
Object-Oriented Design and

Programming

Overview of Basic C++

Constructs

Outline

Lexical Elements

The Preprocessor

Variables, Functions, and Classes

De�nition and Declaration

Compound Statement

Iteration Statements

for Loop

while Loop

do while loop 1

break and continue Statements

Conditional Branching

if Statement

switch Statement

C++ Arrays

Multi-Dimensional Arrays

Pointers

Passing Arrays as Parameters

Character Strings

Lexical Elements

Identi�ers: A sequence of letters (including

' ') and digits. The �rst character must

be a letter. Identi�ers are case sensitive,

i.e., Foo Bar1 is di�erent from foo bar1.

Reserved Words: Keywords that are not re-

de�nable by the programmer, e.g., int,

while, double, return, catch, delete. There

are currently 48 C++ reserved words.

Operators: Tokens that perform operations

upon operands of various types. There are

around 50 operators and 16 precedence

levels.

2

Lexical Elements (cont'd)

Preprocessor Directives: Used for conditional

compilation. Always begin with #, e.g.,

#include, #ifdef, #de�ne, #if, #en-

dif.

Comments: Delimited by either /* */ or //,

comments are ignored by the \

compiler. Note that comment of the same style do

#if 0

: : : .

#endif

Constants and Literals: For strings, inte-

gers,
oating point types, and enumera-

tions, e.g., "hello world", 2001, 3.1416,

and FOOBAR.

3

The Preprocessor

� Less important for C++ than for C due

to inline functions and const objects.

� The C++ preprocessor has 4 major func-
tions:

{ File Inclusion:

#include <stream.h>
#include "foo.h"

{ Symbolic Constants:

#de�ne SCREEN SIZE 80
#de�ne FALSE 0

{ Parameterized Macros:

#de�ne SQUARE(A) ((A) * (A))
#de�ne NIL(TYPE) ((TYPE *)0)
#de�ne IS UPPER(C) ((C) >= 'A' && (C) <= 'Z')

{ Conditional Compilation:

#ifdef "cplusplus"
#include "c++-prototypes.h"
#elif STDC
#include "c-prototypes.h"
#else
#include "nonprototypes.h"
#endif

4

Variables, Functions, and Classes

� Variables

{ In C++ all variables must be declared before

they are used. Furthermore, variables must be

used in a manner consistent with their associ-

ated type.

� Functions

{ Unlike C, all C++ functions must be declared

before being used, their return type defaults

to int. However, it is considered good style to

fully declare all functions.

{ Use void keyword to specify that a function

does not return a value.

� Classes

{ Combines data objects and functions to pro-

vide an Abstract Data Type (ADT).

5

De�nition and Declaration

� It is important in C to distinguish between
variable and function declaration and def-
inition:

De�nition: Refers to the place where a variable or

function is created or assigned storage. Each

external variable and function must be de�ned

exactly once in a program.

Declaration: Refers to places where the nature

of the variable is stated, but no storage is al-

located.

Note that a class, struct, union, or enum dec-

laration is also a de�nition in the sense that it

cannot appear multiple times in a single com-

pilation unit.

� Variables and function must be declared

for each function that wishes to access

them. Declarations provide sizes and types

to the compiler so that it can generate

correct code.

6

Compound Statement

� General form:

'f'
[decl-list]

[stmt-list]

'g'

� e.g.,

int c = 'A'; // Global variable
int main (void) f

if (argc > 1) f
putchar ('[');

for (int c = ::c; c <= 'Z'; putchar (c++))
;

putchar (']');
g

g

� Note the use of the scope resolution op-

erator :: to reference otherwise hidden

global int c.

7

Iteration Statements

� C++ has 5 methods for repeating an ac-
tion in a program:

1. for: test at loop top

2. while: test at loop top

3. do/while: test at loop bottom

4. Recursion

5. Unconditional Branch: local (goto) and non-

local (setjmp and longjmp)

8

for Loop

� General form

for (<initialize>; <exit test>; <increment>)

<stmt>

� The for loop localizes initialization, test

for exit, and incrementing in one general

syntactic construct.

� All three loop header sections are optional,

and they may contain arbitrary expressions.

� Note that it is possible to declare variables

in the <initialize> section (unlike C).

9

for loop (cont'd)

� e.g.,

for (; ;); /* Loop forever. */

/* Copy stdin to stdout. */

for (int c; (c = getchar ()) != EOF; putchar (c));

/* Compute n! factorial. */

for (int i = n; n > 2; n--) i *= (n � 1);

/* Walk through a linked list. */

for (List *p = head; p != 0; p = p->next) action (p);

10

while Loop

� General form

while (<condition>)

<stmt>

� repeats execution of stmt as long as con-

dition evaluates to non-zero

� In fact, a for loop is expressible as a while
loop:

<initialize>

while (<exit test>)

f

<loop body>

<increment>

g

11

while Loop (cont'd)

� e.g.,

while (1); /* Loop forever. */

int c;

while ((c = getchar ()) != EOF)

putchar (c);

i = n; /* Compute n! factorial. */

while (n >= 0)

i *= --n;

/* Walk through a linked list. */

p = head;

while (p != 0) f

action (p);

p = p->next;

g

12

do while loop

� General form:

do <stmt> while (<condition>);

� Less commonly used than for or while

loops.

� Note that the exit test is at the bottom of
the loop, this means that the loop always
executes at least once!

int main (void) f

const int MAX LEN = 80;

char name str[MAX LEN];

do f

cout << "enter name (\exit" to quit)";

cin.getline (name str, MAX LEN);

process (name str);

g while (strcmp (name str, "exit") != 0);

return 0;

g

13

break and continue Statements

� Provides a controlled form of goto inside
loops.

#include <stream.h>

int main (void) f

/* Finds �rst negative number. */

int number;

while (cin >> number)

if (number < 0)

break;

cout << "number = " << number << "\n";

// : : :

/* Sum up all even numbers, counts total numbers read

int sum, total;

for (sum = total = 0; cin >> number; total++) f

if (number & 1)

continue;

sum += number;

g

cout << "sum = " << sum << ", total = "

<< total << "\n";

g

14

Conditional Branching

� There are two general forms of conditional

branching statements in C++:

� if/else: general method for selecting an

action for conditional execution, linearly

checks conditions and chooses �rst one

that evaluates to TRUE.

� switch: a potentially more e�cient method

of selecting actions, since it can use a

\jump table."

15

if Statement

� General form

if (<cond>)

<stmt1>

[else

<stmt2>]

� Common mechanism for conditionally ex-
ecuting a statement sequence.

#include <ctype.h>

char *character class (char c) f

if (isalpha (c)) f

if (isupper (c))

return "is upper case";

else

return "is lower case";

g

else if (isdigit (c))

return "is a digit";

else if (isprint (c))

return "is a printable char";

else

return "is an unprintable char";

g
16

switch Statement

� General form

switch (<expr>) f <cases> g

� switch only works for scalar variables e.g.,

integers, characters, enumerations.

� Permits e�cient selection from among a
set of values for a scalar variable.

enum symbol type f
CONST, SCALAR, STRING, RECORD, ARRAY

g symbol;
/* : : :*/
switch (symbol) f

case CONST: puts ("constant"); /* FALLTHRU */
case SCALAR: puts ("scalar"); break;
case RECORD: puts ("record"); break;
default: puts ("either array or string"); break;

g

� A break occurring inside a switch is sim-

ilar to one occurring inside a looping con-

struct.

17

C++ Arrays

� Arrays are a data type that consist of ho-

mogenous elements.

� A k-element one-dimensional array of EL-

EMENT type in C++ is a contiguous block

of memory with size (k * sizeof (ELE-

MENT)).

� C array's have several distinct limitations:

{ All array bounds run from 0 to k � 1.

{ The size must be a compile-time constant.

{ Size cannot vary at run-time.

{ No range checking performed at run-time, e.g.,

f
int a[10];

for (int i = 0; i <= 10; i++)
a[i] = 0;

g

18

Arrays (cont'd)

� Arrays are de�ned by providing their type,
their name, and their size, for example,
two integer arrays with size 10 and 1000
are declared as:

int array[10], vector[1000];

� Arrays and pointers are similar in C++.

An array name is automatically converted

to a constant pointer to the array's �rst

element (only exception is sizeof array-

name).

� Arrays can be initialized at compile-time
and at run-time, e.g.,

int eight primes[] = f2, 3, 5, 7, 11, 13, 17, 19g;

int eight count[8], i;

for (i = 0; i < 8; i++)

eight count[i] = eight primes[i];

19

Multi-Dimensional Arrays

� C++ provides rectangular multi-dimensional

arrays.

� Elements are stored in row-order.

� Multi-dimensional arrays can also be ini-
tialized, e.g.,

static char daytab[2][13] = f

f0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31g,

f0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31g,

g;

� It is possible to leave out certain initializer

values: : :

Pointers

20

� A pointer is a variable that can hold the
address of another variable, e.g.,

int i = 10;

int *ip = &i;

� It is possible to change i indirectly through
ip, e.g.,

*ip = i + 1;

/* ALWAYS true! */

if (*ip == i) /* : : :*/

� Note: the size of a pointer is usually the

same as int, but be careful on some ma-

chines, e.g., Intel 80286!

� Note: it is often possible to use reference

variables instead of pointers in C++, e.g.,

when passing variables by reference.

Passing Arrays as Parameters

� C++'s syntax for passing arrays as pa-

rameters is very confusing.

� For example, the following declarations are
equivalent:

int sort (int base[], int size);
int sort (int *base, int size);

� Furthermore, the compiler will not com-
plain if you pass an incorrect variable here:

int i, *ip;
sort (&i, sizeof i);
sort (ip, sizeof *ip);

� Note that what you really want to do here
is:

int a[] = f10, 9, 8, 7, 6, 5, 4, 3, 2, 1g;
sort (a, sizeof a / sizeof *a);

� But it is di�cult to tell this from the func-

tion prototype: : :

21

Character Strings

� A C++ string literal is implemented as a

pointer to a NUL-terminated (i.e., '\0')

character array. There is an implicit ex-

tra byte in each string literal to hold the

terminating NUL character.

� e.g.,

char *p; /* a string not bound to storage */
char buf[40]; /* a string of 40 chars */
char *s = malloc (40); /* a string of 40 chars */

char *string = "hello";
sizeof (string) == 4; /* On a VAX. */
sizeof ("hello") == 6;
sizeof buf == 40;
strlen ("hello") == 5;

� A number of standard string manipula-

tion routines are available in the <string.h>

header �le.

22

Character Strings (cont'd)

� BE CAREFULWHEN USING C++ STRINGS.
They do not always work the way you
might expect. In particular the follow-
ing causes both str1 and str2 to point at
"bar":

char *str1 = "foo", *str2 = "bar";

str1 = str2;

� In order to perform string copies you must
use the strcpy function, e.g.,

strcpy (str1, str2);

� Beware of the di�erence between arrays
and pointers: : :

char *foo = "I am a string constant";
char bar[] = "I am a character array";
sizeof foo == 4;
sizeof bar == 23;

� It is often better to use a C++ String

class instead of built-in strings: : :

23

