related work [37, 38, 53] presents principles and
mechanisms to achieve fault-tolerance in real-time systems via
Time-triggered Message-triggered Objects [54], which have
been explored at the University of California, Irvine. The
work that has been presented in this paper is in the context of
CORBA and RT-CORBA and we expect this work to resolve
some open R&D challenges [55].

7 Concluding Remarks and Future Di-
rections

Distributed real-time and embedded (DRE) systems are play-
ing an increasingly important role in many application do-
mains, including telecommunication networks (e.g., high-
speed central office switching), telemedicine (e.g., remote
surgery), manufacturing process automation (e.g., hot rolling
mills), and aerospace (e.g., avionics mission computing). Al-
though there are many types of DRE systems, they have one
thing in common:the right answer delivered too late becomes
the wrong answer. Providing the right answer at the right time
is therefore imperative for mission-critical DRE systems.

Our effort at adding dependability to DRE systems focuses
on developing and deploying standard CORBA middleware
that can provide timeliness and performance guarantees to ap-
plications even when crash faults occur. Our future plan is
to collect more empirical data and demonstrate thatSEMI-
ACTIVE replication style provides timeliness and performance

guarantees by amortizing the unpredictability in detection and
recovery over successful invocations. Our goal in this effort
is to provide the right answer at the right timeby lower-
ing the infrastructure overhead needed to detect and recover
from faults. The ACE ORB (TAO), its FT-CORBA infrastruc-
ture, and the benchmarks described in this paper are available
as open-source software fromdeuce.doc.wustl.edu/
Download.html .

While our work presented in this paper helps address the
problems presented in Sections 3.1 and 3.2 above, the prob-
lems of Sections 3.3 and 3.4 remain open challenges to the
DOC middleware R&D community. We conclude by outlining
future research directions for the DOC middleware community
to address the challenges outlined in Sections 3.3 and 3.4.
Byzantine and partial failures. The detection, diagnosis,
and response to failures other than crash failures is an exceed-
ingly hard problem to address in an application-independent
manner. For example, consider an object that is returning cor-
rect responses too slowly. The fault may be in the component,
in the connection with the component, or in some otherwise
unrelated component that is sharing some resource with the
slow component. These issues have received intense and pro-
tracted study [56]. Perhaps the most promising direction for
the middleware fault-tolerant community would be to provide
standard interfaces through which application-specific detec-
tion, diagnosis, and response mechanisms can act.
Comparable QoS benchmarks. The ability to compare
qualities of service across different infrastructure implemen-
tations requires an agreement on the set of qualities that ap-
ply to each service, and rigorous definitions of those qualities.
For example, if “invocation latency” is agreed to be a relevant
quality of a client-server service, then it must be determined
exactly how this value will be measured. Since any set of
measurements of such qualities will present a distribution of
values, the useful statistics that are to be derived from such a
distribution must be agreed on,e.g., worst-case or average and
standard deviation. It would also be helpful to have standard
benchmarking suites for these qualities.

Although solving the problems presented above is clearly
hard, the consequences of solving them would be profound:
it would be possible to construct DRE systems that reliably
meet their functional and quality requirements, and do so when
operating on any sufficiently powerful infrastructure.

References
[1] Object Management Group,The Common Object Request Broker: Ar-

chitecture and Specification, 3.0 edition, June 2002.

[2] Michi Henning and Steve Vinoski,Advanced CORBA Programming
with C++, Addison-Wesley, Reading, MA, 1999.

[3] Object Management Group,Real-Time CORBA Specification, 1.1 edi-
tion, Aug. 2002.

15

[4] Douglas C. Schmidt and Fred Kuhns, “An Overview of the Real-time
CORBA Specification,” IEEE Computer Magazine, Special Issue on
Object-oriented Real-time Computing, vol. 33, no. 6, June 2000.

[5] Douglas C. Schmidt and et al., “TAO: A Pattern-Oriented Object Re-
quest Broker for Distributed Real-time and Embedded Systems,”IEEE
Distributed Systems Online, vol. 3, no. 2, Feb. 2002.

[6] Rebecca Callison, Marilynn Goo, and Daniel Butler, “Real-time
CORBA Trade Study,” Tech. Rep. D204-31159, The Boeing Company,
1999.

[7] David Corman, “WSOA-Weapon Systems Open Architecture
Demonstration-Using Emerging Open System Architecture Standards to
Enable Innovative Techniques for Time Critical Target (TCT) Prosecu-
tion,” in Proceedings of the 20th IEEE/AIAA Digital Avionics Systems
Conference (DASC), Oct. 2001.

[8] Carlos O’Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spivak, Jeff
Parsons, Irfan Pyarali, and David Levine, “Evaluating Policies and
Mechanisms for Supporting Embedded, Real-Time Applications with
CORBA 3.0,” in Proceedings of the6th IEEE Real-Time Technology
and Applications Symposium, Washington DC, May 2000, IEEE.

[9] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA ’97, Atlanta, GA, Oct. 1997, ACM, pp. 184–
199.

[10] Priya Narasimhan,Transparent Fault Tolerance for CORBA, Ph.D.
thesis, University of California, Dept. Of Electrical and Computer Engi-
neering, Santa Barbara, CA, Dec. 1999, Available as Technical Report
UCSB 99-18.

[11] Kenneth Birman and Robbert van Renesse,Reliable Distributed Com-
puting with the Isis Toolkit, IEEE Computer Society Press, Los Alami-
tos, 1994.

[12] Silvano Maffeis, “Adding Group Communication and Fault-Tolerance
to CORBA,” inProceedings of the Conference on Object-Oriented Tech-
nologies, Monterey, CA, June 1995, USENIX.

[13] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann,Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume 2, Wiley & Sons, New York,
2000.

[14] Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith, “Using
Interceptors to Enhance CORBA,”IEEE Computer, vol. 32, no. 7, pp.
64–68, July 1999.

[15] M. Cukier, J. Ren, C. Sabnis, W.H. Sanders, D.E. Bakken, M.E. Berman,
D.A. Karr, and R.E. Schantz, “AQuA: An Adaptive Architecture that
provides Dependable Distributed Objects,” inIEEE Symposium on Re-
liable and Distributed Systems (SRDS), West Lafayette, IN, Oct. 1998,
pp. 245–253.

[16] P.Y. Chung, Y. Huang, S. Yajnik, D. Liang, and C.Y. Shih, “Providing
Fault Tolerance to CORBA Applications,” inPoster at Middleware ’98,
Lake District, England, Sept. 1998.

[17] Balachandran Natarajan, Aniruddha Gokhale, Douglas C. Schmidt, and
Shalini Yajnik, “DOORS: Towards High-performance Fault-Tolerant
CORBA,” in Proceedings of the2nd International Symposium on
Distributed Objects and Applications (DOA 2000), Antwerp, Belgium,
Sept. 2000, OMG.

[18] Balachandran Natarajan, Aniruddha Gokhale, Douglas C. Schmidt, and
Shalini Yajnik, “Applying Patterns to Improve the Performance of Fault-
Tolerant CORBA,” inProceedings of the7th International Conference
on High Performance Computing (HiPC 2000), Bangalore, India, Dec.
2000, ACM/IEEE.

[19] Pascal Felber, Rachid Guerraoui, and André Schiper, “The Implementa-
tion of a CORBA Object Group Service,”Theory and Practice of Object
Systems (TAPOS), vol. 4, no. 2, pp. 93–105, Feb. 1998.

[20] Paul D. Ezhilchelvan, Raimundo A. Macedo, and Santosh K. Shrivas-
tava, “Newtop: A Fault-Tolerant Group Communication Protocol,” in
International Conference on Distributed Computing Systems, 1995, pp.
296–306.

[21] C. Marchetti, A. Virgillito, and R. Baldoni, “Design of an Interoperable
FT-CORBA compilant Infrastructure ,” inIn the Proceedings of the
6th International Workshop on Object Oriented Real-time Dependable
Systems (WORDS’01), Rome, Italy, Jan. 2001.

[22] Jean-Charles Fabre and Tanguy Perennou, “Friends - a flexible architec-
ture for implementing fault tolerant and secure distributed applications,”
in European Dependable Computing Conference, 1996, pp. 3–20.

[23] Joseph K. Cross and Douglas C. Schmidt, “Applying the Quality Con-
nector Pattern to Optimize Distributed Real-time and Embedded Mid-
dleware,” inPatterns and Skeletons for Distributed and Parallel Com-
puting, Fethi Rabhi and Sergei Gorlatch, Eds. Springer Verlag, 2002.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA, 1995.

[25] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The De-
sign and Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

[26] Christopher D. Gill, David L. Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-Time CORBA Scheduling Service,”
Real-Time Systems, The International Journal of Time-Critical Comput-
ing Systems, special issue on Real-Time Middleware, vol. 20, no. 2, Mar.
2001.

[27] Fred Kuhns, Douglas C. Schmidt, and David L. Levine, “The Design
and Performance of a Real-time I/O Subsystem,” inProceedings of the
5th IEEE Real-Time Technology and Applications Symposium, Vancou-
ver, British Columbia, Canada, June 1999, IEEE, pp. 154–163.

[28] Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman, and
Jeff Parsons, “The Design and Performance of a Pluggable Protocols
Framework for Real-time Distributed Object Computing Middleware,”
in Proceedings of the Middleware 2000 Conference. ACM/IFIP, Apr.
2000.

[29] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and
Aniruddha Gokhale, “Software Architectures for Reducing Priority In-
version and Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systems, special issue on Real-time Computing in
the Age of the Web and the Internet, vol. 21, no. 2, 2001.

[30] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael
Kircher, and Jeff Parsons, “The Design and Performance of a Scalable
ORB Architecture for CORBA Asynchronous Messaging,” inProceed-
ings of the Middleware 2000 Conference. ACM/IFIP, Apr. 2000.

[31] Aniruddha Gokhale and Douglas C. Schmidt, “Measuring the Perfor-
mance of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, Stanford, CA, Aug. 1996, ACM, pp.
306–317.

[32] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang,
Vishal Kachroo, and Aniruddha Gokhale, “Applying Optimization Pat-
terns to the Design of Real-time ORBs,” inProceedings of the5th

Conference on Object-Oriented Technologies and Systems, San Diego,
CA, May 1999, USENIX.

[33] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and
C. A. Lingley-Papadopoulos, “Totem:A Fault-Tolerant Multicast Group
Communication System,”Communications of ACM, 1996.

[34] Alexey Vaysburd and Ken Birman, “The Maestro approach to Building
Reliable Interoperable Distributed Applications with Multiple Execu-
tion Styles,” Theory and Practice of Object Systems (TAPOS), vol. 4,
no. 2, pp. 73–80, Feb. 1998.

[35] S. Poledna, A. Burns, A.J. Wellings, and P. Barrett, “Replica Determin-
ism and Flexible Scheduling in Hard Real-Time Dependable Systems,”
IEEE Transactions on Computers, vol. 49, no. 2, pp. 100–111, 2000.

[36] P. Barrett, A. Hilborne, P. Bond, D. Seaton, P. Verissimo, L. Rodrigues,
and N. Speirs, “The Delta-4 Extra Performance Architecture (XPA),” in
Proceedings of the 20th Int. Symp. on Fault-Tolerant Computing Systems
(FTCS-20), 1990.

[37] Kane Kim and Subbaraman C, “PSRR: A Scheme for Time-Bounded
Fault Tolerance in Distributed Object-Based Systems,” inProc.
IEEE High-Assurance Systems Engineering (HASE) Workshop, Ontario,
Canada, Oct. 1996, IEEE.

[38] Kane Kim and Subbaraman C, “Fault-Tolerant Real-Time Objects,”
Communications of the ACM, Jan. 1997.

[39] L. Rodrigues, A. Casimiro, and P. Verissimo, “Priority-based Totally
Ordered Multicast,” inProceedings of the 3rd IFAC/IFIP workshop on
Algorithms and Architectures for Real-Time Control (AARTC’95)., May
1995.

16

[40] Douglas C. Schmidt and Stephen D. Huston,C++ Network Pro-
gramming, Volume 1: Mastering Complexity with ACE and Patterns,
Addison-Wesley, Boston, 2002.

[41] Douglas C. Schmidt and Stephen D. Huston,C++ Network Program-
ming, Volume 2: Systematic Reuse with ACE and Frameworks, Addison-
Wesley, Reading, Massachusetts, 2002.

[42] Gautam Thaker and Patrick Lardieri and Chuck Winters, “SCTP and its
Adaptation to TAO ,” inProceedings of the 2nd Annual TAO Workshop,
July 2002.

[43] VITA Standards Organization, “Myrinet-on-VME Protocol Specifica-
tion Draft Standard,” http://www.myri.com/open-specs, 2000.

[44] David C. Sharp, “Reducing Avionics Software Cost Through Compo-
nent Based Product Line Development,” inProceedings of the 10th
Annual Software Technology Conference, Apr. 1998.

[45] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell Noseworthy, “Pat-
terns and Performance of a CORBA Event Service for Large-scale Dis-
tributed Interactive Simulations,”International Journal of Computer
Systems Science and Engineering, vol. 17, no. 2, Mar. 2002.

[46] Guru Parulkar, Douglas C. Schmidt, Eileen Kraemer, Jon Turner, and
Anshul Kantawala, “An Architecture for Monitoring, Visualization, and
Control and Gigabit Networks,”IEEE Network, vol. 11, no. 5, Septem-
ber/October 1997.

[47] Sean Landis and Silvano Maffeis, “Building Reliable Distributed Sys-
tems with CORBA,”Theory and Practice of Object Systems, vol. 3, no.
1, pp. 31–43, 1997.

[48] Louise Moser, P. Melliar-Smith, and Priya Narasimhan, “A Fault Tol-
erance Framework for CORBA,” inInternational Symposium on Fault
Tolerant Computing, Madison, WI, June 1999, pp. 150–157.

[49] John A. Zinky, David E. Bakken, and Richard Schantz, “Architectural
Support for Quality of Service for CORBA Objects,”Theory and Prac-
tice of Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[50] W3C HTTP-NG Working Group, “W3C HTTP-NG Protocol,”
www.w3.org/Protocols/HTTP-NG, 1998.

[51] Thomas Wolf and Alfred Strohmeier, “Fault tolerance by transparent
replication for distributed ada 95,” inInternational Conference on Re-
liable Software Technologies - Ada-Europe’99, Santander, Spain, June
7-11 1999, Michael Gonzalez Harbour and Juan A. de la Puente, Eds.
1999, number 1622, pp. 412–424, Springer-Verlag.

[52] Xavier Defago, Andre Schiper, and Nicole Sergent, “Semi-passive repli-
cation,” in Proceedings of the 17th IEEE Symposium on Reliable Dis-
tributed Systems. IEEE, 1998, pp. 43–50.

[53] Kane Kim and C. Subbaraman, “Principles of Constructing a
Timeliness-Guaranteed Kernel and Time-triggered Message-triggered
Object Support Mechanisms,” inProceedings of the International Sym-
posium on Object-Oriented Real-time Distributed Computing (ISORC).
IEEE/IFIP, Apr. 1998.

[54] Kane Kim, “APIs Enabling High-Level Real-Time Distributed Object
Programming,” IEEE Computer Magazine, Special Issue on Object-
oriented Real-time Computing, June 2000.

[55] Kane Kim, “Issues Insufficiently Resolved in Century 20 in the Fault-
Tolerant Distributed Computing Field,” inProceedings of Symposium
on Reliable Distributed Systems). IEEE, 2000.

[56] Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Toler-
ance,” inProceedings of the Third Symposium on Operating Systems
Design and Implementation, Feb. 1999.

17

