
Object-Oriented Design and

Programming

Programming with Assertions and

Exceptions

Outline

What Are Assertions?

Four Purposes for Assertions

Types of Assertions

Assertion Example

Programming by Contract

Using Assertions to Specify ADTs

Handling Assertion Violations

Assertions in C

Assertions in C++ 1

What Are Assertions?

� Assertions are boolean expressions that serve

to express the semantic properties of classes

and member functions.

� Assertions are similar to the mathematical

notion of a predicate.

� Assertions are tools for expressing and val-

idating the correctness of modules, classes,

and subprograms.

2

Four Purposes for Assertions

� Aid in constructing correct programs.

{ e.g., specify input preconditions and output
postconditions.

� Documentation aid.

{ e.g., supports \programming by contract"

� Debugging aid.

{ Find out where/when assumptions are wrong: : :

� Basis for an exception mechanism.

{ e.g., integrate with exceptions by allowing as-
sertion failures to be caught dynamically.

3

Types of Assertions

� Assertions are used for several purposes:

{ Preconditions

� State the requirements under which subpro-
grams are applicable.

{ Postconditions

� Properties guaranteed upon subprogram exit.

{ Class Invariants

� Properties that characterize class instances
over their lifetime

� Note, subprogram preconditions and post-
conditions are implicitly assumed to include
the class invariant.

{ Loop Invariants

� Loop invariants specify properties that are
always true during the execution of a loop.

4

Assertion Example

� -- Ei�el array

class ARRAY[T] export

lower, upper, size, get, put

feature

lower, upper, size : INTEGER;

Create (minb, maxb : INTEGER) is do : : : end;

get (i : INTEGER): T is

require -- precondition

lower <= i; i <= upper;

do : : :end;

put (i : INTEGER; value : T) is

require

lower <= i; i <= upper;

do : : :

ensure -- post condition

get (i) = value;

end;

invariant -- class invariant

size = upper � lower + 1; size >= 0;

end -- class ARRAY
5

Programming by Contract

� Assertions support Programming by Con-
tract.

{ This formally speci�es the relationship between
a class and its clients, expressing each party's
rights and obligations.

� e.g.,

{ A precondition and a postcondition associated
with a subprogram describe a contract that
binds the subprogram.

� But only if callers observe the precondition: : :

� The contract guarantees that if the pre-

condition is ful�lled the postcondition holds

upon subprogram return.

6

Using Assertions to Specify ADTs

� Conceptually, ADTs consist of four parts:

(1) types

(2) functions

(3) preconditions/postconditions

(4) axioms

� However, most languages only allow speci�cation

of the �rst two parts (i.e., types and functions)

� Assertions provide a mechanism to express
the preconditions and axioms correspond-
ing to ADTs.

{ However, few general purpose languages pro-
vide support for complete ADT speci�cations,
Ei�el goes further than most in this regard.

7

Handling Assertion Violations

� If the client's part of the contract is not

ful�lled (i.e., if the caller does not satisfy

the preconditions) then the class is not

bound by the postcondition.

� This can be integrated with an exception
handling mechanism, e.g.,:

{ Exceptions are generated:

(1) when an assertion is violated at run-time

(2) when the hardware or operating system

signals an abnormal condition.

{ Note, exceptions should not be used as non-
local gotos.

� They are a mechanism for dealing with ab-
normal conditions by either:

(1) Termination: cleaning up the environment and repo

the caller,

(2) Resumption: attempting to achieve the aim of the o

8

Assertions in C

� Enabled by including the <assert.h> header.

� It incurs no code size increase and no ex-

ecution speed decrease in the delivered

product.

� Typical de�nition via a macro de�nition
such as:

#ifdef NDEBUG

#de�ne assert(ignore) 0

#else

#de�ne assert(ex) \

((ex) ? 1 : \

(eprintf("Failed assertion " #ex \

" at line %d of \%s".\n", \

LINE , FILE), abort (), 0))

/* Note use of ANSI-C \stringize" facility.

#endif // NDEBUG

9

Assertions in C (cont'd)

� If the expression supplied to the assert

macro is false, an error message will be

printed and the program will STOP DEAD

AT THAT POINT!

� e.g., provide array bounds checking

#include <string.h>

/* : : :*/

f

char *callers bu�er;

char bu�er[100];

/* : : :*/

assert (sizeof bu�er > 1 + strlen (callers bu�er));

/* Program aborts here if assertion fails. */

strcpy (bu�er, callers bu�er);

/* : : :*/

g

10

Assertions in C (cont'd)

� Another interesting application of assert
is to extend it to perform other duties as
well.

{ e.g., code pro�ling and error logging:

#de�ne assert(x) f \

static int once only = 0; \

if (0 == once only) f \

once only = 1; \

pro�le assert (" LINE ", " FILE "); \

g \

/* : : :*/ \

/* standard assert test code goes here */ \

g

� However, the main problem C assert is
that it doesn't integrate with any excep-
tion handling scheme.

{ e.g., as contrasted to Ei�el.

11

Assertions in C++

� The overall purpose of the proposed ANSI-
C++ assertion implementation is twofold:

1. To provide a default behavior similar to the C
assert facility.

2. To rely on speci�c C++ facilities (e.g., tem-
plates and exceptions) to provide a more generic
and powerful support than simple macros.

12

Assertions in C++ (cont'd)

� What follows is the proposed implemen-
tation:

// -- �le assert.h --

#ifndef ASSERT H

#de�ne ASSERT H

#ifndef NDEBUG

#include <iostream.h>

extern "C" void abort (void);

// -- generic implementation

template <class E> class assert f

public:

assert (int expr, const char *exp,

const char* �le, int line) f

if (!expr) throw E (exp, �le, line);

g

assert (void *ptr, const char *exp,

const char* �le, int line) f

if (!ptr) throw E (exp, �le, line);

g

g;

13

Assertions in C++ (cont'd)

� Proposed implementation (cont'd)

// -- speci�c C++ macro (needed for preprocessing!)

#de�ne Assert (expr, excep) \

(assert<excep> (expr, #expr, \

FILE , LINE))

// -- standard exception

class Bad Assertion f

public:

Bad Assertion (const char *exp,

const char* �le, int line) f

cerr << "Assertion failed: " << exp

<< ", �le " << �le

<< ", line " << line << 'n';

abort ();

g

g;

// -- C-like macro

#de�ne assert(expr) (Assert (expr, Bad Assertion))

#else /* !NDEBUG */

#de�ne Assert (expr, excep) (0)

#de�ne assert (expr) (0)

#endif /* NDEBUG */

#endif /* ASSERT H */

14

Assertions in C++

� The C++ assert Macro

{ As with the C macro, the C++ assert macro
is intended to be used as the irrevocable de-
tection of a program failure.

{ A trivial example is null pointer testing, as in:

class String f

// : : :

public:

String (const char* p) f

assert (p != 0); // C++ macro

/* Aborts if p == 0 */

: : :

g

g;

{ Validity of the expression is checked and a rudi-
mentary message is printed in case of failure.

15

Assertions in C++ (cont'd)

� The C++ Assert Macro

{ The primary goal of the Assert macro is to
delegate the responsibility for handling the fail-
ure to the caller.

� e.g., print appropriate error messages, make
a call to exit instead of abort: : :

{ A typical example is range checking of a sub-
script operator, as in:

class Checked Vector : public Vector f

public:

class Out Of Range f

int l;

public:

Out Of Range (const char *,

const char *, int line)

: l (line) fg

int line (void) f return l; g

g;

int& Checked Vector::operator[] (int index) f

Assert (index >= 0 && index < size,

Checked Vector::Out Of Range);

// : : :

g;

16

Assertions in C++ (cont'd)

� The Assert Macro (cont'd)

{ e.g.,

int f (Checked Vector &v, int index) f

int elem;

try f

elem = v[index];

g

catch (Checked Vector::Out Of Range &e) f

cerr << "Checked Vector:"

<< " range checking failed:"

<< " index="

<< index

<< ", size= " << v.size ()

<< ", line= " << e.line ()

<< 'n';

exit (�1);

g

return elem;

g

17

Assertions in C++ (cont'd)

� The Assert Macro (cont'd)

{ Since the exception is thrown before the pro-
gram failure occurs (e.g., Out Of Range), the
environment is not corrupted when the run-
time
ow returns to the caller.

{ If an exception is not caught (as is the case for
the Checked Vector::Out Of Range above), a
call to terminate is performed.

� The default behavior of terminate is to call
abort.

{ An uncaught exception resulting from a call
to Assert will thus unwind the stack, unlike a
call to assert. Calls to local destructors will be
performed.

� Note, this can alter the conditions under
which the failure occurred.

18

