Towards Real-time Fault-Tolerant CORBA Middleware

Aniruddha S. Gokhale, Balachandran Natarajan Joseph K. Cross
Douglas C. Schmidt
{gokhale,bala, schmif@isis-server.isis.vanderbilt.edu joseph.k.cross@Imco.com
Institute for Software Integrated Systems
Vanderbilt University Lockheed Martin Tactical Systems
Box 1829, Station B PO Box 64525, M S U2N29
Nashville, TN 37235 St. Paul, MN 55164-0525
Abstract avionics systems, military combat systems, and supervisory

control and data acquisition (SCADA) systems. CORBA is
An increasing number of applications are being developed gsbOC middleware standard defined by the Object Manage-
ing distributed object computing (DOC) middleware, such @asent Group (OMG) that allows clients to invoke operations on
CORBA. Many of these applications require the underlyingmote objects without concern for where the objects reside
middleware, operating systems, and networks to provide @gwhat language the objects are written in [2]. In addition,
pendable end-to-end quality of service (Q0S) support to \RBA shields applications from non-portable details related
hance thelr_efhmency, predictability, scalability, gnd reliabilyy the OS/hardware platform they run on or the communica-
ity. The Object Management Group (OMG), which standargisy protocols and networks used to interconnect distributed

izes CORBA, has addressed many of these application reqWiects. These features make CORBA well suited to provide
ments individually in the Real-time CORBA (RT-CORBA) agh, ore communication infrastructure for DRE systems and
Fault-tolerant CORBA (FT-CORBA) specifications. Thou plications.

Crtcal commercial or miltary distrbuted rea-tme and e, DRE systems demand dependable qualiy of service (Qos)
bedded (DRE) systems, the usage of FT-CORBA with %&pport from their middieware, including efficiency, pre-

CORBA implementations are not yet suitable for systems t g:ttabmty, scalability, and reliability. The CORBA [1] stan-

have stringent simultaneous dependability and predictabili grd addresses many of these challenges via the following

. specifications:
requirements.

This paper provides three contributions to the stud}g@!time CORBA (RT-CORBA). RT-CORBA [3] pro-
and evaluation of dependable CORBA middleware Mdes capabilities to ensure predlcta_ble behavior end-to—_end
performance-sensitive DRE systems. First, we provide fgﬁrequests t_ha_lttraw_arse fr(_)m one objecftto another. To (_Jlellver
overview of FT-CORBA and illustrate the sources of unprbi€Se capabilitiesertically (i.e., network interface— appli-
dictability associated with conventional FT-CORBA impl&2tion layer) andvorizontally(i.e, peer-to-peer), RT-CORBA
mentations. Second, we discuss the QoS requirements of &i"es standard interfaces and QoS policies that allow ap-
important class of mission-critical DRE systems to show hcations to configure and control the following types of re-
these requirements are not well served by FT-CORBA tod2JH"c€s:
Finally, we empirically evaluate new dependability strategiese Processor resourcesia thread pools, priority mecha-
for FT-CORBA that can help make the use of DOC middleware nisms, intra-process mutexes, and a global scheduling

for mission-critical DRE systems a reality. service for real-time applications with fixed priorities,
Keywords: CORBA, Fault-Tolerant CORBA, Real-time e Communication resourcesa protocol properties and ex-
CORBA, DRE systems plicit bindings to server objects using priority bands and

private connections, and

! e Memory resourcesia buffering requests in queues and
1 Introduction bounding the size of thread pools.

Commercial-off-the-shelf (COTS) components based on disAlthough RT-CORBA is oriented towards applications with
tributed object computing (DOC) middleware, such as tlhard real-time requirements, such as process control and
Common Object Request Broker Architecture (CORBA) [1lyeapons systems, it also supports applications with strin-
are increasingly used to develop a wide variety of distributgdnt soft real-time requirements, such as telecommunication
real-time embedded (DRE) systems, such as commercial processing. A comprehensive overview of RT-CORBA

appears in [4]. Implementations of RT-CORBA including e End-to-end timeliness and dependability require-
TAO [5] and ORBExpresswww.ois.com) have been eval- ments — DRE systems have stringent latency and de-
uated positively [6] for their suitability to DRE systems that pendability requirements. Latency requirements com-
require end-to-end predictability and real-time assurance. RT- monly bound the time from the occurrence of an external
CORBA ORBs have also been used to event until the system delivers an externally observable
e Improve situation awareness for prosecuting time-critical response, whereas dependability requirements are often
targets [7], such as mobile missile launchers and tanks, expressed as a probabilistic guarantee that the require-

and ments will be met.
e Control avionics mission computing application process-® Heterogeneity— DRE systems often run on a wide vari-
ing in real-time [8, 9]. ety of computing platforms that are interconnected by dif-
ferent types of networking technologies. The efficiency
Fault-tolerant CORBA (FT-CORBA). FT-CORBA [1] de- of execution of the different infrastructure components

fines service_s ar_1d strategies to enhance the dependability of on which the DRE systems operate varies with the type of
CORBA applications. The fault tolerance mechamsm used by computing platform and its interconnection technology.
FT-CORBA to detect and recover from failures is based on
entity redundancy- in particular, the replication of CORBA Simultaneously providing dependability and predictability
objects. In general, research on fault tolerance for CORBAQPerties for the class of DRE systems outlined above is hard
ORBs and its applications can be divided into the followingnce the combination of these properties is often in conflict, as
three strategies [10]: explained in Section 3. For example, FT-CORBA implementa-
« Theintegrationstrategy, where the ORB is modified tdions can spend an unpredictable amount of time detecting and

provide the necessary fault tolerance support and the ggeovering from faults. This in turn conflicts with the bounds
tent of the modifications depends on the level of fau®" latency for message invocation since FT-CORBA must ac-

tolerance support that is being added. Orbix-+Isis [1§PuNt for the time spent on fault detection and recovery. Con-

and Electra [12] are examples of the integration strategigduently, providing both these QoS requirements simultane-
e Theinterceptionstrategy, where requests made by clieRysly requires a careful blend of protocols, patterns [24], and
objects are captureexternallyto the ORB via an OS- design constraints and tradeoffs, which transcends the present

level interceptor [13], which can enhance the applicatiG@Pabilities of COTS DOC middleware.
by providing support to tolerate faults. The Eternal sys- OUr Prior research on CORBA middleware has explored

tem [14], and the AQUA framework [15] are examples dpe efficiency, predictability, scalability and dependability as-
the interception strategy. pects of ORB endsystem design, including static [25] and
o The servicestrategy, where a set of interfaces and offynamic [26] scheduling, event processing [9], I/O sub-
jects are defined as a CORBA service that provides €M [27] and pluggable protocol [28] integration, syn-
policies and mechanisms for delivering fault tolerance gronous [29] and asynchronous [30] ORB Core architectures,
applications. The Distributed Object-Oriented ReliabRyStématic benchmarking of multiple ORBs [31], and opti-

Service (DOORS) [16, 17, 18] and Object Group servidaization principle patterns for ORB performance [32]. This
(OGS) [19] are examples of this strategy. paper extends our previous work by focusing on the following

The FT-CORBA implementations outlined above also Ieveq"—mens'or_]S .m the ORB endsystem deS|.gn space. i
age many patterns and protocols pioneered from earlier R&C® 'dentifying key aspects of CORBA implementations that
efforts, including NewTop [20], Interoperable Replication deliver both real-time and fault tolerant properties simul-
Logic (IRL) [21], and FRIENDS [22]. taneously o
Unfortunately, mission-critical DRE systems, such as ship-* Evaluating the suitability of FT-CORBA as the depend-
board combat control systems and avionics mission comput- ab|I|Fy mfrastructure fqr DRE systems and ,
ing systems, that require support for multiple QoS properties® Designing and empirically evaluat_lng architectural en-
simuitaneously are not yet well supported by FT-CORBA for hancements to FT-CORBA for use in DRE systems.
the reasons explained shortly. These mission-critical DRE sysThe remainder of this paper is organized as follows: Sec-
tems are typified by the following characteristics: tion 2 summarizes the FT-CORBA specification; Section 3 de-
e Stable applications— Most DRE systems have a longescribes key challenges that must be resolved when designing
life than their commercial counterparts, which requirelependable DRE systems using CORBA; Section 4 proposes a
that the infrastructure for DRE systems provide stable ireplication style that addresses the key challenges outlined in
terfaces [23]. This in turn provides DRE systems with tH&ection 3; Section 5 evaluates and compares the technigue de-
flexibility to modify the underlying infrastructure as longscribed in Section 4 with existing FT-CORBA strategies; Sec-
as the interfaces remain compatible. tion 6 compares related work with our research; and Section 7

presents concluding remarks and outlines our future resedestguages, such as Java, C++, C, or Ada. The functionality
directions. of each component is described below. Sidebar 1 explains the
requirements placed by the FT-CORBA standard on the under-

] lying CORBA ORB middleware.
2 Overview of Fault Tolerant CORBA
2.1.1 Interoperable Object Group References (IOGRs)

The Fault Tolerant CORBA (FT-CORBA) [1] specification de-
fines a standard set of interfaces, policies, and services tD@RBA standardizes the format of interoperable object refer-
provide robust support for applications requiring high reli@nces (IOR) used for the individual replicas. An IOR is a flexi-
bility. The fault tolerance mechanism used in FT-CORBBIe addressing mechanism that identifies a CORBA object [1].
to detect and recover from failures is basedemtity redun- Additionally, FT-CORBA takes advantage of CORBA's no-
dancy Since FT-CORBA is a DOC middleware standard, thmn of a multi-profile IOR, where each profile contains a
redundant entities are replicated CORBA objects. This sectjmath to the location of the object, and defines an IOR for
presents an overview of the FT-CORBA specification. composite objects called theteroperable object group refer-
ence(lOGR), which is illustrated in Figure 2. In FT-CORBA,

2.1 Overview of the FT-CORBA Architecture
TYPE ID NUMBER OF

Fault tolerance for CORBA objects is achievednaplication ~ | PROFILES
fault detectionandrecovery Replicas of a CORBA object are
created and managed as a “logical singleton” [24] composite

IIOP_PROFILE| 110P_PROFILE| MULTIPLE COMPONENT

PROFILE

object, which allows greater flexibility in configuration man- PROFIL

. . . . ‘TAGJNTERNEUO BODY NUMBER OF | TAG GROUP | OTHER
agement of the replicas. Such a collection of replicas is called COMPONENTS | COMPONENTS COMPONENT:
anobject group Figure 1 illustrates the key components in the
FT-CORBA architecture. All components shown in the fig- VE'LZTON‘““T‘”“T‘ o?(‘g(CT‘COMPONENT%

IloP IIoP MULTIPLE

| PHOFILE1|PROFILE2| COMPONENTS PROFILE|
A

GROUP ||PROPERTY
MANAGER|| MANAGER

TAG GROUP
COMPONENT

TAG
OTHER

PRIMARY

COMPONENT COMPONENTS

NUMBER OF
COMPONENT!

TAG_FT_PRIMARY

set properties

GENERIC FACTORY OETECT)
CORBA
REPLICATION MANAGER ORB

(CORBA ORB] fault notifications
"
E request & FAULT
— reply fault NOTIFIER
reports
CORBA
ORB

TAG_FT_GROUR COMPONENT
- - BODY

FAULT
DETECTOR
COH BA
ORB

tag_groupft_domail b]ect grougobject_group
version id version

Figure 2:Example of an IOGR

LOGGING &
RECOVERY

send IOR

uERR fs-zlve each profile is interpreted to be the replica of the object. An
e e O FAUi is_aiive) SERVER IOGR contains multiplerAG_INTERNET_IOP profiles, any of
(omscn]%[omcron) m oBJscTz which can be used to reach the server object group. The
) &[o) ||| D) TAG_FT_GROUPcOmponent is contained in every profile of the

reference. Th@AG_FT_PRIMARY component is contained in
oreate_object (crea'e_obiectoj only one profile of the reference.

[") CoRe FT-CORBA servers can publish IOGRs to clients, which

then use these IOGRs to invoke operations on servers. The

E client ORB transmits the request to the appropriate server ob-

reate-oblect(ject that handles the request. The client application need not be
aware of the existence of server object replicas. If a server ob-

Figure 1:The Architecture of FT-CORBA ject fails, the client ORB iterates through the object references

contained in the IOGR until the request is handled success-
ure are implemented as standard CORBA obijeicts, they fully by a replica object. The IOGR is considered invalid only
are defined using CORBA IDL interfaces and implementédall server replicas fail, in which case an exception is prop-
using servants that can be written in standard programmamggted to the client application. The FT-CORBA specifica-

tion [1] contains the details of the exceptions that are return2d.3 Fault Detector and Notifier
and the mechanisms available to populate the client with @e
aultDetector

new |IOGR when the old one becomes stale. s are CORBA objects responsible for

detecting faults via either gull-based or a push-based
o mechanism. Apull-based monitoring mechanism polls
2.1.2 Replication Manager applications periodically to determine if their objects are

The ReplicationManageis responsible for managing replicas®Ve” FT-CORBA requires application objects to imple-

and contains the following three components: ment aPullMonitorable interface that exports ais_
1 PropertyManager. This manacer allows properties o live() operation. The FT-CORBA specification does not
’ perty ger. 9 prop imit the number or arrangement BaultDetectors ina

an object group to be selected. Common properties incly oSnain, which is explained in Section 2.1.5. For example,
al

the replication style, membership style, consistency style, an : . ;
initial/minimum number of replicas. Replication styles suf;a£ arge ?ySteT" spanning muItlp!e hosts and supportmg many

. S objects in a hierarchical structuring B&ultDetectors is
ported by FT-CORBA include the following: -

more scalable and efficient.

e COLD_PASSIVE where the replica group contains asingle A FaultDetector reports the faults it identifies to a
primary replica that responds to client messages. If thgyitNotifier . In turn, aFaultNotifier propagates
primary fails, then an idle replica is selected and the st@fpse notifications to th&eplicationManager . which
of the failed primary is loaded into that replica, whiclyerforms recovery actions. Other applications in the system
then becomes the new primary. that are interested in monitoring fault activity can also register

e WARM_PASSIVE same agOLD_PASSIVE except that the with the FaultNotifier s to receive fault notifications.
state of the primary is periodically loaded into the backup Complex applications can provid€aultAnalyzer s
replicas, so that only a (hopefully minor) update to thgg expand, correlate, condense, and analyze fault reports.
state will be needed for failover. The functionality provided byFaultAnalyzer s is usually

e ACTIVE, where all replicas are primary and handle clieplatform- and application-specific. For example, a sequence
requests independently of each other. FT-CORBA ussisfault reports can be correlated to identify a single failure
reliable multicast group communication [20, 33, 34, 12ondition.
to provide ordered delivery of messages and to maintain
state consistency among all replicas. The infrastructyg 4 Logging and Recovery
sends a single reply to the client by detecting and sup-
pressing duplicate replies generated by multiple membéygplications that select the application-controlled consistency
of the object group. style are responsible for their own failure recovery. For ap-

e ACTIVE_WITH_VOTING, which is a planned extension tddlications that select the infrastructure-controlled consistency
FT-CORBA where replicas behave similarly acTive style, however, FT-CORBA defines a logging and recovery
style, but the middleware selects a reply by conductifigechanism. This mechanism intercepts and logs CORBA

anelectionamong the multiple replies, and dispatches tlglOP messages from client objects to servers. Figure 3 illus-
selected reply to the client. trates how the logging mechanism operates during normal op-

eration. As part of the recovery action after a fault occurs, the
Either the FT-CORBA infrastructure or applications can

control membership of an object group and the data consis-
tency of the group members. FT-CORBA standardizes both
application-controlled and infrastructure-controlled member-
ship and consistency stylés.

2. GenericFactory. The ReplicationManager uses

the GenericFactory to create object groups and indi-
vidual members of an object group for the infrastructure-

CLIENT

SERVER SERVER
OBJECT 1 OBJECT 2

N —

PRIMARY BACKUP

controlled membership style. x 5
3. ObjectGroupManager. For the application-controlled ey RECOVERY
membership style, applications use tlbjectGroup- MECHANISM MECHANISM
Manager interface to create, add, or delete members of an
object group. LOGGING PROCESS IN WARM_PASSIVE STATE

1FT-CORBA does not standardize the actual implementation details %}gure 3: Operation of the FT-CORBA Logging Mecha-
application-controlled membership or consistency styles. nism

messages that are recorded are played back to the new prim WA BT
S0 its state is consistent with that of the old primary before th
failure occurred.

Figure 4 illustrates how the recovery mechanism applie} ..
messages from the log to the replica to synchronize it with thj FT support
current state. In thevARM _PASSIVEreplication style, backup

New York FT Domain

CLIENT

Figure 5:FT-CORBA Domains

i

SERVER

BACKUP nicate with replicated objects inside a domain viaateway .

TheGateway can use a group communication protocol, such
- as Totem [33], to multicast the IIOP call from the client out-
side the domain.

LOGGING &
RECOVERY
MECHANISM

RECOVERY PROCESS IN WARM_PASSIVE STATE 3 Li m itati 0 n S Of FT— CO R BA for D R E

Figure 4: Operation of the FT-CORBA Recovery Mecha- SyStemS
nism The majority of computational cycles today are expended to
members in the object group should receive state update§attrol DRE systems, including commercial and military air-
constant intervals of time during normal operation. Whencgaft and satellites, automobile engines, chemical and manu-
backup member is promoted to a primary after failure, hof@cturing plants, and hospital patient monitoring equipment.
ever, the FT-CORBA recovery mechanism only applies recé¥t€ to constraints on weight, power consumption, memory
state updates on the failed primary to the backup member,faptprint, and performance, DRE systems are harder to de-
ter the last successful update. For an object group configuy&tpp, maintain, and evolve than mainstream desktop and en-
with the coLD_PAssIVEreplication style, a backup is createderprise software. During the past decade, a substantial amount
and the recovery mechanism applies the complete log to @eR&D effort has focused on developing distributed object
backup. computing (DOC) middleware as a means to simplify the de-
After all replicas are consistent, the FT-CORBA recovelopment and reuse of DRE systems.
ery mechanism then reinvokes the operations that were madghe characteristics of DRE systems described in Section 1
by the client, but which did not execute due to the primamotivate the integration of implementations of RT-CORBA
rep”ca's failure. These FT-CORBA |Ogg|ng and recover@nd FT-CORBA as the infrastructure for DRE SyStemS. This

mechanisms ensure that failovers are transparent to applle@C middleware provides open standard interfaces that sim-
tions. plify the development of DRE systems requiring dependability

and predictability. As discussed below, however, their com-
bined use in today’s ORBs lacks certain features and have
semantically incompatible strategies that make them unsuit-

To manage large and complex distributed systems, the Rfple for important types of DRE systems. The remainder of
CORBA standard definemult tolerance domainswhich are this section describes the challenges associated with integrat-
designed to allow applications to scale to arbitrary sizes. IRg the RT-CORBA and FT-CORBA specifications to meet the
single fault tolerance domain consists of one or more ho&8S requirements of DRE systems.

and one or more object groups, as illustrated in Figure 5.

In addition, hosts can be part of several domains simul@-1 Challenge 1: Unpredictable and Expensive
neously. Complex, large-scale applications consist of sev- Replication Strategies

eral object groups that often span one or more fault toler-
ance domains. All object groups within a single fault toleEontext. Application objects use replication to achieve
ance domain are managed by a single logical domain-spedifemsparent fault tolerance. As discussed in Section 2.1.2, FT-
ReplicationManager . Objects without knowledge of CORBA specifies thecOLD_PASSIVE, WARM_PASSIVE, AC-
FT-CORBA and/or that reside outside the domain can comnTuvE, andACTIVE _WITH_VOTING replication styles to tolerate

2.1.5 Fault Tolerance Domains

Sidebar 1: Requirements of the FT-CORBA| | Sidebar 2: Preventing Multiple Invocations
Standard

To maintain theat-most-oncesemantics of the CORBA objeqt
FT-CORBA imposes the following requirements on the underlyjn| model, the FT-CORBA standard defineRBQUESTService con-
CORBA ORB middleware: text that a client ORB includes in application requests. This seryice
Preserving the CORBA object model. For the infra- | | context includes a uniquelient ID for the client, aretention ID
structure-controlled consistency style, the behavior of a replicat| and anexpiration timeprovided by the client. The client ID and
object should appear as though itis a single non-replicated CORE retention ID together uniquely identify a request. This mechanism
object. is used by the server ORB to identify duplicate requests. For|any
Enhancements to the CORBA object reference model, | duplicate request that has already been successfully serviced be-
FT-CORBA defines three netagged componenisto the object| | fore, the server ORB sends identical replies as before from the log
reference model to denote multiple components in a replicated ¢ of requests and corresponding replies it maintains. The expiration
ject reference. The standard mandates that ORBs not suppadr{ time is used to determine the amount of time that a server QRB
FT-CORBA should be able to handle such object references| | should maintain the log for a request and its corresponding reply,
addition, objects hosted by such ORBs should be able to inyo| if any.

operations on these multiple profile object references. FT-CORBA also defines &ROUP.VERSION service context
No single point of failure. FT-CORBA is designed to pref | that a client ORB can send with a request. This service corftext
vent single points of failure within a distributed system. As afe includes the group version number of the replica group to which it
sult, each component described above must itself be replicated « sends a request. A server ORB uses this information to determine
mechanisms provided to deal with potential failures and recover] i jts associated client ORB has an obsolete IOGR for the sefver
Periodic Fault detection and notification. The FT-| | gpniect group. If the IOGR is obsolete, the server ORB sends a

CORBA standard mandates periodic fault detection and notific LOCATE_FORWARD.PERMMessage to the client ORB with the new
tion of faults to theReplicationManager and subsequentre- | |oGR.

covery from failures.
Transparent failovers. Recovery from failure and the number

of replicas in an object group should be transparent to clients mak-

ing requests to the object group. Moreover, as mentioned eafliét, ACTIVE replication must behave identically and determin-
client applications should not need to distinguish between sengiigjically if they are used in DRE systems. Special negotia-
requests to a replicated object or a non-replicated object. tions (which impose high overhead) are needed to enforce the
Transparent client redirection and reinvocation. As ex- consistent execution order of messages among all the rep”-
plained earlier, the standard defines an IOGR that a client ORB g Preemption of requests, such as responding to an alarm
uses to send requests to object group replicas. If a failure| QG5 gition, inacTIVE replication can make the system non-
curs when a client communicates with an IOR within the 10 Rdeterministic, which can be avoided only via complex proto-

the client ORB redirects the request to other IORs within eOIS that consume sianificant svstem resources
IOGR. The client ORB systematically reinvokes the request nff 9 y)

the request succeeds. This redirection and reinvocation of req esth'CORBA also requires strong replica consistency, which

should be transparent to client applications. Sidebar 2 explains|hff ACTIVE replication means that all members of the object
the at-most-onceemantics of CORBA requests are maintained. 9roup must have the same state at the end of each method

invocation. It is conceivable, however, that application ob-
jects required to be fault tolerant will also make outcalls, such
as reading the real-time clock or responding to arbitrary ex-
faults transparently. With the exception@bLD_PASSIVEANd terng| events. Under these circumstances, it is unlikely that
WARM_PASSIVE, these replication styles require that replicagnsistent state can be maintained across the replicated ob-
maintain consistent state after every invocation. jects, which suggests that a conforming implementation must
Problem. In COLD_PASSIVE and WARM _PASSIVE systems, Severely constrain the ways in which objects can interact with

the recovery time needed to switch to a backup replica cantB@ir environment.
unacceptably high for DRE systems with stringent timing con- N Section 4 we describe treEMmI-ACTIVE replication style
straints, as shown in Section 5. Likewise AaTIVE replica- that provides the following benefits:
tion the cost associated with providing totally ordered reliablee Fast and predictable failure detection times
multicast and the time needed to synchronize via proprietarys Predictable state synchronization strategy that eliminates
group communication mechanisms can be unacceptable [35]. the need for protocols with high overhead

Using an ACTIVE replication for applications based on ® No restriction placed on the ways in which an application
“push-pull” architectures, such as the CORBA Event Ser- can interact with its environment, and
vice [9], can introduce non-determinism and unpredictability ® Can be standardized as an enhancement to the present FT-

when trying to handle multiple events. Moreover, the replicas CORBA specification.

—

3.2 Challenge 2: Dealing with Semantic Incom- 3.3 Challenge 3: Lack of Standards to Handle
patibilities Between RT-CORBA and FT- Byzantine and Partial Failures

CORBA Features Context. Partial failures are not uncommon in distributed

Context. Requirements on DRE systems are commonly eS¥stems. A component interacting with another component
pressed in terms of external stimuli and responses. For ex@hten cannot distinguish whether a delay in response is due
ple, consider a tactical display system that uses radars as $failure of the remote component or due to a slow or parti-
sors and that presents an operator with a graphical represeifftged network. A system is considered reliable if it performs
tion of the geographical area, including the present locatidksdesignated function, even in the face of partial failures.
of moving objects, such as missiles or tanks. In such systefgblem. The FT-CORBA model for failure detection and
a common requirement iadar to glass in one secondhich recovery emphasizes a certain type of failure, narsetypo-
means that at most one second may elapse between a raéaf failure which is also calledrash failure In this type of
pulse bouncing off the surface of a target and the correspofailure the individual component ceases all interactions with
ing observation being displayed to the operator. its environment. The policies and detection mechanisms in
Similarly, dependability requirements are often expressed-CORBA, such as the use of heartbeats and timeouts, ac-
in terms of the probability that one or few of the many re&knowledge this limited view implicitly.
quirements will fail to hold over a specific period of operation. A more subtle form of failure is one where interactions
DRE systems, such as the tracker outlined above, requireasiong components cause the system to fail. For example, a
multaneous stringent QoS properties, including predictabilggrrupted component may request services more frequently
and dependability, for their correct operation. than allowed for in the design, thereby denying other com-
Problem. Although combining the power of RT- and FT{o0nents access to critical resources. Heartbeats and timeouts
CORBA seems a promising approach, the requirementsaamnot protect against this type of failure. Given the inabil-
DRE systems illustrate a significant semantic gap betweenity to detect this difference, the requirement that objects us-
e End-to-end predictability and dependability requiréng ACTIVE replication maintain consistent state in a bounded
ments, such as 500 milli-second response times evenime between method invocations may be infeasible to achieve

the presence of crash faults, and in the general case.
e Capabilities, such as propagating priorities and replicat-Section 7 discusses the future work that is needed to resolve
ing server objects. this challenge.

The ability to engineer a good fault tolerant solution requires
tradeoffs that may compromise a DRE system’s ability tome®4 Challenge 4: Lack of Standard QoS Se-
real-time deadlines, and vice versa. For example, a non-trivial mantics
amount of communication and processing costs are incurred to
accomplish failover from one replica to another. This overhe@@ntext. For designers of DRE systems, the primary ben-
presents a hard choice between accounting for failover in evefiy of an open standard is the promise of a stable inter-
message transmission versus preparing for time budgets tésse between the application and the services provided by the
violated during failover. middleware, since this simplifies porting to a different ser-
In general, the variation in performance and latency inh&ice implementation. In particular, when a service is part of
ent in an elaborate FT solution is fundamentally antithetidéle infrastructure—and the infrastructure is built with COTS
to the predictable behavior required in a DRE system. Theoducts—system designers are highly motivated to consider
effect of choices made to support a requirement in one abedh the cost of upgrades and penalties associated with COTS
can have complex and unforeseen consequences in the otfisolescence [23]. It is therefore important that DRE systems
For DRE systems to leverage the advantages of open, staniidgdact with the infrastructure through syntactically and se-
interfaces, therefore, a solution that can mask the semantionantically stable interfaces, such as those defined in the RT-
compatibility between FT-CORBA and RT-CORBA solution€ORBA and FT-CORBA specifications. CORBA also helps
is needed. improve the portability and interoperability of applications
Schemes like [36, 37, 38] have been developed and beilt using such interfaces.
ployed that address the conflict between real-time and falttoblem. The RT-CORBA and the FT-CORBA specifica-
tolerance capabilities of non-CORBA systems. We propadsens provide the mechanisms by which real-time and fault-
and evaluate a strategy in Section 4 for CORBA systemaerant behavior can be achieved for DRE systems. CORBA
that provides bounded fault-tolerance capabilities, while aldoes not, however, guarantee that two implementations con-
maintaining the real-time properties essential to develop derming to the RT-CORBA and FT-CORBA specification will
pendable DRE systems. provide equivalent QoS properties. For example, assume that

a system implemented on ORB(which is compliant with cation styles supported by FT-CORBA.

the RT-CORBA and FT-CORBA specifications) successfully

meets the requirement that sensor data from the naviga
subsystem be propagated to all interested recipients at 35
lisecond (ms) intervals, even when certain faults occur in t

Sidebar 3: An Overview of SEMI-ACTIVE
Replication

system. It is highly unlikely, however, that if ORBwere re-
placed by ORB;, the 35 ms propagation interval will be main
tained, even if ORB also complies with the RT-CORBA and
FT-CORBA specifications. To establish that the modified sy
tem continues to meet its requirement would require thorou
testing, possible reengineering, and expensive re-certificati

In general, the absence of a QoS standard makes the e
ing RT-CORBA and FT-CORBA specifications inadequate f
certain types of DRE systems. Moreover, the implementat
freedom that arises from a purely functional interface spec
cation means that performance characteristics of various c¢
pliant products may vary greatly. Such performance variatig
are problematic when ORBis replaced by a different (yet
still functionally compliant) ORB. For instance, one prod-
uct may choose to use an inter-process communication (If
mechanism, such as shared memory, to communicate betw
objects collocated on the same computer, whereas another
pass the message through an IPC loopback device. These
mechanisms can produce radically different levels of perf
mance. Replacing or updating an ORB may therefore reqy
costly redesign, reimplementation, and revalidation of DR
systems.

Section 7 discusses the future work that is needed to res¢
this challenge.

4 Overview of the SEMI-ACTIVE Repli-
cation Style

The key features of theEMI-ACTIVE replication style are outlineg
below:

e The replicas are arranged as a list of nodes, where each
replica except the primary is connected through a connection-
oriented transport-level connection to the one ahead in|the
queue.

e The list of replicas are created at server startup time.

The replica at the head of the list is designated the primary.

e When the primary fails, the next secondary replica in the [lis

is promoted to become the primary.
e Failures are detected by the next replica in the list when

transport-level connections close. Connection closure, which
is an event in the system, is used to detect failures. This is
done by making the secondaries wait on open connectjons

using an event demultiplexing mechanism.
e The promotion of the secondary to the primary is done by|the
secondary when it detects a failure.
e All client invocations to the primary are reliably multicast
by the primary to the secondaries, such that secondaries|con-
sume messages in the same order that the primary consumes

them, maintaining replica consistency.
e More generally, replica consistency can be maintained by

reliably multicasting state synchronization messages tqg all

replicas.
e The multicast protocol that is used for request invocation or

state transfer needs to enforce message ordering. A simple
reliable model that ensures data delivery alone is not suffi-

cient.
e An ordered list of references is passed to the client, which

must honor the order of the list.
e No additional threads are created for sending heartbeais or

monitoring server objects.

Section 3 described the challenges of using FT-CORBA andsjgebar 3 describes the key features of this replication style.
RT-CORBA together to build DRE systems. Though the chaligure 6 illustrates how the replicas are arranged to tolerate
lenges in Sections 3.3 and 3.4 must be addressed to buildiggits in SEMI-ACTIVE replication. ThesEMI-ACTIVE repli-

bust, reliable and long-running DRE systems, the challeng@gion style resolves the following challenges with the existing
in Sections 3.1 and 3.2 should be addressed first, since ththanisms described in Section 3.1 and 3.2:

are more fundamental and form the basis by which the oth-

ers can be addressed. This section presentseke-ACTIVE
replication style to address these challenges.
SEMI-ACTIVE replication is based on the European Delta-

4 (XPA) architecture [36] (where this term was coined). It is ®
designed to enhance active replication and passive replication
styles to support predictable program execution and failover

times, without incurring the overhead, unpredictability and

non-determinism of the standard FT-CORBA strategies out-
lined in Section 2.1.2. This section describes our efforts to in-

tegratesEMI-ACTIVE replication into FT-CORBA. Section 5
then compareSEMI-ACTIVE replication with existing repli-

The efficient and predictable failure detections ensure
faster and more predictable recovery times when com-
pared tacoLD_PASSIVEandwARM _PASSIVEreplication.

No need for additional protocols based on algorithms like
priority based total ordered multicast [39], which enforce
inter-replica coordination required to guarantee priority-
based message ordering among replicas forntteve
replication style. The complexity and overhead of these
protocols is avoided bgEMI-ACTIVE replication.

Reduced heartbeat and poll messages on the network
since they are not used for detecting failures.

OPEN CONNECTION i i i i -
SERVER 2 LSERVER?) telg; developers have to program to this replication strat

I:I Fortunately, the disadvantages outlined above do not affect the

SEMI-ACTIVE replication style’s predictability, which makes

" it a good candidate for use in DRE systems. Section 5 empiri-
cally evaluates key properties of this replication style.

&

MULTICAST

MULTICAST

Workstation

RELIABLE
MULTICAST
MANAGER

OPEN CONNECTION
NOILD3INNOD NIdO

uuLTICAST 5 Empirically Evaluating Semi-Active
CORBA INVOCATION
SERVER 1 andior SERVER 4 Replication

STATE INFORMATION
I:l This section compares the performance of $ig11-ACTIVE

I:l : replication style described in Section 4 with the FT-CORBA
““““““““ INVOCATION enaon replications styles discussed in Section 3. We also illustrate

CLIENT how the SEMI-ACTIVE replication style compares favorably

OBJECT with the FT-CORBA replication styles. Our experiments as-

s1]s2]s3]sa sume a single-failure model with no nested failures. The faults

occuring in our experiments are assumed to be crash failures
injected at random. We explain below the methodology we
adopted for inducting crashes.

Figure 6: ThesBsbitecture of the SEMI-ACTIVE Replication
Style

e The RT-CORBA mechanisms and policies can be usgt_jl Comparing Semi-Active Replication with
easily with this strategy. Warm _Passive Replication

Despite the advantages outlined aba@yI-ACTIVE replica-

; . . Below, we describe the results of empirical benchmarkin
tion style has the following disadvantages: P g

studies conducted to measure how well EemMI-ACTIVE

e If a non-primary replica fails, the replica just followingreplication style compares to thveaRM_PASSIVE replication
the failed replica could declare itself as a primary angyle in providing real-time and fault-tolerance support to DRE
wait for messages to be processed, which can potentiai)stems. A key goal in conducting these benchmarks is to
partition the list. To prevent partitioning, a remote tokegvaluate the predictability of theEMI-ACTIVE replication
manager should disseminate tokens to replicas and g@de in terms of its
mote them as primaries in a predictable manner. L . .

: . 1. Detection timdo recognize failures and

e When a primary fails, the FT-CORBA model does not . . .
place any restriction on the client’s choice of a backupz' Response tlmeequ!re_d for _chents to connect to a new
from the list of replica references to make the invoca- primary after an existing primary fails.

tion. The SEMI-ACTIVE replication style could restrict ¢ o\ 3y ,ate thesemi-AcTIVE style, we built several tests
the client to use the list of references as an ordered ligt,

L . . tRat demonstrate specific use cases for these benchmarks. The
Wh'ch IS not co_mpl.|ant with the FT-CORBA spec. tests were based on ACE [40, 41] and TAO [25], versions 5.2.2
* As with all replication styles other thamOLD_PASSIVE, 414 1.2 2, respectively. The tests were run on a single endsys-
apphcatl.ons must .prowde their own replica congsten@gm — a 930 MHz Pentium Il processor with 512 MB RAM
mechanisms if their state changes due to operations ofhhing version 2.4.9 of the Linux kernel in the FIFO real-time
than regular CORBA fequeﬁS-S'm"af'Y with SEMI- gcheduling clas®.For thewARM_PASSIVE replication we use
ACTIVE replication, applications choosing to multicasjata collected from our previous benchmarking experiments

statg information instead of mult_lcastmg_requests COLIW[ls]. We compare only the trend in data and not the abso-

use mtercept_ors that pass _state information to the m“_l'Hte numbers in the following sections.

cast mechanisms. Application developers are responsible

for installing these mechanisms. In other words, applica-3aithough we use TCP to benchmark themi-ACTIVE replication style

in our experiments, the stream control transmission protocol (SCTP) [42] and
2There is a class of DRE systems whose object state changes are triggegihet [43] are more effective transports for DRE systems in practice since

by occurrence of events, such as time triggers or alarm conditions, rather thay provide better fault detection times and better real-time guarantees than

exclusively from CORBA requests. TCP.

5.1.1 Comparing Failure Detection Time on the Server Analysis of failure detection time. Figure 7 shows the vari-

Rationale. We define thdailure detection ti th ation of detection times of theEMI-ACTIVE replication over
ationale. - Ve detine Inailure detection imén e SEIVET oo o5 jterations. Figure 8 shows the minimum, average, and

as the time t’.dken fo detect a failure, wh|c_h includes th_e t' taximum failure detection times for different polling intervals
taken by th(_a ||jfrastructur9 to dgtect the fallu_re of the p”ma[}'nderWARM,PAsswErepIication style.
This value is important since it affects the time taken by the
middleware infrastructure to detect and react to faults.
Methodology for SEMI-ACTIVE. To model the replicas, we 2100
used a server based on the Acceptor and Connector [41] fran| 3 % |/ A A VYA VA
work components in ACE. The primary waits for input re- oo VOV TV
guests from the client on a specified port and sends a respo
to the client to mark the end of an invocation. In addition
to waiting for connections from the client, the secondary als
connects to the primary, as shown in Figure 6. The client e so0d o
tablishes connections to all the replicas since this reduces t o
jitter due to connection establishment during failover. Iterations

A script creates the primary and all the other replicas. W — eecion Ties —— Avg. Detection time (1754 used)
then allow a client to connect to the replicas and invoke son|| ,oer Bound (1896 usec) Lower Bound (1612 usec)
random number of remote operations. At this point we invok

B eson poness. s LI 7 Aerage and Bounds o Fare Deecion Time
; . : . within the Object Group for SeEmMI-ACTIVE Replication
ondary, which promotes itself to the primary and waits to re-
ceive invocations.
We measure the failure detection time as the time bety
the failure of the primary replica and the time when the :
ondary actually detects a failure. To measure the failure d

tion time, we recorded two time stamps:
e The first time stamp was recorded when the primary
killed.
e The second timestamp was recorded when the secol
detected that its connection to the primary was close

1200 A
900 ===
600 == ===

Detection Times in usec

[
al

[N
i

H min

[
w

max

[
N

i
S B

o
QUL I B A UL I L LU L U U

We conducted several iterations of this experiment by Kil
the primary replica at randomly selected times.
Methodology for waARM_PASSIVE To model the replica
underwARM _PASSIVE replication we used the infrastructL
provided by DOORS [16, 17, 18], which is our prototype i
plementation of the FT-CORBA spec. A manager prog
requests th®eplica Manager to start the replicas. Afte
the replicas are running, tik@ultDetector s begin polling g e g: Effect of Different Polling Intervals on Failure
them at constant. intervals .of tlme._ We then allow a client {9:c tion Times forwARM_PASSIVE Replication
connect to the primary replica and invoke a random number of
remote operations. At this po_int, _vv_e_invoke the server Obj?Ct'SThe results in the above figures indicate the following:
shutdown() operation, which initiates the fault detection
process in thé&aultDetector . e Failure detection is in the millisecond range for #®@vi-

We measure the failure detection time as the time between AcTIVE, and for thewARM_PASSIVE style is dependent
the failure of the primary replica and the time when the on the polling interval.
FaultDetector actually detects a failure. To measure the ¢ The bounds are in a narrow range and approximately
failure detection time, we recorded two time stamps: +4-5% of the average irseMI-ACTIVE and for the

1. The first time stamp was recorded when the primary was WARM_PASSIVEis around+ 100%.

killed.
2. The second timestamp was recorded when
FaultDetector detects the failure of the primary.

Fault Detection Time (seconds)

O R N W Hh U1 O N © ©

25 5 75 10 125 15 175

Polling Interval (seconds)

tﬁge results fromwARM_PASSIVE illustrate that polling in-
tervals should be minimized for applications requiring fast

10

failover. But overly small polling intervals increase the num 2500
ber of messages in the network, however, which may be pro

lematic over low-speed network links. The bounded nature 2000172/ NN NV NNV N
the detection times exhibited by tlseMmI-ACTIVE replication 1500 4

styles are characteristics that DRE systems require.
1000

Detection Time in usec

5.1.2 Comparing Fault Detection and Recovery Times on 500 1

the Client o
Rationale. A client invoking a remote operation will expe- tterations
rience some delay if its server fails during the operation. Thij— Detection Time —— Avg. Detection Time (2040 usec)
de|ay has three parts: Upper Bound (2188 usec) Lower Bound (1892 usec)

1. The time taken by the infrastructure to detect the fault _ i
2. The time taken by the infrastructure to promote a backFI ure 9: Average and Bounds on Recovery Time for the
' lentin SEMI-ACTIVE Replication for a Stateless CORBA

to become the primary, and
. . : . Server
3. The time taken by the client to detect a failed primary ande
make invocations on the secondary.
Analysis of failure detection time. Figure 9 shows the
Below, we describe the experiment conducted to compatgiation of detection times over several iterations for the
the combination of these times for temI-ACTIVE and the semI-ACTIVE. The recovery times measured for the
WARM_PASSIVEStyle. This time actually indicates the boundgarm_rAssivEbenchmark are shown in Figure 10. Figures 9
on latency that the client will experience when faults occu

Methodology for SEMI-ACTIVE. The experimental setup

similar to the one described in Section 5.1.1. To measur oE
effect of failures—and to compute the total recovery tim 13: A
we allow the client to shutdown the primary by invoking 16E max
server object'shutdown() operation. - 1 £
We measure the failure detection time as the time inte é oE
between when the client invoked tebutdown() operation g ue
to the time when the client can make the next request tc = ot
secondary. The time interval includes the error handling g ?gi
the time needed for the client to retrieve an established © °E
nection and make the request to the secondary. 431:
Methodology for wARM_PASSIVE As described in Sec ié:
tion 5.1.1, to measure the effect of failures, and to com of - . - . . n —

the total recovery time, we allow clients to connect to the
mary replica. After clients connect to the primary replica,
terminate the primary replica by invoking the server objectsgure 10: Effect of Different Polling Intervals on Recov-
shutdown() operation. For the client failover measuremenéry Times for wARM_PASSIVE Replication for a Stateless

we start a timer in the client when tlsbutdown() opera- CORBA Server

tion is invoked.

When the DOORS'§aultDetector detects a failure it and 10 shows behavior similar to the one described in sec-
reports this failure to th&eplicationManager . Inturn, tion 5.1.1. Bounded and predictable detection times on the
the ReplicationManager selects a backup copy amongstlient offered by thesEMI-ACTIVE style suggest that this style
the replicas and promotes it to become the new primary. Bibetter suited to DRE systems than therM _PASSIVEStyle.
multaneously, theReplicationManager creates a new
backup to maintain a consistent replica group size. Itthen ngji9 Comparing Semi-Active Replication with
fies tr’1e new primary ofits changein s_tatus by invoking the pri- Active Replication
mary’s become_primary() operation, which enables the
new primary to respond to client requests. At this point, Wiéghis section describes the results of the empirical benchmark-
stop our client timer and compute the failover time observedy studies we conducted to measure how well fmvi-
by the client.

Polling Interval (seconds)

11

ACTIVE replication style compares to theTIVE replication 2500

style in providing real-time and fault-tolerance support to DRE
. . 2000

systems. The goal of this benchmark is to show the pre o
dictability in thesynchronization timeequired to synchronize | 2 1500 -
the state during every invocation. The infrastructure is similg ;>, 1000
to the one explained in Section 5.1. 2

— 500 -
Rationale. A client invoking a remote operation will expe- 0 -

1 2 3 4 5

rience additional delay if the server multicasts the requests
Number of Replicas

multicasts the state updates reliably to all the replicas, in a
dition to executing the invocation on the primary. Below, we |EMinimum Latency in usec B Average Latency in usec

describe the experiment conducted to measure the combi £ Maximum Latency in usec
time, which is the actual delay experienced by a client for ev-
ery invocation. Figure 11:Latency on the Client with Increase in Number

This experiment measures the latency experienced by #hé&eplicas for SEMI-ACTIVE REPLICATION
client when making invocations on an object group possess-
ing state synchronization capabilities using §EMI-ACTIVE
replication style. We assume at this point that gerive
replication without any extra protocols is not predictable, a 2000
shown in [35].
Methodology. Rather than modeling a communication sub;
system that makes invocations to all the secondaries, we ug
TAO's Real-time Event Channel [9] to propagate state infor 500 -
mation to all the replicas with every invocation. We chosg ‘ ‘ ‘ ‘
TAO’s Real-time Event Channel for the following reasons: 1 2 3 4 5

1. The Event Channel offers a “push-pull” communication Number of Replicas
model, where all the registered event suppliers can pu|l |—Average Latency —— Lower Bound on Latency
lish events of interest to registered consumers. Upper Bound on Latency

2. TAO’s Event Channel has been used in many production
DRE systems, including real-time avionics mission corfrigure 12:Bounds on Latency with Increase in Number of
puting [44], distributed interactive simulation [45], andReplicas for SEMI-ACTIVE Replication
large-scale network management [46].

2500

1500

1000

Latency in usec

The primary in theSEMI-ACTIVE replication style acts as & 1 Thg |atencies increase with the number of replicas ob-
supplier of events to the channel and all the replicas subscribe ¢gp/eq by the client and

to the channel as consumers to receive events. To add re-) o) o)
liability to the delivery of events to the channel through the2- The small variance of latencies is being maintained with
push() operation, we use theyNC_WITH_SERVERTreliable an increase in the number of replicas.

one-way policy at the ORB level. . . . :

We measured the time the client takes to make every im]’&_e increase in latency occurs since we use rellable'onewgys
cation on the remote object. We varied the number of replic""c%_(_)pposed to a regular CORBA oneway caI_I. Addlng rell-_
receiving state information and captured the minimum, ma?_i-IIIty to message transmission to every replica Incurs ad_d"
mum, and average times. Eight bytes of data was transfer} Hal overhead, as mt_jmatgtj by the rgsults. A key engineering
from the primary to the secondary. We also calculated the allenge, the_refqre, is striking the right balance betwgen the
per and lower bounds associated with this. egree of replication and the affordable latency reduction that

Analysis of latencies from state transfer. Figure 11 shows developers of DRE_syster_ns _can afford. _

the variation of minimum, average, and maximum IatencyThe above experiment indicates that the state transfer times
associated with communicating with primaries with varyinggmain tightly bounded fosemi-ACTIVE with increase in the
number of replicas in the configuration outlined above. Figumber of replicas. As theEmI-ACTIVE replication style
ure 12 shows the average, upper, and lower bounds on théles not possess other known sources of unpredictable sim-

tency in the same experiments. The results in these figut@t 10 ACTIVE style, we conclude that thBEMI-ACTIVE is

12

5.3 Summary of Results and Recommenda-Recommendation. Middleware researchers and implemen-
tions tors should carefully study application use cases, failure rates
of DRE systems, and expected performance from the system
Based on the results presented above, we now describe sgiifetermine the replication degree automatically. Being able
of the key challenges that treEMI-ACTIVE replication style to configure the degree of replication adaptively would help
resolves when designing dependable DRE systems. Thoyghplify the development and deployment of DRE systems.
the empirical evaluation is made in the context of dependaplRewise, DRE system developers should carefully evaluate
DRE systems, this strategy is applicable to a larger classtid trade-offs associated with increased replication degrees on

distributed applications requiring dependability support frofRe performance of their systems.
DOC middleware.

Challenge 1. A non-trivial amount of time is spent by the

FT middleware to detect and recover from faults, which is 86 Related Work

tithetical to the latency and performance requirements of DRE

systems. CORBA is increasingly being adopted as the middleware of

Resolution. TheSEMI-ACTIVE replication style that we Ioro_ch0|ce for mission-critical, large-scale, and heterogeneous

pose places less overhead on the infrastructure to detect %ﬁg systems. The need to develop dependable middleware
recover from faults. Similar to the distributed computirﬁ support DRE systems has therefore motivated research on

paradigm which distributes computation between differ ?IICIeS and mechanisms for fault-tolerant CORBA. As out-

nodes, thesEMI-ACTIVE replication style distributes the over,ned in Section 1, research efforts devoted to enhancing the

head of fault detection and recovery between replicas. The E’éj-lt folerance (.)f CQRBA ORBs qnd/or CORBA apphcatlons
tection and recovery times from tisEMI-ACTIVE replication can be categorized into the following three strategies:

style are bounded allowing the possibility of accomplishiry The integration strategy. This strategy layers the ORB
critical real-time tasks even in the presence of faults. on top of a reliable multicast communication subsystem. The
Q'RB is modified to provide the necessary fault tolerance sup-
port, which will likely make the ORB non-compliant with the
gORBA standard. The extent of the ORB modifications de-
_ o _pends on the functionality that is being addedy, a reli-
Resolution. The SEMI-ACTIVE replication imposes the pri- gple, totally ordered group communication mechanism, such
mary’s order of message execution on all the replicas in the Totem [33], could be added to deliver CORBA requests.
group. The primary decides on the message order baseg-gpinstance, a modified ORB can be linked with the client ap-

the local real-time QoS parameters and imposes that on a";Sh@ation as shown in Figure 13, and used to convert the ORB
replicas. The primary could either choose to multicast the re-

guest chosen for processing to all the replicas or choose to
multicast the state information at the end of request process-
ing. This flexibility is particularly useful for a class of DRE
systems where the state of the system changes with external
events in addition to CORBA requests.

Challenge 2. Synchronizing message processing ord
across all replicas deterministically using theTIVE replica-
tion style calls for the usage of protocols with high overhea

OBJECT
GROUP

APP.
OBJECT
MODIFIED
CORBAORB

SERVER SERVER
OBJECT OBJECT

MODIFIED MODIFIED
Challenge 3. TheAcTIVE replication style in order to main- REQUEST @ @
tain replica consistency could constrain the way in which ap-
plication objects interact with their environment, like prevent-]
ing execution threads from doing tasks that could change ob- MULTICAST
ject states not associated with CORBA requests. ToOLKIT S
Resolution. The SEMI-ACTIVE replication resolves this Figure 13:Integration Fault Tolerance Strategy

challenge by allowing the primary to send state updates to

all its secondaries in addition to CORBA requests from thgqyests into multi-cast messages of the underlying toolkit.
clients. This gives applications the necessary flexibility to Examples of the integration strategy include Orbix+Isis [47,
schedule and dispatch tasks that could affect the state ofﬂf and Electra [47, 12]. Orbix+sis was the first commer-
object. Finally, we present an observation and a recommepyyy available system that supported fault-tolerant CORBA-
dation based on our empirical evaluation of SBMI-ACTIVE compjiant applications. The fault-tolerance of server imple-
replication style earlier in this section. mentations is achieved using active (hot) replication, with re-
Observation. Client latencies tend to increase as a functidiable multicast support from low-level group communication
of an increasing degree of replication.

13

system [11]. Electra was another early implementation of i&- The service strategy. In this strategy, a set of interfaces
liable CORBA. It differed from Orbix+Isis mainly with re- and objects are defined as a CORBA service that provides the
spect to its ease of use and its adaptability to other commpelicies and mechanisms for delivering fault tolerance to ap-
nication subsystems, such as Horus and Ensemble. The iplieations. Fault tolerance can therefore be provided as a part
gration strategy requires modifications to ORB interfaces aoidthe standard suite of CORBA Services, without requiring
language mappings, however, which reduces the portabilityeatensive modifications to CORBA ORBs. Figure 15 illus-

server and client applications. trates this strategy. Aobject groupis registered with the fault
2. The interception strategy. In this strategy, requests made
. . . OBJECT
by client objects are capturexternallyto the ORB,e.g, via = crovr | [EH
an OS-level interceptor [13], such as tgoc file system =
in UNIX. As shown in Figure 14, the interceptor can modify i % Comm m
T o | o |
OBJECT
GROUP =

APP.
OBJECT
CORBA
ORB
CORBA
REQUEST

FAULT TOLERANCE register () l
OBJECT

CORBA
ORB

SERVER
OBJECT

CORBA
ORB
MULTICAST

1or REPLICATION & LOGGING N eca
&NTERCEPTOR] [MANAGER MESSAGE

Figure 15:Service Fault Tolerance Strategy

tolerant service. Client applications query the service to obtain
the object group and make invocations on the object group.
The service manages the replicas and the state of their associ-
ated objects.
, i The service strategy is used in the Object Group Service
the client request parameters to alter the behavior of the ?@GS) [19]. OGS provides a group of services, including
plication or to enhance the application with new fun_Ctiona"%embership service, monitoring service, consensus service
The modified requests are then mapped onto a reliable grapy ynessaging service, that work together to enhance the reli-
communication messaging system. o ability of an application through both active and passive repli-
The interception strategy is used heavily in the Eternal s¥$ition. The DOORS [16] framework described in this paper
tem [10, 48] to construct a reliable ORB environment. Eternalanother example of a service-based approach to fault toler-
intercepts system calls made by the client object through Yjg.e.

lower-level I/O subsystem and maps these system calls to thg) . racent work on DOORS [17, 18] and TAO's pluggable

[RELIABLE MULTICAST TOOL KIT]

Figure 14:Interception Fault Tolerance Strategy

tolerance to applications. The AQUA framework [15] also prey coRBA specification defines a standard transport proto-
vides a variant Qf the mtgrceptlon approach. The AQ‘}A galgy) IIOP, which runs atop TCP. There are many use-cases,
way acts as an intermediary between the CORBA objects gl ever, particularly in telecommunication and real-time sys-
the Ensemble group communication subsystem and translgi&ss \vhere ORBs must communicate over non-TCP proto-
(_BIOP messages to group.comm_unication primitives. In ad%ls, such as VME, ATM, SCTP, and shared memory. More-
tion, AQUA uses the Quality Objects (QUO) [49] frameworko; researchers have devised other messaging protocols,
to allow applications to specify their reliability/availability re ,.n as HTTP-NG [50] or GIOP-lite [28], that have a smaller
quirements. _ ~ “wire footprint” than the standard CORBA GIOP messaging
The Maestro toolkit [34] developed at Cornell Universityyrgtocol.
uses a combination of interception and integration approaches.
It provides an object-oriented wrapper facade [13] to processThe three types of research strategies outlined above have
based group communication systems and supports transparetded incompatible fault tolerant solutions to the CORBA
client-side failover through the use of multi-profile object refnodel that are not portable or interoperable. To address
erences. The process group exports a multi-profile IOR to thés problem, therefore, the OMG devised the Fault-tolerant
client and the client uses a single profile in that IOR to conn€2®RBA (FT-CORBA) specification [1], which leveraged the
to the primary of the group through an 1IOP gateway. lessons learned from earlier R&D efforts [20, 21, 22, 19, 10,

14

16]. As we pointed out in Sections 1 and 3, however, Fduarantees by amortizing the unpredictability in detection and
CORBA is not yet usable in DRE systems that possess stri@eovery over successful invocations. Our goal in this effort
gent end-to-end QoS constraints. ®EMI-ACTIVE approach is to providethe right answer at the right timéy lower-
described in this paper is a step towards adding this importang the infrastructure overhead needed to detect and recover
capability to CORBA. from faults. The ACE ORB (TAQ), its FT-CORBA infrastruc-
The SEMI-ACTIVE approach described here has been hedure, and the benchmarks described in this paper are available
ily influenced by the work on Delta-4 (XPA) architecture [363s open-source software frodeuce.doc.wustl.edu/
and the Fault-Tolerance work on the Distributed Ada-9%ownload.html
project at EPFL [51]. A variation of the passive replica- While our work presented in this paper helps address the
tion style called assEMI-PASSIVE replication was used byproblems presented in Sections 3.1 and 3.2 above, the prob-
EPFL [52] to improve the recovery time after crash. Thoud@ms of Sections 3.3 and 3.4 remain open challenges to the
this methodology can provide predictable detection and OC middleware R&D community. We conclude by outlining
covery times, this methodology makes the same assumptititisre research directions for the DOC middleware community
pointed out in Section 3.1 which makes it unsuitable for DRE address the challenges outlined in Sections 3.3 and 3.4.
systems. More particularly, theEMI-PASSIVE style doesn’t Byzantine and partial failures. The detection, diagnosis,
address how state changes associated with real-time eventsresponse to failures other than crash failures is an exceed-
other than remote invocations can be propagated to the rejplily hard problem to address in an application-independent
cas. Further, theeMI-PAssIVEreplication style is hard to im- manner. For example, consider an object that is returning cor-
plement without changing the interfaces and semantics of krdet responses too slowly. The fault may be in the component,
CORBA. Our work focusses on theEMI-ACTIVE approach in the connection with the component, or in some otherwise
to support simultaneous dependability and timeliness requin@related component that is sharing some resource with the
ments, while complying with the FT-CORBA interfaces anslow component. These issues have received intense and pro-
semantics. tracted study [56]. Perhaps the most promising direction for
Other related work [37, 38, 53] presents principles arite middleware fault-tolerant community would be to provide
mechanisms to achieve fault-tolerance in real-time systemsstandard interfaces through which application-specific detec-
Time-triggered Message-triggered Objects [54], which hatien, diagnosis, and response mechanisms can act.
been explored at the University of California, Irvine. Th@omparable QoS benchmarks. The ability to compare
work that has been presented in this paper is in the contexggélities of service across different infrastructure implemen-
CORBA and RT-CORBA and we expect this work to resolMgtions requires an agreement on the set of qualities that ap-
some open R&D challenges [55]. ply to each service, and rigorous definitions of those qualities.
For example, if “invocation latency” is agreed to be a relevant
quality of a client-server service, then it must be determined
7 Concluding Remarks and Future Di- exactly how this value will be measured. Since any set of
fi measurements of such qualities will present a distribution of
rections values, the useful statistics that are to be derived from such a

distribution must be agreed oe.g, worst-case or average and

Distributed real-time and embedded (DRE) systems are pl@ysqard deviation. It would also be helpful to have standard
ing an increasingly important role in many application djenchmarking suites for these qualities.
mains, including telecommunication networks.q, high-

speed central office switching), telemedicireg(remote Although solving the problems presented above is clearly
surgery), manufacturing process automatierg{ hot rolling hard, the consequences of solving them would be profound:
mills), and aerospace g, avionics mission computing). Al-it would be possible to construct DRE systems that reliably
though there are many types of DRE systems, they have omget their functional and quality requirements, and do so when
thing in commonthe right answer delivered too late becomegperating on any sufficiently powerful infrastructure.
the wrong answerProviding the right answer at the right time
is therefore |mpera.t|ve for m|SS|o_n.-cr|t|caI DRE systems. References

Our effort at adding dependability to DRE systems focuses
on developing and deploying standard CORBA middlewarig] Object Management Grougthe Common Object Request Broker: Ar-
that can provide timeliness and performance guarantees to ap-°"ecture and SpecificatioB.0 edition, June 2002.
plications even When F:rash faults occur. Our future plan é]) with C++, Addison-Wesley, Reading, MA, 1999,
to collect more_ empirical dgta and d_emonStrate S - [3] Object Management GroufReal-Time CORBA Specificatioh.1 edi-
ACTIVE replication style provides timeliness and performance tion, Aug. 2002.

Michi Henning and Steve Vinoski,Advanced CORBA Programming

15

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Douglas C. Schmidt and Fred Kuhns, “An Overview of the Real-tin{g2]
CORBA Specification,” IEEE Computer Magazine, Special Issue on
Object-oriented Real-time Computingl. 33, no. 6, June 2000.

Douglas C. Schmidt and et al., “TAO: A Pattern-Oriented Object RE23]
quest Broker for Distributed Real-time and Embedded SystetBEE
Distributed Systems Onlingol. 3, no. 2, Feb. 2002.

Rebecca Callison, Marilynn Goo, and Daniel Butler, “Real-time
CORBA Trade Study,” Tech. Rep. D204-31159, The Boeing Comparig4]
1999.

David Corman, “WSOA-Weapon Systems Open Architecture
Demonstration-Using Emerging Open System Architecture Standardfs)
Enable Innovative Techniques for Time Critical Target (TCT) Prosecu-
tion,” in Proceedings of the 20th IEEE/AIAA Digital Avionics Systems
Conference (DASCPct. 2001. [26]

Carlos O'Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spivak, Jeff
Parsons, Irfan Pyarali, and David Levine, “Evaluating Policies and
Mechanisms for Supporting Embedded, Real-Time Applications with
CORBA 3.0, inProceedings of thé*" IEEE Real-Time Technology
and Applications Symposiywashington DC, May 2000, |IEEE. [27]

Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA '9Atlanta, GA, Oct. 1997, ACM, pp. 184—
199.

Priya Narasimhan, Transparent Fault Tolerance for CORBAPh.D.
thesis, University of California, Dept. Of Electrical and Computer Engi-
neering, Santa Barbara, CA, Dec. 1999, Available as Technical Report
UCSB 99-18.

Kenneth Birman and Robbert van RenesReliable Distributed Com- [29]
puting with the Isis ToolkjitIEEE Computer Society Press, Los Alami-
tos, 1994.

Silvano Maffeis, “Adding Group Communication and Fault-Tolerance
to CORBA,” in Proceedings of the Conference on Object-Oriented Tech-
nologies Monterey, CA, June 1995, USENIX. [30]

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
BuschmannPattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects, Volume Wiley & Sons, New York,
2000. [31]

Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith, “Using
Interceptors to Enhance CORBAIEEE Computervol. 32, no. 7, pp.
64—68, July 1999.

M. Cukier, J. Ren, C. Sabnis, W.H. Sanders, D.E. Bakken, M.E. Bermgf‘@]
D.A. Karr, and R.E. Schantz, “AQuA: An Adaptive Architecture that
provides Dependable Distributed Objects,”IEEE Symposium on Re-
liable and Distributed Systems (SRDBJest Lafayette, IN, Oct. 1998,

pp. 245-253.

P.Y. Chung, Y. Huang, S. Yajnik, D. Liang, and C.Y. Shih, “Providing33]
Fault Tolerance to CORBA Applications,” iPoster at Middleware '98
Lake District, England, Sept. 1998.

Balachandran Natarajan, Aniruddha Gokhale, Douglas C. Schmidt, &3
Shalini Yajnik, “DOORS: Towards High-performance Fault-Tolerant
CORBA.” in Proceedings of the"? International Symposium on
Distributed Objects and Applications (DOA 200@&ntwerp, Belgium,
Sept. 2000, OMG. [35]

Balachandran Natarajan, Aniruddha Gokhale, Douglas C. Schmidt, and
Shalini Yajnik, “Applying Patterns to Improve the Performance of Fault-
Tolerant CORBA,” inProceedings of th&!" International Conference [36]
on High Performance Computing (HiPC 200®angalore, India, Dec.
2000, ACM/IEEE.

Pascal Felber, Rachid Guerraoui, and An8chiper, “The Implementa-
tion of a CORBA Object Group ServiceTheory and Practice of Object [37]
Systems (TAPOS)ol. 4, no. 2, pp. 93-105, Feb. 1998.

Paul D. Ezhilchelvan, Raimundo A. Macedo, and Santosh K. Shrivas-
tava, “Newtop: A Fault-Tolerant Group Communication Protocol,” in
International Conference on Distributed Computing Systeiri85, pp. [38]
296-306.

C. Marchetti, A. Virgillito, and R. Baldoni, “Design of an Interoperablg39]
FT-CORBA compilant Infrastructure ,” ifn the Proceedings of the

6th International Workshop on Object Oriented Real-time Dependable
Systems (WORDS’QIRome, Italy, Jan. 2001.

(28]

16

Jean-Charles Fabre and Tanguy Perennou, “Friends - a flexible architec-
ture for implementing fault tolerant and secure distributed applications,”
in European Dependable Computing Confererid@96, pp. 3-20.

Joseph K. Cross and Douglas C. Schmidt, “Applying the Quality Con-
nector Pattern to Optimize Distributed Real-time and Embedded Mid-
dleware,” inPatterns and Skeletons for Distributed and Parallel Com-
puting, Fethi Rabhi and Sergei Gorlatch, Eds. Springer Verlag, 2002.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, Reading, MA, 1995.

Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The De-
sign and Performance of Real-Time Object Request Brok€mjiputer
Communicationsvol. 21, no. 4, pp. 294-324, Apr. 1998.

Christopher D. Gill, David L. Levine, and Douglas C. Schmidt, “The
Design and Performance of a Real-Time CORBA Scheduling Service,”
Real-Time Systems, The International Journal of Time-Critical Comput-
ing Systems, special issue on Real-Time Middlewene20, no. 2, Mar.
2001.

Fred Kuhns, Douglas C. Schmidt, and David L. Levine, “The Design
and Performance of a Real-time I/O Subsystem Piaceedings of the
5th |EEE Real-Time Technology and Applications Symposiamcou-
ver, British Columbia, Canada, June 1999, IEEE, pp. 154-163.

Carlos O’'Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman, and
Jeff Parsons, “The Design and Performance of a Pluggable Protocols
Framework for Real-time Distributed Object Computing Middleware,”
in Proceedings of the Middleware 2000 Conferen8€M/IFIP, Apr.
2000.

Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and
Aniruddha Gokhale, “Software Architectures for Reducing Priority In-
version and Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systems, special issue on Real-time Computing in
the Age of the Web and the Internesl. 21, no. 2, 2001.

Alexander B. Arulanthu, Carlos O’'Ryan, Douglas C. Schmidt, Michael
Kircher, and Jeff Parsons, “The Design and Performance of a Scalable
ORB Architecture for CORBA Asynchronous Messaging, Proceed-

ings of the Middleware 2000 Conferen@&CM/IFIP, Apr. 2000.

Aniruddha Gokhale and Douglas C. Schmidt, “Measuring the Perfor-
mance of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM '96Stanford, CA, Aug. 1996, ACM, pp.
306-317.

Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang,
Vishal Kachroo, and Aniruddha Gokhale, “Applying Optimization Pat-
terns to the Design of Real-time ORBs,” Rroceedings of th&t”
Conference on Object-Oriented Technologies and Syst8arsDiego,
CA, May 1999, USENIX.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and
C. A. Lingley-Papadopoulos, “Totem:A Fault-Tolerant Multicast Group
Communication SystemCommunications of ACM1996.

Alexey Vaysburd and Ken Birman, “The Maestro approach to Building
Reliable Interoperable Distributed Applications with Multiple Execu-
tion Styles,” Theory and Practice of Object Systems (TARQS). 4,

no. 2, pp. 73-80, Feb. 1998.

S. Poledna, A. Burns, A.J. Wellings, and P. Barrett, “Replica Determin-
ism and Flexible Scheduling in Hard Real-Time Dependable Systems,”
IEEE Transactions on Computersl. 49, no. 2, pp. 100-111, 2000.

P. Barrett, A. Hilborne, P. Bond, D. Seaton, P. Verissimo, L. Rodrigues,
and N. Speirs, “The Delta-4 Extra Performance Architecture (XPA),” in
Proceedings of the 20th Int. Symp. on Fault-Tolerant Computing Systems
(FTCS-20) 1990.

Kane Kim and Subbaraman C, “PSRR: A Scheme for Time-Bounded
Fault Tolerance in Distributed Object-Based Systems,” Pimc.
IEEE High-Assurance Systems Engineering (HASE) Workshai@rio,
Canada, Oct. 1996, IEEE.

Kane Kim and Subbaraman C, “Fault-Tolerant Real-Time Objects,”
Communications of the ACMan. 1997.

L. Rodrigues, A. Casimiro, and P. Verissimo, “Priority-based Totally
Ordered Multicast,” inProceedings of the 3rd IFAC/IFIP workshop on
Algorithms and Architectures for Real-Time Control (AARTC'98)ay
1995.

[40] Douglas C. Schmidt and Stephen D. HustorC++ Network Pro-
gramming, Volume 1: Mastering Complexity with ACE and Patterns
Addison-Wesley, Boston, 2002.

[41] Douglas C. Schmidt and Stephen D. Hust@+ Network Program-
ming, Volume 2: Systematic Reuse with ACE and FramewaAddison-
Wesley, Reading, Massachusetts, 2002.

[42] Gautam Thaker and Patrick Lardieri and Chuck Winters, “SCTP and its
Adaptation to TAO ,” inProceedings of the’2 Annual TAO Workshap
July 2002.

[43] VITA Standards Organization, “Myrinet-on-VME Protocol Specifica-
tion Draft Standard,” http://www.myri.com/open-specs, 2000.

[44] David C. Sharp, “Reducing Avionics Software Cost Through Compo-
nent Based Product Line Development,” Fmoceedings of the 10th
Annual Software Technology Conferenaer. 1998.

[45] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell Noseworthy, “Pat-
terns and Performance of a CORBA Event Service for Large-scale Dis-
tributed Interactive Simulations,”International Journal of Computer
Systems Science and Engineerivg). 17, no. 2, Mar. 2002.

[46] Guru Parulkar, Douglas C. Schmidt, Eileen Kraemer, Jon Turner, and
Anshul Kantawala, “An Architecture for Monitoring, Visualization, and
Control and Gigabit Networks,JEEE Networkvol. 11, no. 5, Septem-
ber/October 1997.

[47] Sean Landis and Silvano Maffeis, “Building Reliable Distributed Sys-
tems with CORBA,"Theory and Practice of Object Systemal. 3, no.
1, pp. 31-43, 1997.

[48] Louise Moser, P. Melliar-Smith, and Priya Narasimhan, “A Fault Tol-
erance Framework for CORBA,” imternational Symposium on Fault
Tolerant ComputingMadison, WI, June 1999, pp. 150-157.

[49] John A. Zinky, David E. Bakken, and Richard Schantz, “Architectural
Support for Quality of Service for CORBA ObjectsTheory and Prac-
tice of Object Systemsol. 3, no. 1, pp. 1-20, 1997.

[50] W3C HTTP-NG Working Group, “W3C HTTP-NG Protocol,”
www.w3.org/Protocols/HTTP-NG, 1998.

[51] Thomas Wolf and Alfred Strohmeier, “Fault tolerance by transparent
replication for distributed ada 95,” imternational Conference on Re-
liable Software Technologies - Ada-Europe’99, Santander, Spain, June
7-11 1999 Michael Gonzalez Harbour and Juan A. de la Puente, Eds.
1999, number 1622, pp. 412—-424, Springer-Verlag.

[52] Xavier Defago, Andre Schiper, and Nicole Sergent, “Semi-passive repli-
cation,” in Proceedings of the 17th IEEE Symposium on Reliable Dis-
tributed SystemdEEE, 1998, pp. 43-50.

[53] Kane Kim and C. Subbaraman, “Principles of Constructing a
Timeliness-Guaranteed Kernel and Time-triggered Message-triggered
Object Support Mechanisms,” Proceedings of the International Sym-
posium on Object-Oriented Real-time Distributed Computing (ISORC)
IEEE/IFIP, Apr. 1998.

[54] Kane Kim, “APIls Enabling High-Level Real-Time Distributed Object
Programming,” IEEE Computer Magazine, Special Issue on Object-
oriented Real-time Computingune 2000.

[55] Kane Kim, “Issues Insufficiently Resolved in Century 20 in the Fault-
Tolerant Distributed Computing Field,” iRroceedings of Symposium
on Reliable Distributed System#fEE, 2000.

[56] Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Toler-
ance,” inProceedings of the Third Symposium on Operating Systems
Design and Implementatiofreb. 1999.

17

