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Introduction 
Distributed real-time and embedded (DRE) systems are 
playing an increasingly important role in modern 
application domains.  There are many types of DRE 
systems, but they have one thing in common: the right 
answer delivered too late becomes the wrong answer. 
Providing the right answer at the right time is clearly 
crucial for life-critical military DRE systems, such as 
those that defend ships against missile attacks or that 
control unmanned combat air vehicles over wireless links.  
It is also crucial for safety-critical civilian DRE systems, 
such as control systems that regulate the temperature of 
coolant in a nuclear reactor or maintain safe operation of 
steel manufacturing machinery.  

The affordability of certain types of distributed systems, 
such as two and three-tier business systems, can often be 
enhanced by using commercial-off-the-shelf (COTS) 
technologies. Today’s efforts aimed at integrating COTS 
into mission-critical DRE systems, however, focus mainly 
on initial non-recurring acquisition costs and do not 
reduce recurring software lifecycle costs.  Likewise, many 
COTS products lack support for controlling key quality of 
service (QoS) properties, such as predictable latency, 
jitter, and throughput; scalability; dependability; and 
security. The inability to control these QoS properties 
with sufficient confidence compromises DRE system 
adaptability and assurability, e.g., minor perturbations in 
conventional COTS products can cause failures that lead 
to loss of life and property.  

Conventional COTS software has historically been 
unsuitable for use in mission-critical DRE systems due to 
its either being:  
1. Flexible and standard, but incapable of guaranteeing 

stringent QoS demands, which limits system 
assurability or  

2. Partially QoS-enabled, but inflexible and non-
standard, which limits system adaptability and 
affordability. 

As a result, the rapid progress in COTS software for 
mainstream business systems has not yet become as 
broadly applicable for mission-critical DRE systems. 
Until this problem is resolved effectively, DRE system 
integrators and end-users will not be able to take 

advantage of future advances in COTS software in a 
dependable, timely, and cost effective manner.  

This article describes key R&D efforts that are creating 
the new generation of assurable, adaptable, and affordable 
COTS software technologies to meet the stringent 
demands of mission-critical DRE systems. Although the 
use of COTS software in DRE systems has been limited 
in scope and domain, future prospects will be much 
brighter as a result of the work described in this article. 

Technical Challenges & Solution Approaches 

Some of the most challenging requirements for new and 
planned DRE systems can be characterized as follows: 
• Multiple QoS properties must be satisfied in real-time 
• Different levels of service are appropriate under 

different configurations, environmental conditions, 
and costs 

• The levels of service in one dimension must be 
coordinated with and/or traded off against the levels of 
service in other dimensions to meet mission needs and  

• The need for autonomous and time-critical application 
behavior necessitates a flexible distributed system 
substrate that can adapt robustly to dynamic changes 
in mission requirements and environmental conditions.  

 
Although conventional COTS software cannot meet all of 
these requirements, today’s economic and organizational 
constraints—along with increasingly complex 
requirements and competitive pressures—are making it 
infeasible to built complex DRE system software entirely 
from scratch. Thus, there is a pressing need to develop, 
validate, and ultimately standardize a new generation of 
adaptive and reflective middleware [Bla99] technologies 
that can support stringent DRE system functionality and 
QoS requirements. 

Middleware [Sch01] is reusable systems software that 
functionally bridges the gap between  
1. The end-to-end functional requirements and mission 

doctrine of applications and  
2. The lower-level underlying operating systems and 

network protocol stacks.  
Middleware therefore provides capabilities whose quality 
and QoS are critical to DRE systems.  



 

 

Adaptive middleware [Loy01] is software whose 
functional and QoS-related properties can be modified  
• Statically, e.g., to reduce footprint, leverage 

capabilities that exist in specific platforms, enable 
functional subsetting, and minimize hardware and 
software infrastructure dependencies or 

• Dynamically, e.g., to optimize system responses to 
changing environments or requirements, such as 
changing component interconnections, power-levels, 
CPU/network bandwidth, latency/jitter, and 
dependability needs. 

In mission-critical DRE systems, adaptive middleware 
must make these modifications dependably, i.e., while 
meeting stringent end-to-end QoS requirements.  

Reflective middleware [Bla99] goes a step further to 
permit automated examination of the capabilities it offers, 
and to permit automated adjustment to optimize those 
capabilities. Reflective middleware therefore supports 
more advanced adaptations that can be performed 
autonomously based on conditions within the system, in 
the system's environment, or in DRE system policies 
defined by operators and administrators. 

Middleware Layers and R&D Efforts 
Just as networking protocol stacks can be decomposed 
into multiple layers, middleware can also be decomposed 
into multiple layers, such as those shown in Figure 1.  

 
Figure 1. Layers of Middleware & Their Context  

Each of these middleware layers is described below, along 
with a summary of key R&D efforts at each layer that are 
helping to evolve the ability of middleware to meet the 
stringent QoS demands of DRE systems.  

Host infrastructure middleware encapsulates and 
enhances native OS communication and concurrency 
mechanisms to create portable and reusable network 
programming components, such as reactors, acceptor-
connectors, monitor objects, active objects, and 
component configurators [Sch00]. These components 
abstract away the accidental incompatibilities of 

individual operating systems, and help eliminate many 
tedious, error-prone, and non-portable aspects of 
developing and maintaining networked applications via 
low-level OS programming API, such as Sockets or 
POSIX Pthreads.  

An example of host infrastructure middleware R&D that 
is relevant for DRE systems is the Open Virtual Machine 
(OVM) project <http://www.ovmj.org> conducted by 
researchers at Purdue, University of Maryland, and SUNY 
Oswego as part of the DARPA ITO PCES program. OVM 
is an open-source Real-time Java Virtual Machine that 
implements the Real-time Specification for Java (RTSJ) 
[Bol00]. The RTSJ is a set of extensions to Java that 
provide a largely platform-independent way of executing 
code by encapsulating the differences between real-time 
operating systems and CPU architectures. The key 
features of RTSJ include scoped and immortal memory, 
real-time threads with enhanced scheduling support, 
asynchronous event handlers, and asynchronous transfer 
of control within a thread.  

The OVM virtual machine is written entirely in Java and 
its architecture emphasizes customizability and pluggable 
components. Its implementation strives to maintain a 
balance between performance and flexibility, allowing 
users to customize the implementation of operations such 
as message dispatch, synchronization, field access, and 
speed. OVM allows dynamic updates of the 
implementation of instructions of a running VM. 
Although RTSJ VMs like OVM or TimeSys Jtime are 
relatively new, they have generated tremendous interest in 
the R&D and DRE systems integrator communities due to 
their potential for reducing software development and 
evolution costs. 
Distribution middleware defines higher-level distributed 
programming models whose reusable APIs and 
mechanisms automate and extend the native OS network 
programming capabilities encapsulated by host 
infrastructure middleware. Distribution middleware 
enables developers to program distributed applications 
much like stand-alone applications, i.e., by invoking 
operations on target objects without hard-coding 
dependencies on their location, programming language, 
OS platform, communication protocols and interconnects,  
and hardware characteristics. At the heart of distribution 
middleware are QoS-enabled object request brokers 
(ORBs), such as CORBA, COM+, and Java RMI.  These 
ORBs allow objects to interoperate across networks 
regardless of the language in which they were written or 
the OS platform on which they are deployed.  

An example of distribution middleware R&D that is 
relevant for DRE systems is the TAO project 
<http://www.cs.wustl.edu/~schmidt/TAO.html> [Sch98] 
conducted by researchers Washington University, St. 
Louis and the University of California, Irvine as part of 
the DARPA ITO Quorum program. TAO is an open-



 

 

source Real-time CORBA ORB [Omg01] that allows 
DRE applications to reserve and manage  
• Processor resources via thread pools, priority 

mechanisms, intra-process mutexes, and a global 
scheduling service for real-time systems with fixed 
priorities 

• Communication resources via protocol properties and 
explicit bindings to server objects using priority bands 
and private connections and 

• Memory resources via buffering requests in queues 
and bounding the size of thread pools.  

TAO is implemented with reusable frameworks from the 
ACE [Sch02] host infrastructure middleware toolkit 
<http://www.cs.wustl.edu/~schmidt/ACE.html>. ACE and 
TAO are mature examples of middleware R&D transition, 
having been used in hundreds of DRE systems, including 
telecom network management and call processing, online 
trading services, avionics mission computing, software 
defined radios, radar systems, surface mount “pick and 
place” systems, and hot rolling mills. 
Common middleware services augment distribution 
middleware by defining higher-level domain-independent 
components that allow application developers to 
concentrate on programming application logic, without 
the need to write the “plumbing” code needed to develop 
distributed applications by using lower level middleware 
features directly. Whereas distribution middleware 
focuses largely on managing end-system resources in 
support of an object-oriented distributed programming 
model, common middleware services focus on allocating, 
scheduling, and coordinating various end-to-end resources 
throughout a distributed system using a component 
programming and scripting model. Developers can reuse 
these services to manage global resources and perform 
recurring distribution tasks, such as event notification, 
logging, persistence, real-time scheduling, fault tolerance, 
and transactions, that would otherwise be implemented in 
an ad hoc manner by each application or integrator.  

An example of common middleware services R&D that is 
relevant for DRE systems is the QuO project 
<http://www.dist-systems.bbn.com/tech/QuO> [Loy01] 
conducted by researchers at BBN Technologies as part of 
the DARPA ITO Quorum and PCES programs.  QuO is a 
set of open-source middleware services based on the 
layered middleware architecture shown in Figure 2. The 
QuO architecture decouples DRE middleware and 
applications along the following two dimensions: 
• Functional paths, which are flows of information 

between client and remote server applications. In 
distributed systems, middleware ensures that this 
information is exchanged efficiently, predictably, 
scaleably, dependably, and securely between remote 
peers. The information itself is largely application-
specific and determined by the functionality being 
provided (hence the term “functional path”).  

• QoS paths, which are responsible for determining how 
well the functional interactions behave end-to-end 

with respect to key DRE system QoS properties, such 
as  
1. How and when resources are committed to 

client/server interactions at multiple levels of DRE 
systems 

2. The proper application and system behavior if 
available resources do not satisfy the expected 
resources and  

3. The failure detection and recovery strategies 
necessary to meet end-to-end dependability 
requirements. 

 
Figure 2. The QuO Architecture 

 
The QuO middleware is responsible for collecting, 
organizing, and disseminating QoS-related meta-
information needed to monitor and manage how well the 
functional interactions occur at multiple levels of DRE 
systems. It also enables the adaptive and reflective 
decision-making needed to support non-functional QoS 
properties robustly in the face of rapidly changing 
application requirements and environmental conditions, 
such as local failures, transient overloads, and dynamic 
functional or QoS reconfigurations. 
Domain-specific middleware services are tailored to the 
requirements of particular DRE system domains, such as 
avionics mission computing, radar processing, online 
financial trading, or distributed process control. Unlike 
the previous three middleware layers—which provide 
broadly reusable “horizontal” mechanisms and services—
domain-specific middleware services are targeted at 
vertical markets. From both a COTS and R&D 
perspective, domain-specific services are the least mature 
of the middleware layers, due in part to the historical lack 
of distribution middleware and common middleware 
service standards needed to provide a stable base upon 
which to create domain-specific middleware services. 
Since they embody knowledge of a domain, however, 
domain-specific middleware services have the most 
potential to increase the quality and decrease the cycle-
time and effort that integrators require to develop 
particular classes of DRE systems.  



 

 

An example of domain-specific middleware services 
R&D that is relevant for DRE systems is the Boeing Bold 
Stroke architecture [Sha98], which has been used as the 
open experimentation platform on many DARPA ITO 
programs. Bold Stroke is an open architecture for mission 
computing avionics capabilities, such as navigation, 
heads-up display management, weapons targeting and 
release, and airframe sensor processing. The domain-
specific middleware services in Bold Stroke are layered 
upon COTS processors (PowerPC), network interconnects 
(VME), operating systems (VxWorks), infrastructure 
middleware (ACE), distribution middleware (TAO), and 
common middleware services (QuO and the CORBA 
Event Service). 

Recent Progress and Future Needs 
Significant progress has occurred during the last five 
years in DRE middleware research, development, and 
deployment, stemming in large part from the following 
advances: 

• Years of research, iteration, refinement, and 
successful use – The use of middleware and DOC 
middleware is not new [Sch01].  Middleware concepts 
emerged alongside experimentation with the early 
Internet (and even its predecessor ARPAnet), and 
DOC middleware systems have been continuously 
operational since the mid 1980’s, with the advent of 
BBN’s Cronus and Corbus systems.  Over that period 
of time, the ideas, designs, and most importantly, the 
software that incarnates those ideas have had a chance 
to be tried and refined (for those that worked), and 
discarded or redirected (for those that didn’t).  This 
iterative technology development process takes a good 
deal of funding and time to get right and be accepted 
by user communities, and a good deal of patience to 
stay the course. When this process is successful, it 
often results in standards that codify the boundaries, 
and patterns and frameworks that reify the knowledge 
of how to apply these technologies, as described in the 
following bullets. 

• The maturation of standards – Over the past decade, 
middleware standards have been established and have 
matured considerably with respect to DRE 
requirements. For instance, the OMG has adopted the 
following specifications in the past three years: 
o Minimum CORBA, which removes non-essential 

features from the full OMG CORBA specification to 
reduce footprint so that CORBA can be used in 
memory-constrained embedded systems.   

o Real-time CORBA, which includes features that 
allow applications to reserve and manage network, 
CPU, and memory resources predictably end-to-end.   

o CORBA Messaging, which exports additional QoS 
policies, such as timeouts, request priorities, and 
queueing disciplines, to applications.  

o Fault-tolerant CORBA, which uses entity 
redundancy of objects to support replication, fault 
detection, and failure recovery. 

 Multiple interoperable and robust implementations of 
these CORBA capabilities and services are now 
available. Moreover, emerging standards such as 
Dynamic Scheduling Real-Time CORBA, the Real-
Time Specification for Java, and the Distributed Real-
Time Specification for Java are extending the scope of 
open standards for a wider range of DRE applications. 

• The dissemination of patterns and frameworks – A 
substantial amount of R&D effort during the past 
decade has focused on the following means of 
promoting the development and reuse of high quality 
middleware technology:   
o Patterns codify design expertise that provides time-

proven solutions to commonly occurring software 
problems that arise in particular contexts [Gam95, 
Sch00].  Patterns can simplify the design, 
construction, and performance tuning of DRE 
applications by codifying the accumulated expertise 
of developers who have successfully confronted 
similar problems before.  Patterns also elevate the 
level of discourse in describing software 
development activities to focus on strategic 
architecture and design issues, rather than just the 
tactical programming and representation details.  

o Frameworks are concrete realizations of groups of 
related patterns [John97].  Well-designed 
frameworks reify patterns in terms of functionality 
provided by the middleware itself, as well as 
functionality provided by an application.  
Frameworks also integrate various approaches to 
problems where there are no a priori, context-
independent, optimal solutions.  Middleware 
frameworks, such as OVM, ACE, TAO, and QuO, 
can include strategized selection and optimization 
patterns so that multiple independently-developed 
capabilities can be integrated and configured 
automatically to meet the functional and QoS 
requirements of particular DRE applications. 

 
• Sustained government R&D investments – Much of 

the pioneering R&D on middleware patterns and 
frameworks was conducted over the past five years in 
the DARPA ITO Quorum and PCES programs. These 
programs focused heavily on CORBA and Java open 
systems middleware and yielded many results that 
transitioned into standardized service definitions and 
implementations for the Real-time and Fault-tolerant 
CORBA specification and commercialization efforts.   
Quorum and PCES are examples of how focused 
government R&D efforts can leverage its results by 
exporting them into, and combining them with, other 
on-going public and private activities that also used a 
common open middleware substrate.  Prior to the 
viability of standards-based open middleware 



 

 

platforms, these same R&D results would have been 
buried within custom or proprietary systems, serving 
only as an existence proof, rather than as the basis for 
fundamentally reshaping the R&D and integrator 
communities.   

 
Due to the advances described above, standards-based 
middleware has now been successfully demonstrated and 
deployed in a number of mission-critical DRE systems, 
such as avionics mission computing, software defined 
radios, and submarine information systems. Since COTS 
middleware technology has not yet matured to cover the 
realm of large-scale, dynamically changing systems, 
however, these middleware applications have been 
relatively small-scale and statically configured DRE 
systems.  

To satisfy the highly application- and mission-specific 
QoS requirements in network-centric DRE  “system of 
system” environments, considerable additional R&D 
efforts are required to enhance middleware, particularly 
common and domain-specific middleware services. If 
these efforts are successful, future middleware 
technologies will be able to control individual and 
aggregate resources used by multiple system components 
at multiple system levels to dependably manage 
communication bandwidth, scheduling and allocation of 
DRE system artifacts, dependability, and security. 

Concluding Remarks   
Middleware has become strategic to developing effective 
distributed real-time and embedded (DRE) systems by 
bridging the gap between application programs and the 
underlying operating systems and network protocol stacks 
to provide reusable services whose qualities are critical to 
DRE systems. The economic payoffs of middleware R&D 
stem from moving standardization up several levels of 
abstraction by maturing DRE software technology 
artifacts, such as middleware frameworks, protocols, 
service components, and patterns, so that they will 
ultimately be available for COTS acquisition and 
customization. Given the proper advanced R&D context 
and an effective process for transitioning R&D results, the 
COTS middleware market will adapt, adopt, and 
implement the types of robust hardware and software 
capabilities needed for mission-critical DRE systems.  

As a result of the R&D efforts described in this article—
and many other similar efforts throughout academia and 
industry—the next generation of middleware will be able 
to adapt effectively to dynamically changing conditions 
for the purpose of utilizing the available computer and 
network infrastructure to the highest degree possible in 
support of application needs. Additional information on 
DRE middleware R&D efforts are available at 
http://www.cs.wustl.edu/~schmidt. 
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