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What Are Assertions?

� Assertions are boolean expressions that serve

to express the semantic properties of classes

and member functions.

� Assertions are similar to the mathematical

notion of a predicate.

� Assertions are tools for expressing and val-

idating the correctness of modules, classes,

and subprograms.
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Four Purposes for Assertions

� Aid in constructing correct programs.

{ e.g., specify input preconditions and output
postconditions.

� Documentation aid.

{ e.g., supports \programming by contract"

� Debugging aid.

{ Find out where/when assumptions are wrong: : :

� Basis for an exception mechanism.

{ e.g., integrate with exceptions by allowing as-
sertion failures to be caught dynamically.
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Types of Assertions

� Assertions are used for several purposes:

{ Preconditions

� State the requirements under which subpro-
grams are applicable.

{ Postconditions

� Properties guaranteed upon subprogram exit.

{ Class Invariants

� Properties that characterize class instances
over their lifetime

� Note, subprogram preconditions and post-
conditions are implicitly assumed to include
the class invariant.

{ Loop Invariants

� Loop invariants specify properties that are
always true during the execution of a loop.
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Assertion Example

� -- Ei�el array

class ARRAY[T] export

lower, upper, size, get, put

feature

lower, upper, size : INTEGER;

Create (minb, maxb : INTEGER) is do : : : end;

get (i : INTEGER): T is

require -- precondition

lower <= i; i <= upper;

do : : :end;

put (i : INTEGER; value : T) is

require

lower <= i; i <= upper;

do : : :

ensure -- post condition

get (i) = value;

end;

invariant -- class invariant

size = upper � lower + 1; size >= 0;

end -- class ARRAY
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Programming by Contract

� Assertions support Programming by Con-
tract.

{ This formally speci�es the relationship between
a class and its clients, expressing each party's
rights and obligations.

� e.g.,

{ A precondition and a postcondition associated
with a subprogram describe a contract that
binds the subprogram.

� But only if callers observe the precondition: : :

� The contract guarantees that if the pre-

condition is ful�lled the postcondition holds

upon subprogram return.
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Using Assertions to Specify ADTs

� Conceptually, ADTs consist of four parts:

(1) types

(2) functions

(3) preconditions/postconditions

(4) axioms

� However, most languages only allow speci�cation

of the �rst two parts (i.e., types and functions)

� Assertions provide a mechanism to express
the preconditions and axioms correspond-
ing to ADTs.

{ However, few general purpose languages pro-
vide support for complete ADT speci�cations,
Ei�el goes further than most in this regard.
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Handling Assertion Violations

� If the client's part of the contract is not

ful�lled (i.e., if the caller does not satisfy

the preconditions) then the class is not

bound by the postcondition.

� This can be integrated with an exception
handling mechanism, e.g.,:

{ Exceptions are generated:

(1) when an assertion is violated at run-time

(2) when the hardware or operating system

signals an abnormal condition.

{ Note, exceptions should not be used as non-
local gotos.

� They are a mechanism for dealing with ab-
normal conditions by either:

(1) Termination: cleaning up the environment and repo

the caller,

(2) Resumption: attempting to achieve the aim of the o
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Assertions in C

� Enabled by including the <assert.h> header.

� It incurs no code size increase and no ex-

ecution speed decrease in the delivered

product.

� Typical de�nition via a macro de�nition
such as:

#ifdef NDEBUG

#de�ne assert(ignore) 0

#else

#de�ne assert(ex) \

((ex) ? 1 : \

( eprintf("Failed assertion " #ex \

" at line %d of \%s".\n", \

LINE , FILE ), abort (), 0))

/* Note use of ANSI-C \stringize" facility.

#endif // NDEBUG
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Assertions in C (cont'd)

� If the expression supplied to the assert

macro is false, an error message will be

printed and the program will STOP DEAD

AT THAT POINT!

� e.g., provide array bounds checking

#include <string.h>

/* : : :*/

f

char *callers bu�er;

char bu�er[100];

/* : : :*/

assert (sizeof bu�er > 1 + strlen (callers bu�er));

/* Program aborts here if assertion fails. */

strcpy (bu�er, callers bu�er);

/* : : :*/

g
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Assertions in C (cont'd)

� Another interesting application of assert
is to extend it to perform other duties as
well.

{ e.g., code pro�ling and error logging:

#de�ne assert(x) f \

static int once only = 0; \

if (0 == once only) f \

once only = 1; \

pro�le assert (" LINE ", " FILE "); \

g \

/* : : :*/ \

/* standard assert test code goes here */ \

g

� However, the main problem C assert is
that it doesn't integrate with any excep-
tion handling scheme.

{ e.g., as contrasted to Ei�el.
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Assertions in C++

� The overall purpose of the proposed ANSI-
C++ assertion implementation is twofold:

1. To provide a default behavior similar to the C
assert facility.

2. To rely on speci�c C++ facilities (e.g., tem-
plates and exceptions) to provide a more generic
and powerful support than simple macros.
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Assertions in C++ (cont'd)

� What follows is the proposed implemen-
tation:

// -- �le assert.h --

#ifndef ASSERT H

#de�ne ASSERT H

#ifndef NDEBUG

#include <iostream.h>

extern "C" void abort (void);

// -- generic implementation

template <class E> class assert f

public:

assert (int expr, const char *exp,

const char* �le, int line) f

if (!expr) throw E (exp, �le, line);

g

assert (void *ptr, const char *exp,

const char* �le, int line) f

if (!ptr) throw E (exp, �le, line);

g

g;

13



Assertions in C++ (cont'd)

� Proposed implementation (cont'd)

// -- speci�c C++ macro (needed for preprocessing!)

#de�ne Assert (expr, excep) \

( assert<excep> (expr, #expr, \

FILE , LINE ))

// -- standard exception

class Bad Assertion f

public:

Bad Assertion (const char *exp,

const char* �le, int line) f

cerr << "Assertion failed: " << exp

<< ", �le " << �le

<< ", line " << line << 'n';

abort ();

g

g;

// -- C-like macro

#de�ne assert(expr) (Assert (expr, Bad Assertion))

#else /* !NDEBUG */

#de�ne Assert (expr, excep) (0)

#de�ne assert (expr) (0)

#endif /* NDEBUG */

#endif /* ASSERT H */
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Assertions in C++

� The C++ assert Macro

{ As with the C macro, the C++ assert macro
is intended to be used as the irrevocable de-
tection of a program failure.

{ A trivial example is null pointer testing, as in:

class String f

// : : :

public:

String (const char* p) f

assert (p != 0); // C++ macro

/* Aborts if p == 0 */

: : :

g

g;

{ Validity of the expression is checked and a rudi-
mentary message is printed in case of failure.
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Assertions in C++ (cont'd)

� The C++ Assert Macro

{ The primary goal of the Assert macro is to
delegate the responsibility for handling the fail-
ure to the caller.

� e.g., print appropriate error messages, make
a call to exit instead of abort: : :

{ A typical example is range checking of a sub-
script operator, as in:

class Checked Vector : public Vector f

public:

class Out Of Range f

int l;

public:

Out Of Range (const char *,

const char *, int line)

: l (line) fg

int line (void) f return l; g

g;

int& Checked Vector::operator[] (int index) f

Assert (index >= 0 && index < size,

Checked Vector::Out Of Range);

// : : :

g;
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Assertions in C++ (cont'd)

� The Assert Macro (cont'd)

{ e.g.,

int f (Checked Vector &v, int index) f

int elem;

try f

elem = v[index];

g

catch (Checked Vector::Out Of Range &e) f

cerr << "Checked Vector:"

<< " range checking failed:"

<< " index="

<< index

<< ", size= " << v.size ()

<< ", line= " << e.line ()

<< 'n';

exit (�1);

g

return elem;

g
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Assertions in C++ (cont'd)

� The Assert Macro (cont'd)

{ Since the exception is thrown before the pro-
gram failure occurs (e.g., Out Of Range), the
environment is not corrupted when the run-
time 
ow returns to the caller.

{ If an exception is not caught (as is the case for
the Checked Vector::Out Of Range above), a
call to terminate is performed.

� The default behavior of terminate is to call
abort.

{ An uncaught exception resulting from a call
to Assert will thus unwind the stack, unlike a
call to assert. Calls to local destructors will be
performed.

� Note, this can alter the conditions under
which the failure occurred.
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