
The C++ Programming

Language

Pointers to Member Functions

Outline

Pointers to Functions

Pointers to Member Functions

The Type of a Class Member

Declaring a Pointer to Member Function

Pointer to Class Member Function

Using typedef to Enhance Readability

Function Arguments

Using a Pointer to Class Member Function

Di�erence between PTMF and PTF

Pointer to Class Data Member

Using a Pointer to Data Member 1

Pointers to Functions

� Pointers to functions are a surprisingly use-

ful and frequently underutilized feature of

C and C++.

� Pointers to functions provide an e�cient
and e�ective form of subprogram gener-
ality

{ e.g., the qsort standard C library function:

qsort (void *, int, int, int (*)(void *,void *));
static int asc cmp (void *i, void *j) f

return *(int *)i � *(int *)j;
g
static int dsc cmp (void *i, void *j) f

return *(int *)j � *(int *)i;
g
void print (int a[], int size) f

for (int i = 0; i < size; i++)
printf ("%d", a[i]);

putchar ('\n');
g
void main (void) f

int a[] = f 9, 1, 7, 4, 5, 8, 3, 1, 2, 0g;
int size = sizeof a / sizeof *a;
print (a, size);
qsort (a, size, sizeof *a, asc cmp);
print (a, size);
qsort (a, size, sizeof *a, dsc cmp);
print (a, size);

g

2

Pointers to Member Functions

� Pointers to member functions provide an
implementation-independent way of declar-
ing and using pointers to class member
functions.

{ Note, this works with virtual and non-virtual
functions!

� Earlier C++ versions required tricking the
C++ type system into utilizing the inter-
nal non-member function representation
to achieve pointer to member function se-
mantics, e.g.,

struct X f void f (int); int i, j; g;
typedef void (*PTF) (: : : ); // Bad style.

void f (void) f
PTF fake = (PTF) &X::f; // Assume a lot!
X a;
(*fake)(&a, 2); // Fake the call: : :

g

� This approach is clearly inelegant and error-
prone.

{ and doesn't work at all if f is a virtual function!

3

The Type of a Class Member

� A pointer to a function cannot be assigned
the address of a member function even
when the return type and signature of the
two match exactly:

class Screen f
private:

short height, width;
char *screen, *cur pos;

public:
Screen (int = 8, int = 40, char = ' ');
~Screen (void);
int get height (void) f return height; g
int get width (void) f return width; g
Screen &forward (void);
Screen &up (void);
Screen &down (void);
Screen &home (void);
Screen &bottom (void);
Screen &display (void);
Screen &copy (Screen &);
// : : :

g;

int height is (void) f /* : : : */ g
int width is (void) f /* : : : */ g
int (*pt�)(void);
pt� = &height is; // OK
pt� = &width is; // OK
pt� = &Screen::get height; // Error
pt� = &Screen::get width; // Error

4



Declaring a Pointer to Member

Function

� A member function has an additional type
attribute absent from a non-member func-
tion, namely: \its class." A pointer to a
member function must match exactly in
three areas:

{ The data types and number of its formal argu-
ments.

� i.e., the function's signature.

{ The function's return data type.

{ The class type of which the function is a mem-
ber.

� The declaration of a pointer to a class
member function is similar to a regular
pointer to a function.

{ However, it also requires an expanded syntax
that takes the class type into account.

5

Pointer to Class Member

Function

� As mentioned above, a pointer to member

function is de�ned by specifying its return

type, its signature, and its class.

� Therefore,

{ A pointer to the Screen member functions
are de�ned for Screen::get height () and
Screen::get width () as:

int (Screen::*)(void);

{ That is, a pointer to a member function of
class Screen taking no arguments and re-
turning a value of type int, e.g.,

int (Screen::*pmf1)(void) = 0;

int (Screen::*pmf2)(void) = &Screen::get height;

pmf1 = pmf2;

pmf2 = &Screen::get width;

6

Pointers to static Class Member

Functions

� Note that static class member functions
behave di�erently that non-static mem-
ber functions wrt pointers-to-member func-
tions.

{ i.e., static class member functions behave like
regularnon-member functions.

{ e.g.,

class Foo f
public:

static int si (void);
int nsi (void);

g;
int (*pts�) (void);

int (Foo::*ptns�) (void);

pts� = &Foo::si; // ok

pts� = &Foo::nsi; // Error
ptns� = &Foo::si; // Error

ptns� = &Foo::nsi; // ok

7

Using typedef to Enhance

Readability

� Use of a typedef can make the pointer to

member function syntax easier to read.

� For example, the following typedef de-
�nes ACTION to be an alternative name
for:

Screen &(Screen::*)(void);

� That is, a pointer to a member function
of class Screen taking no arguments and
returning a reference to a class Screen ob-
ject, e.g.,

typedef Screen &(Screen::*ACTION)(void);

ACTION default = &Screen::home;

ACTION next = &Screen::forward;

8



Function Arguments

� Pointers to members may be declared as
arguments to functions, in addition, a de-
fault initializer may also be speci�ed:

typedef Screen &(Screen::*ACTION)(void);

Screen my screen;

ACTION default = &Screen::home;

Screen& foo (Screen&, ACTION = &Screen::display);

void � (void)

f
foo (my screen); // pass &Screen::display

foo (my screen, default);

foo (my screen, &Screen::bottom);

g

9

Using a Pointer to Class Member

Function

� Pointers to class members must always be

accessed through a speci�c class objects.

� This is accomplished by using .* and ->*,
the two pointer-to-member selection op-
erators, e.g.,

Screen my screen, *buf screen = &my screen;

int (Screen::*pm�)(void) = &Screen::get height;

Screen &(Screen::*pmfs)(Screen &) = &Screen::copy;

/* : : : */

// Direct invocation of member functions

if (my screen.get height () == buf screen->get height ())

buf screen->copy (my screen);

// Pointer to member equivalent

if ((my screen.*pm�) () == (buf screen->*pm�)())

(buf screen->*pmfs)(my screen);

10

Using a Pointer to Class Member

Function (cont'd)

� A declaration wishing to provide default
arguments for member function repeat ()
might look as follows:

class Screen

f
public:

Screen &repeat (ACTION = &Screen::forward,

int = 1);

/* : : : */

g;

� An invocation of repeat might look as fol-
lows:

Screen my screen;

/* : : : */

my screen.repeat (); // repeat (&Screen::forward, 1);

my screen.repeat (&Screen::down, 20);

11

Using a Pointer to Class Member

Function (cont'd)

� A non-general implementation of a repeat
function, that performs some user-speci�ed
operation n times could be done the fol-
lowing way:

enum Operation f UP, DOWN, /* : : : */ g;
Screen &Screen::repeat (Operation op, int times)
f

switch (op)
f
case DOWN: /* code to iterate n times */;

break;
case UP: /* code to iterate n times */;

break;
g
return *this;

g

� Pointers to member functions allow a more
general implementation:

typedef Screen &(Screen::*ACTION)(void);

Screen &Screen::repeat (ACTION op, int times)
f

for (int i = 0; i < times; i++)
(this->*op) ();

return *this;
g

12



Example Usage (cont'd)

� A table of pointers to class members can
also be de�ned. In the following example,
menu is a table of pointers to class Screen
member functions that provide for cursor
movement:

ACTION menu[] =

f
&Screen::home;

&Screen::forward;

&Screen::back;

&Screen::up;

&Screen::down;

&Screen::bottom;

g;
enum Cursor Movements

f
HOME, FORWARD, BACK, UP, DOWN, BOTTOM

g;

Screen &Screen::move (Cursor Movements cm)

f
(this->*menu[cm])();

return *this;

g

13

Di�erence between PTMF and

PTF

� e.g.,

#include <stream.h>

class Base 1 f
public:

void a1 (int);

static void a2 (int); // Note static: : :

g;

// Pointer to function type

typedef void (*F PTR)(int);

// Pointer to Base 1 member function type

typedef void (Base 1::*MF PTR)(int);

void a3 (int i); // Forward decl.

class Base 2 f
public:

void b1 (MF PTR);

void b2 (F PTR);

g;
14

Di�erence between PTMF and

PTF (cont'd)

� e.g.,

void Base 1::a1 (int i) f
cout << "Base 1::a1 got " << i << "\n";

g

void Base 1::a2 (int i) f
cout << "Base 1::a2 got " << i << "\n";

g

void a3 (int i) f
cout << "a3 got " << i << "\n";

g

// De�ne tw objects.
Base 1 base 1;
Base 2 base 2;

void Base 2::b1 (MF PTR fp) f
/* Note object: : :*/
(base 1.*fp)(3);

g

void Base 2::b2 (F PTR fp) f (*fp)(5); g

15

Di�erence between PTMF and

PTF (cont'd)

� main program

int main (void) f
cout << "base 2.b1 (base 1.a1);\n";

base 2.b1 (base 1.a1);

// Base 1::a1 got 3

cout << "\nbase 2.b2 (a3);\n";

base 2.b2 (a3);

// a3 got 5

cout << "\nbase 2.b2 (base 1.a2);\n";

base 2.b2 (base 1.a2);

// Base 1::a2 got 5

cout << "\nbase 2.b2 (Base 1::a2);\n";

base 2.b2 (Base 1::a2);

// Base 1::a2 got 5

return 0;

g

16



Pointer to Class Data Member

� In addition to pointers to member func-
tions, C++ also allows pointers to data
members.

{ Pointers to class data members serve a similar
purpose to the use of the ANSI C offsetof
macro for accessing structure �elds.

� The syntax is as follows:

{ The complete type of Screen::height is \short
member of class Screen."

{ Consequently, the complete type of a pointer
to Screen::height is \pointer to short member
of class Screen." This is written as:

short Screen::*

� A de�nition of a pointer to a member of
class Screen of type short looks like this:

short Screen::*ps Screen;
short Screen::*ps Screen = &Screen::height;

ps Screen = &Screen::width;
17

Using a Pointer to Data Member

� Pointers to data members are accessed in
a manner similar to that use for pointer
to class member functions, using the op-
erators .* and ->*, e.g.,

typedef short Screen::*PS SCREEN;

Screen my screen;

Screen *tmp screen = new Screen (10, 10);

void � (void)

f
PS SCREEN ph = &Screen::height;

PS SCREEN pw = &Screen::width;

tmp screen->*ph = my screen.*ph;

tmp screen->*pw = my screen.*pw;

g

� Note: since height and width are private

members of Screen, the initialization of ph

and pw within ff () is legal only if ff () is

declared a friend to Screen!

18

Contravariance

� Just as with data members, we must be

careful about contravariance with pointers

to member functions as well.

� e.g.,

struct Base f
int i;

virtual int foo (void) f return i; g
g;
struct Derived : public Base f

int j;

virtual int foo (void) f return j; g
g;
void foo (void) f

Base b;

Derived d;

int (Base::*ptmfb) (void) = &Base::foo; // "ok"

int i = (b.*ptmfb) ();

// trouble!

ptmfb = (int (Base::*) (void)) &derived::foo;

int j = (b.*ptmfb) ();

// Tries to access non-existant j part of b!
g

19

Contravariance (cont'd)

i i

j

bpdp

b d

?

� Problem: what happens (b.*ptmfg) () is

called?

20


