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1 Introduction

In this column, we’ll start presenting issues surrounding
CORBA Object Adapters(OAs). We’ll focus on what Ob-
ject Adapters are and describe their roles within a CORBA-
based system. In addition, we’ll begin an in-depth discussion
of the new Portable Object Adapter (POA) specification that
was recently adopted by the OMG. Our subsequent columns
will continue this discussion and show some examples using
C++.

2 Terminology

Before describing what Object Adapters are, we first need to
define some key terms. Even if you’re already familiar with
CORBA, you should pay close attention to these terms and
their definitions since some of them have been introduced
recently with the POA specification.

� CORBA object: A “virtual” entity capable of being lo-
cated by an ORB and having client requests delivered to it.
A CORBA object is identified, located, and addressed by its
object reference. Within the context of a request invocation,
the CORBA object to which the request is sent is called the
“target object.”

� Servant: A programming language entity that exists in
the context of a server and implements a CORBA object.
In non-OO languages like C and COBOL, a servant is im-
plemented as a collection of functions that manipulate data
(e.g., an instance of a struct or record) that represent the state
of a CORBA object. In OO languages like C++ and Java,
servants are object instances of a particular class.

It is extremely important to understand the relationship be-
tween a CORBA object and a servant. A CORBA object
is considered “virtual” because it never exists on its own.
Therefore, to perform client requests, it must have a servant
that reifies its existence and fulfills those requests. Note,
however, that CORBA objects may have state, but servants
may not necessarily have state. For example, the state of a

CORBA object can be kept in a database. In this case, the
servant is merely used as a way to examine and modify that
state, but the servant need not maintain any state of its own.

The relationship between a CORBA object and a servant
is very much like the relationship between virtual memory
and physical memory in an operating system. Just as virtual
address space does not actually exist, neither does a CORBA
object. A virtual memory location can be read and written by
a computer program because of the work performed by the
computer’s memory management unit (MMU). The MMU
maps virtual memory addresses into physical memory ad-
dresses and ensures that each valid virtual memory address
is mapped to a physical memory storage location. Similarly,
the ORB and the OA cooperate to allow client applications
to invoke requests on CORBA objects and ensure that each
valid CORBA object is mapped to a servant. In addition,
the ORB and the OA cooperate to transparently locate and
invoke the proper servants given the addressing information
stored in CORBA object references.

� Skeleton: A programming language entity that connects
a servant to an OA, allowing the OA to dispatch requests to
the servant. In C, a skeleton is a collection of pointers to
servant-specific functions. In C++, a skeleton is a base class
from which the servant class derives. For static request invo-
cation, skeletons are typically generated automatically by an
IDL compiler. In addition, CORBA supports the Dynamic
Skeleton Interface (DSI), which enables a server to handle
requests for objects that have no static skeletons available.

� Object Id: A user- or system-specified identifier used to
“name” an object within the scope of its OA. Object Ids are
notguaranteed to be globally unique, nor are they necessarily
unique within a single server process. The only constraint
is that each is unique within the OA where it is created or
registered.

� Activation: The act of starting an existing CORBA ob-
ject to allow it to service requests. Since servants ultimately
perform client requests, activation requires that the CORBA
object be associated with a suitable servant. Note that activa-
tion does not imply CORBA object creation since a CORBA
object can’t be activated if it does not exist already. Activa-
tion may, however, cause the creation of the servant.
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This discussion of activation may beg the question of how
CORBA objects are created. Unlike C++ classes, OMG
IDL interfaces do not have a notion of constructors or any
other special object creation functions. From a client per-
spective, CORBA objects are often created by invoking nor-
mal CORBA operations onfactory objects. From the server
perspective, the servants for factory objects are implemented
such that they invoke operations on the OA in order to asso-
ciate servants with the CORBA objects they create, as well
as to create object references for those new objects. In ad-
dition, factory operations activate the new CORBA object as
well.

� Deactivation: The act of shutting down an active
CORBA object. Obviously, deactivation is the opposite of
activation. Deactivation requires the destruction of the as-
sociation between a CORBA object and its servant. Note
that deactivation does not imply CORBA object destruction.
After deactivation, a CORBA object can be reactivated to re-
ceive more requests. Deactivation may, however, result in
the destruction of the servant.

� Incarnation: The dictionary defines this word as “the
act of giving bodily form or substance to.” In the general
context of CORBA objects and servants, incarnation is the
act of associating a servant with a CORBA object so that it
may service requests. In other words, incarnation provides a
servant “body” for the virtual CORBA object.

� Etherealization: The opposite of incarnation, this is the
act of destroying the association between a CORBA object
and its servant. Etherealization takes away the “body” that
was associated with the CORBA object at the point of incar-
nation. After etherealization, the CORBA object still exists
as a virtual entity, but it has no associated body to carry out
requests for it.

� Active Object Map: A table maintained by an object
adapter that maps its active CORBA objects to their associ-
ated servants. Active CORBA objects are named in the map
via Object Ids. Note that the term “active object” is some-
thing of a misnomer since the servants in this table need not
implement the Active Object pattern [1].

Much of the terminology introduced here is concerned
with the lifetimes of entities in a CORBA system. Perhaps
the easiest way to remember the distinction between servants
and CORBA objects is that a single CORBA object may be
represented by one or more servants over its lifetime. Like-
wise, a servant may represent one or more CORBA objects
simultaneously. Activation and deactivationrefer only to
CORBA objects, while the termsincarnationandethereal-
ization refer to servants. In fact, the latter two terms were
introduced to allow servant lifetimes to be discussed sepa-
rately from the lifetimes of CORBA objects.1

Figure 1 shows the lifecycle of a CORBA object with re-
spect to the lifecycle of the servant(s) used to incarnate it.
A CORBA object is first created and then is activated, ei-

1There’s no truth to the rumor that the latter terms were coined by Zen
buddhists ;-).
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Figure 1: Request Lifecycle in the Portable Object Adapter

ther immediately or later when a request is received for it.
When activated, it can be immediately incarnated by a ser-
vant, or during its activation period multiple servants may be
incarnated and etherealized for it for each request is receives.
(The appearance of three dots in the figure denote “one or
more occurrences of.”) The CORBA object is then deacti-
vated. Later, it can be reactivated, at which point the servant
incarnation and etherealization cycle begin again. Finally,
the CORBA object is destroyed and its lifecycle is complete.

Failure to recognize the difference between the lifetimes
of CORBA objects and servants often causes confusion for
CORBA developers. This is because it is easy to think
that the lifetime of the C++ servant is also the lifetime of
the CORBA object it represents. However, this is not al-
ways the case. The consequence of failing to understand
this distinction can be applications that unnecessarily create
new CORBA objects rather than simply reactivating existing
CORBA objects and incarnating them with new servants.

3 An Overview of CORBA Object
Adapters

3.1 Motivation for Object Adapters

As its name implies, a CORBA Object Adapter is a reifica-
tion of the Adapter pattern [2] since it adapts the program-
ming language concept of servants to the CORBA concept
of objects. This adaptation role is clearly shown in Figure 2,
where the OA fits directly between the ORB Core and the
static and dynamic Skeletons.

In their role as adapters, different OAs can support dif-
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Figure 2: Components in the CORBA Reference Model

ferent servant implementation styles. For example, the Or-
bix Object Database Adapter Framework[3] allows objects
implemented using an object database (such as ODI’s Ob-
jectStore) to be used as servants for CORBA objects. An-
other example is the real-time Object Adapter provided by
TAO [4].

It is certainly possible to define a distributed object com-
puting middleware architecture where servants are registered
directly with the ORB Core rather than with an OA. How-
ever, such an architecture would have one of the following
limitations:

� Large footprint: One approach would require the ORB
Core to support multiple interfaces and services to support
multiple servant implementation styles. However, this ap-
proach would make the ORB Core larger, slower, and more
complicated for all applications. Therefore, this approach
would violate the “principle of parsimony” by forcing appli-
cations to incur the cost of features they may not use.

� Lack of flexibility: An alternative would only be to sup-
port one form of servant implementation. For example, all
servants might be required to inherit from one base class.
However, this approach would limit the ORB’s utility as
an integration mechanism capable of dealing with widely-
varying programming languages, legacy systems, and soft-
ware design styles.

Therefore, using OAs means that support for different
servant implementation styles can be isolated into different
OAs. This results in a smaller and simpler ORB Core.

3.2 Object Adapter Functionality

CORBA Object Adapters provide the following functional-
ity:

� Request demultiplexing: OAs demulti-
plex each CORBA request to the appropriate servant. When
the ORB Core receives a request, it cooperates with the OA
through a private (i.e., non-standard) interface to ensure that
the request reaches the proper servant.

� Operation dispatching: Once the OA locates the target
servant, it dispatches the requested operation. At this point,
the skeleton is used to transform the parameters in the re-
quest into the arguments passed to the intended servant op-
eration.

� Activation and deactivation: OAs can activate CORBA
objects. In the process, they can also incarnate servants to
handle requests for those objects. Similarly, OAs can deacti-
vate objects and can etherealize their corresponding servants
if they’re no longer needed.

�Generating object references: An OA is responsible for
generating object references for the CORBA objects regis-
tered with it. Object references normally identify a CORBA
object and contain addressing information on how to reach
that object in the distributed system. This means that OAs
must ultimately cooperate with the communication facilities
built into the ORB and the underlying operating systems to
ensure that the information necessary for reaching the ob-
ject is present in the object reference. For instance, an In-
teroperable Object Reference (IOR) supporting the Internet
Inter-ORB Protocol (IIOP) transport will contain the Internet
address of the server host, as well as the port number where
the server process is listening.

OAs are intimately involved in the dispatching of requests
to object operations. Therefore, they must be carefully de-
signed so that they do not become a bottleneck in the re-
quest dispatch path. Conventional ORBs demultiplex client
requests to the appropriate operation of the servant using the
following steps shown in Figure 3.
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Figure 3: Layered CORBA Request Demultiplexing

� Steps 1 and 2: The OS protocol stack demultiplexes
the incoming client request multiple times,e.g.,through the
data link, network, and transport layers up to the user/kernel
boundary and the ORB Core;
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� Steps 3, 4, and 5: The ORB Core uses the addressing in-
formation in the client’s object key to locate the appropriate
Object Adapter, servant, and the skeleton of the target IDL
operation;

� Step 6: The IDL skeleton locates the appropriate oper-
ation, demarshals the request buffer into operation parame-
ters, and performs the operation upcall.

Demultiplexing client requests through all these layers is
expensive, particularly when a large number of operations
appear in an IDL interface and/or a large number of servants
are managed by an Object Adapter. [5] measures the per-
formance of several OA demultiplexing and dispatching op-
timization strategies. In general, demultiplexing techniques
based on perfect hashing or active demultiplexing are sub-
stantially faster and more predictable than those based on
linear search or dynamic hashing.

4 Standard Object Adapters

Over the life of the CORBA specification, only two OAs
have ever been officially adopted by the OMG. The first
was theBasic Object Adapter(BOA), which was specified in
the original CORBA specification. More recently, the OMG
adopted a newPortable Object Adapter(POA). An under-
standing of the BOA is not needed to understand and use the
POA. However, examining the features and the history of
the BOA can help us understand the design and capabilities
of the POA.

4.1 CORBA Basic Object Adapter (BOA)

4.1.1 Basic Features

The first version of the CORBA specification contained a de-
scription of theBasic Object Adapter(BOA). The BOA was
intended to be a multi-purpose OA that could support vari-
ous styles of servants. Because of the purported flexibility
of the BOA, the original CORBA architects thought that, in
total, there would only be a few OAs (e.g., a library OA, a
database OA, etc), with most applications using the BOA.

The BOA supported four differentactivation models, de-
scribed below. Note that these models refer to the activation
of server processes, not CORBA objects.

� Unshared server: which is a server that supports only
a single CORBA object. An unshared server typically deals
with an object of just one type. Whenever a new CORBA
object of that type is created, the ORB automatically starts a
new server process to contain it.

� Shared server: which is a server that supports multiple
CORBA objects, often of different types. For example, such
a server can support CORBA objects that play the role of fac-
tories (such as theQuoter Factory we defined in [6]), as
well as the CORBA objects of the type created by such fac-
tories. In practice, most existing CORBA servers are shared
servers.

� Persistent server: which is a server that is not automat-
ically started by the ORB. These types of servers might be
started by a script that runs whenever the system boots, for
example. Note that the use of the term “persistent” is an un-
fortunate misnomer since it implies that the state of the ser-
vants in the server will persist automatically across crashes
and shutdowns. Since this is not the case, a better term would
have been “manually launched” server. In addition, note that
the mechanisms used to launch a server process are com-
pletely orthogonal to whether a server is a shared server or an
unshared server, so this particular activation model doesn’t
quite belong with the others.

� Server-per-operation: this type of “server” is not just
a single process. Instead, it’s a collection of processes,
each implementing a given operation of a particular type of
CORBA object. This type of server is theoretically useful
for servants that are implemented using shell scripts. For ex-
ample, different shell scripts implement different operations
of the CORBA object. Because of the difficulty of support-
ing this server style, and because of its limited utility, few
commercial ORBs support server-per-operation.

4.1.2 Evaluation of the BOA

Unfortunately, the BOA from the original CORBA specifica-
tion is woefully incomplete. The following are some of the
key problems:

� Not defining a portable way to associate skeletons with
servants.: The BOA specification does not describe what
skeletons looks like, nor how servants are associated with
them. As a result, the OMG IDL C++ Mapping Specification
originally only defined how the bodies of servant methods
and the method signatures should appear. It could not specify
the names of base classes that servants had to derive from.
Naturally, this omission made writing portable CORBA C++
code very difficult.

� Failing to describe how servants are registered: Im-
plementations of the BOA typically allow servants to be reg-
isteredimplicitly (e.g., in the constructor of a servant when
it is incarnated) and/orexplicitly (e.g., by calling a method
on the BOA). The original BOA specification doesn’t define
these APIs, however. Therefore, each ORB tends to imple-
ment this functionality differently.

� Completely ignoring the issues of multi-threading a
server process: Multi-threaded ORBs are important since
they allow long-running tasks to execute simultaneously
without impeding the progress of other tasks. However, the
CORBA 2.0 BOA specification does not address the issue of
multi-threading, leaving the decision to ORB developers. As
a result, different ORBs tend to implement multi-threading
differently.

� Failing to accurately define the functions required to
make a server listen for requests: The BOA supplies two
operations that appear to make the server start processing re-
quests:impl is ready andobj is ready . The BOA
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specification associates these operations with its activation
models, stating that one or the other should be called depend-
ing upon the activation model chosen for the server applica-
tion. Unfortunately, this part of the specification is extremely
vague and unclear, resulting in different ORB products using
the two operations in very different ways.

Due to the limitations with the BOA specification, each
ORB vendor that implemented the BOA did it their own (in-
consistent) ways. This, in turn, resulted in almost no porta-
bility of server-side code between different ORB products.
Therefore, the OMG issued an RFP for portability enhance-
ment [7] that called for either repairing the problems with the
BOA2 or replacing it with a new OA.

4.2 Portable Object Adapter (POA)

In March 1997, the Portable Object Adapter (POA) [8] was
submitted to the OMG as a replacement for the BOA. The
POA finally provides portability for CORBA server applica-
tions. It also provides new and very useful functionality.

One of the enhancements specified in the Portability Joint
Submission document is the deprecation of the BOA. Thus,
once the submission has been fully integrated with the
CORBA specification (which should occur by early 1998)
the OMG will fully remove the BOA from CORBA. Of
course, ORB vendors that currently support the BOA will
be allowed to continue to do so for as long as they wish for
the sake of their existing CORBA customers.

4.3 Overview of POA Features

The newly defined POA specification supports a wide range
of features, including:user- or system-supplied object iden-
tifiers, persistent and transient objects, explicit and on-
demand activation, multiple servant! CORBA object map-
pings, total application control over object behavior and ex-
istence, andstatic and DSI servants. Each of these features
is outlined below. Subsequent columns will illustrate these
and other POA features in detail using C++.

4.3.1 Object Identifier

An Object Identifier (ObjectId ) is a sequence of
octet s used to identify a CORBA object within the con-
text of a POA. AnObjectId can be assigned by the appli-
cation or by the POA. TheObjectId is a “demultiplexing
key” used to associate client requests with CORBA objects.

It is important to recognize thatObjectIds do not nec-
essarily identify the object beyond the context of its POA.
Thus, they are not guaranteed to be unique global identi-
fiers. CORBA objects are identified only by their object
references, of whichObjectIds are potentially only one

2For a comprehensive list of problems with the BOA, please see the cited
RFP document. It devotes seven pages to listing and describing problems
with the BOA.

part.3 Also, since object references are opaque to applica-
tions, clients are unable, and in fact have no need, to “reach
into them” to examine anyObjectId portion. Clients
merely use object references to denote the targets of their
requests; the ORB takes care of the rest.

In IORs, ObjectIds make up only a part of the over-
all object keyused by the ORB to locate the CORBA ob-
ject. The CORBA General Inter-ORB Interoperability Pro-
tocol (GIOP)4 defines an object key as a portion of the IOR
used to identify the CORBA object at the communication
endpoints given in the IOR. For example, if a request for the
CORBA object is sent over IIOP to the host and port given in
the object’s IOR, the entity receiving the request on that port
can use the object key to uniquely identify the target object.
This implies that the object key is unique only with respect
to the communication endpoint.

The object key is more than just theObjectId , how-
ever. For instance, it might also contain an indication of
which POA in the server process is expected to dispatch the
request to the target object. In general, GIOP does not define
the contents of the object key, so ORB implementations put
whatever information they need in the object key so they can
locate the target object at the given endpoints.

It’s important to note that this flexibility in the GIOP spec-
ification does not cause any interoperability problems be-
tween ORBs because it is assumed that the ORB that created
the IOR is the same ORB that’s listening at the specified
communication endpoints, and is thus capable of decoding
the object key because it created it. However, it is the case
that an object created by one ORB can’t be reactivated in an-
other vendor’s ORB since the new ORB won’t necessarily be
able to decode the object key created by the original ORB.

4.3.2 Persistent vs. Transient Objects

Persistent objects are CORBA objects whose lifetimes are in-
dependent of the lifetimes of any server processes in which
they are activated. In contrast, transient objects are CORBA
objects whose lifetimes are bounded by the lifetimes of the
server processes in which they’re created. When server pro-
cesses die, their transient objects die with them.

Persistent objects are “normal” CORBA objects that can
be activated when necessary to fulfill a client request. Tran-
sient objects, on the other hand, typically involve less over-
head than persistent objects because the ORB and POA need
not keep track of activation information for them. They’re
useful for “temporary” objects such as certain kinds of call-
back objects [9].

The use of the term “persistent” for CORBA objects that
outlive any single server process is potentially confusing
since the term is used differently in several other contexts
in CORBA and in the database community. In the context

3Note that the POA specification does notrequire ObjectIds to ap-
pear within object references, but most POA implementations will very
likely put them there.

4IIOP is the specification for how GIOP is used to deliver requests and
responses over TCP/IP.
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of the POA, a persistent object refers mainly to the fact that
it “persists” across server process activations. However, one
might expect that the use of the term also implies that object
state is kept in persistent storage between activations. While
persistent CORBA objects generally do have persistent state,
the POA itself has no persistent state, nor does it provide any
functions to directly help objects save and load their persis-
tent state. In addition, note that persistent objects do not
imply the use of the ill-named BOA “persistent” activation
model, though it is certainly possible to have persistent ob-
jects within a persistently (i.e., manually) launched server.

4.3.3 Activation

The activation modes supported by the BOA were largely
centered around server processes. In contrast, the activation
facilities supplied by the POA are focused solely on CORBA
object activation and servant incarnation. The POA supports
the following activation styles:

� Explicit activation: the server application programmer
registers servants for CORBA objects using direct calls on a
POA. This is useful for server applications that have just a
few CORBA objects.

�On-demand activation: the server application program-
mer registers a servant manager that the POA upcalls when
it receives a request for a CORBA object that is not yet acti-
vated. When it receives such an upcall, the servant manager
typically performs one of the following operations:

1. It incarnates the servant if necessary and registers it
with the POA, which then dispatches the request to that
servant.

2. It raises aForwardRequest exception (defined in
thePortableServer module) to send the request to
another object. This exception has an object reference
data member that denotes the object to which the re-
quest should be redirected. This feature could be used
to develop a server that performs application-specific
location or load balancing, for example.

3. It raises aCORBA::OBJECTNOTEXIST exception
to indicate that the CORBA object has been destroyed.

� Implicit activation: an action on a servant results in ac-
tivation without any explicit calls on a POA. In the IDL!
C++ mapping, implicit activation of a servant on a POA cre-
ated with the proper policies can be achieved by invoking the
servant’s this method.

� Default servant: the application registers a default ser-
vant that is used if a request arrives for a CORBA object
that is not yet activated, and there are no servant managers
registered. This feature is very useful for DSI-based server
applications since it allows a single DSI servant to incarnate
all CORBA objects by default without requiring the inter-
vention of a servant manager.

4.3.4 Object ID Uniqueness

A POA may require that each CORBA object be activated
with a unique servant. This is a very straightforward imple-
mentation technique because it provides a one-to-one cor-
respondence between CORBA objects and their servants.
An example where this technique is useful is for transient
CORBA objects whose state data are kept directly in ser-
vant data members. While this technique is conceptually
straightforward, it does not scale well when the server con-
tains a large number of CORBA objects since the server must
maintain separate servants for every CORBA object it imple-
ments.

Alternatively, a POA may allow one servant object to in-
carnate multiple CORBA objects. Allowing a single ser-
vant to incarnate multiple CORBA objects is very useful for
minimizing server resource usage. For example, consider
a key/value database where each entry in the database is
treated as a separate CORBA object, with each object having
one key as its object identifier. A useful way to implement
a server for the database is to utilize a single C++ servant
that determines which database entry is the target of the re-
quest by examining theObjectId accompanying the re-
quest. This approach eliminates the need to have a separate
C++ servant for each database entry. Therefore, it scales well
regardless of the number of database entries.

Such an application could also use on-demand activa-
tion to avoid the need to register all the database entries as
CORBA objects every time the server started up. If only a
few entries are ever the targets of CORBA requests, this ac-
tivation approach eliminates unnecessary server registration
overhead. In addition, it reduces the amount of resources the
POA needs to track servant registrations.

4.3.5 Object Behavior and Existence

Applications control object state and behavior completely.
A POA has no persistent state; applications are respon-
sible for any required persistence of object state. Ap-
plications determine object existence and can throw a
CORBA::OBJECTNOTEXIST exception to indicate that
a CORBA object no longer exists. Likewise, they can throw
PortableServer::ForwardRequest exceptions to
tell the ORB to look elsewhere for the object. Such forward-
ing is completely transparent to the invoking client applica-
tion.

POAs do nothing to keep track of the persistent states of
CORBA objects because there are so many possible ways to
implement such persistence. If the POA specification man-
dated one or even a few possible approaches to persistence,
it would unduly limit other classes of applications for which
those approaches proved unsuitable. Moreover, object per-
sistence is better provided by a higher-level service. The ex-
isting Object Persistence service is largely considered to be
too complicated[10], so at this time the OMG is working on
a replacement for that service.

Allowing appli-
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cations to raiseCORBA::OBJECTNOTEXIST exceptions
gives them complete control over object existence if they so
desire. Consider once again the database example described
above. If a database entry is removed, the application’s ser-
vant can simply raise theCORBA::OBJECTNOTEXIST
exception if it receives a request for that entry. This approach
is relatively simple due to the fact that the POA keeps no
persistent state. If it had to keep track of objects that had
already been destroyed, the POA would require per-object
persistent state, even for CORBA objects that had already
been destroyed (i.e., an “object graveyard”), and application
scalability would suffer.

4.3.6 Static and DSI Servants

Not surprisingly, servants based on static skeletons are sup-
ported. Traditionally, most CORBA C++ server applications
have been based on the static approach. The popularity of
static skeletons stem mainly from its efficiency, its famil-
iarity for C++ programmers, and because the DSI was not
available in CORBA until version 2.0.

Two types of static servants are supported in the new POA
specification:

� Inheritance-based servants: Inheritance-based servants
are an example of the “class” form of the Adapter pattern
and are largely unchanged from the original OMG IDL C++
Mapping Specification. In this approach, the servant class
derives from an abstract skeleton base class.

One important difference from the original IDL C++ map-
ping is that the method of naming skeleton classes has
changed. For instance, for an interfaceB defined in mod-
ule A, the fully-scoped name of the skeleton isPOAA::B .
For an interfaceCdefined at global scope, the corresponding
skeleton class is namedPOAC.

The motivation for changing the naming scheme is to cre-
ate a server-side namespace for POA-based skeletons that is
separate from the client-side namespace. It also allows ORB
vendors to support legacy BOA applications and POA appli-
cations in the same program if they so desire, without having
to worry about the BOA and POA skeleton naming conflicts.

� Tie-based servants: Tie-based servants are an example
of the “object” form of the Adapter pattern and must now
be supported by all conforming ORBs. They are actually
just like normal servants that are derived from the abstract
skeleton base class. Each tie-based servant is an instance
of a special auto-generated servant template class. This tem-
plate class takes a single type parameter (i.e., the application-
specific implementation class) and delegates all of its re-
quests to an instance of the template parameter type.

When using ties with the IDL C++ mapping, it is inter-
esting to note that the tie instance is the servant and the C++
class instance that “gets tied into the tie” is called thetied ob-
ject. The tied object typically has no inheritance relationship
to any IDL-generated skeleton classes, which makes it easier
to integrate legacy code. Tie classes are named in the same

fashion as skeletons, except that they also have atie suf-
fix. For example, for an IDL interfaceA, the corresponding
tie class would be namedPOAA tie .

For server applications that require the use of the DSI, a
standardDynamicImplementation abstract base class
(defined in thePortableServer module) is provided as
part of the POA specification. The use of this base class is
much like the use of skeletons by inheritance-based servants
since DSI servant classes must derive from this class.

4.4 POA Policies

An interesting difference between a POA and a BOA is that
a server application can have multiple POAs nested within
it. A server application might want to create multiple POAs
to support different kinds of CORBA objects and/or different
kinds of servant styles. For example, the application might
have two POAs, one that supports transient CORBA objects
and one that supports persistent CORBA objects.

A nested POA can be created by invoking a factory op-
eration on another POA. All servers have at least one POA
called theRoot POA. To create a POA nested under the Root
POA, the application invokes thecreate POAoperation
on the Root POA. The object reference for the Root POA
is available from the ORB. Note that this implies that appli-
cations can’t provide their own POA implementations, which
is unlikely to be a problem in practice.

The characteristics of each POA other than the Root POA
are controlled at POA creation time using differentpolicies.
The POA specification defines the policies described below.

4.4.1 Threading Policy

A POA can either be single-threaded or have the ORB con-
trol its threads. If single-threaded, all requests the POA dis-
patches to servants will be serialized, either by running them
in a single thread or using multiple threads that are synchro-
nized to only execute one request at a time. In contrast, if
the ORB-controlled threading policy is specified, the ORB
determines the thread or threads that the POA dispatches its
requests on.

Given that the BOA specification made no mention of
threads, the POA specification, by explicitly supporting
threading policies, is much better in this regard. Unfortu-
nately, the specified POA threading policies don’t really go
far enough. For example, there is no way for an applica-
tion to specify that a POA should use a Thread Pool [11]
or a separate Thread-per-CORBA-object [6], nor are there
any hooks similar to Orbix Thread Filters [12] to allow ap-
plications to define their own concurrency models. What’s
worse is the fact that the specification does not even defini-
tively say whether the ORB-controlled model always means
multiple threads or not! This leaves the door open for an
ORB vendor to define their ORB-controlled threading pol-
icy as being single-threaded, which is a potentially serious
portability concern.
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All in all, while it’s great that the specification actually ad-
dresses multi-threading, there is not enough threading flex-
ibility supplied by the POA for all applications. Thus, the
ORB-controlled threading policy is a new portability prob-
lem waiting to happen. Hopefully, the OMG Portability En-
hancement Revision Task Force will fix the ORB-controlled
model and add enhancements to allow applications to con-
trol their threading models in the next revision of the POA
specification, which should be ready by early 1998.

4.4.2 Servant Retention Policy

A POA either retains the associations between servants and
CORBA objects or it establishes a new CORBA object
! servant association for each incoming request. Most
CORBA C++ applications today use something like the RE-
TAIN value of this policy since they register servants with the
OA and expect it to then dispatch the appropriate requests to
those servants.

If the NON-RETAIN retention policy is used, however, it
allows the application to control the allocation of servants
to CORBA objects. This is because each request arriving at
a NON-RETAIN POA causes it to invoke the application to
obtain the servant from it. The NON-RETAIN policy allows,
for example, the application to supply its own servant man-
ager object that intervenes in every single request dispatch to
ensure that the target CORBA object still exists.

4.4.3 Request Processing Policy

When a request arrives for a given CORBA object, the POA
can either:

� Consult its active object map only: it can check
to see if it has a servant associated with the Objec-
tId of the target object. If it does, the request is dis-
patched. If no such association is found, the POA throws
a CORBA::OBJECTNOTEXIST exception.

� Use a default servant: the application can register ade-
fault servantthat is invoked whenever the POA has no ser-
vant associated with the ObjectId of the target object in its
Active Object Map.

� Invoke a servant manager: if a servant managerhas
been registered with the POA, it is invoked by the POA to
obtain a servant whenever the POA has no servant associ-
ated with the ObjectId of the target object. The servant man-
ager is an application-supplied CORBA object that can in-
carnate or activate a servant and return it to the POA for con-
tinued request processing. Two forms of servant manager
are supported:ServantActivator , which is used when
the POA has the RETAIN policy, andServantLocator ,
used with the NONRETAIN policy.

The combination of these policies with the retention poli-
cies provide a great deal of flexibility to control servant reg-
istration and allocation within the server process.

4.4.4 Implicit Activation Policy

A servant may be activated into a POAimplicitly if this pol-
icy is supported. This is very useful for registering servants
for transient CORBA objects. For example, a C++ server can
create a servant, and then by setting its POA and invoking its
this method, it registers the servant and creates an object

reference for the CORBA object in a single operation.

4.4.5 ObjectId Uniqueness Policy

This policy allows the application to control whether a ser-
vant can be associated with only a single CORBA object
or whether it can handle requests for multiple CORBA ob-
jects. Unique servants are fairly common today since most
CORBA C++ server applications use a separate C++ object
for each CORBA object. However, as described above in the
database example, servants that represent multiple CORBA
objects can also be very useful since they reduce the server’s
memory utilization.

4.4.6 Lifespan Policy

This policy allows an application to specify whether the
CORBA objects created within a POA are transient or per-
sistent. Note that since policies are set upon the creation of
the POA, this is an “all or nothing” decision – a POA either
supports transient objects or persistent objects, but not a mix
of the two.

4.4.7 ObjectId Assignment Policy

This policy controls whether the POA assignsObjectIds
or whether they are supplied by the application.

4.5 Evaluation of the POA

As you can see, the new POA specification defines a wide
range of policies that enable developers to tailor an ORB’s
behavior to meet many different application use-cases. One
potential portability problem with these policies, however,
is the fact that ORB vendors are likely to extend the avail-
able policies with their own proprietary policies. Hopefully,
the vendors will continue to feed their ideas for useful new
POA policies into the OMG Portability Enhancement Revi-
sion Task Force so as to maintain portability.

At first glance, the flexibility provided by all of these POA
policies may seem overwhelming and complex. However,
the POA can also be quite simple to use for simple applica-
tions. For example, here’s a simple, compliant, and portable
server program:

int main (int argc, char *argv[])
{

using namespace CORBA;
using namespace PortableServer;

// Initialize the ORB.
ORB_var orb = ORB_init (argc, argv);

// Obtain an object reference for
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// the Root POA.
Object_var obj =

orb->resolve_initial_references ("RootPOA");
POA_var poa = POA::_narrow(obj);

// Incarnate a servant.
My_Servant_Impl servant;

// Implicitly register the servant
// with the RootPOA.
obj = servant._this ();

// Start the POA listening for requests.
poa->the_POAManager ()->activate ();

// Run the ORB’s event loop.
orb->run ();

// ...
}

This example first initializes the ORB, then obtains an ob-
ject reference for the Root POA from it. It then creates an
instance of a servant class calledMy Servant Impl and
invokes its this method. This implicitly registers the ser-
vant with the Root POA and generates an object reference
for the newly-created CORBA object. Because of the de-
fault policies required for the Root POA by the Portabil-
ity Enhancement specification, this new CORBA object is a
transient object. The POA’s manager is then activated to en-
able it to handle requests. Finally, theORB::run operation
is called to run the main event loop of the server applica-
tion’s ORB, which handles all requests and performs upcalls
to My Servant Impl .

5 Concluding Remarks

In this column, we’ve provided a detailed overview of the
new CORBA Portable Object Adapter (POA). We’ve defined
and clarified the terms used in the POA specification and dis-
cussed some of the POA features. In general, the POA is
much more portable and more powerful than the BOA. Yet,
as shown by the short example above, it can be used quite
simply as well.

In our next column, we’ll return to our traditional practice
of providing actual C++ code examples that show how to
apply these features. For instance, we’ll provide more details
about our simple POA example and we’ll show other C++
examples to illustrate the power and flexibility of the POA
policies. We’ll also discuss the circumstances where POA
features and policies can be used most effectively. In future
columns, we’ll discuss issues associated with implementing
the POA, such as how to minimize request demultiplexing
overhead and how to add real-time scheduling support.

Thanks to Thorsten Albrecht, Jonathan Biggar, Laurent
Chardonnens, Anton van Straaten, and Irfan Pyarali for their
helpful comments on this column.
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