
Broker Revisited

Michael Kircher, Markus Voelter, Klaus Jank, Christa Schwanninger, Michael Stal

{Michael.Kircher,Klaus.Jank,Christa.Schwanninger,
Michael.Stal}@siemens.com

Corporate Technology, Siemens AG., Munich, Germany

voelter@acm.org

Ingenieurbüro für softwaretechnology

After having written the Remoting Patterns book [VKZ04], we felt that it
was necessary to take a look at fundamental pattern in that context: Broker
of [POSA1]. This revised pattern description reflects the current state of
discussion. Main changes are in the responsibilities as well as the
participants area of the original Broker pattern:

• Finding remote objects has been separated out. Possible solutions
therefore are documented as Lookup pattern in [POSA3].

• The original Broker pattern has a Broker participant, which responsibility
is the transmission of requests from clients to server, as well as the
transmission of responses and exceptions back to the client. This
participant has been replaced by a client-side part called Requestor and a
server-side part called Invoker.

• The original Broker pattern contains a client-side and server-side proxy
participant, which encapsulate system-specific functionality such as
marshaling of requests and responses and mediation between client and
requestor, and invoker and servant, respectively. Broker Revisited
replaces these participants by encapsulating their responsibilities within
other participants.
Proxies are only needed when remote invocations are expected to be
invoked as if they were local invocations. As this is not in every known
use the case, we made them optional. They are not part of the core
responsibility of the Broker Revisited pattern.

• Since proxies when needed should be able to be created at runtime, they
shouldn’t contain any system-specific functionality. Another reason why
client proxies have been made optional is that location transparency is not
always necessary.

• Broker Revisited focuses on remote communication, host-local
communication is only an exception/special-case.

• The Bridge participant of the original Broker pattern has been separated
out, because interoperability issues such as type system transparency are
handled by an appropriate network and marshaling protocol.

Broker Revisited

The Broker Revisited pattern connects clients with remote objects by
mediating invocations from clients to remote objects while encapsulating
the details of network communication.

Example Suppose, you are going to design an innovative framework for home
automation where a central network allows to connect different actuators
and sensors. The framework should be capable of integrating heterogeneous
devices such as VCRs, TVs, notebooks, lighting systems, PDAs,
refrigerators, coolers, or security sensors. It provides connectivity using
fixed network cables as well as wireless communication lines. External
access to the E-Home system is possible via secured Internet access. Central
command and control services help to monitor and modify the system’s
behavior or malfunctioning. Users and administrators might deploy custom
services that leverage multiple devices to allow emerging behavior such as
triggering events on one device when other events on different devices
occur. Examples could be a recording service where the recording of a
television broadcast is triggered by a central clock or the activation of the
cooling system by an external telephone call. Services will be implemented
by the different vendors of the devices.

In order to make all this possible, the services have to collaborate. But the
services are located on various controllers in the house, connected through
a network between them and software running on those devices. It should
be possible to change the collaborations easily and services should not be
expected to always run on the same controller. To make the framework
successful it is necessary to make it easy for vendors to provide new
services quickly, without much overhead in learning how to develope
software for the framework.

Context A system that consists of multiple distributed objects that need to interact
with each other synchronously or asynchronously.

Problem Distributed software systems face many challenges that do not arise in
single-process software. One major challenge is the communication across
unreliable networks. Other challenges are the integration of heterogeneous
components into coherent applications, as well as the efficient usage of
networking resources. If developers of distributed systems must master all
these challenges within their application code, they likely will loose their
primary focus: developing application code that resolves their domain-
specific responsibilities well.

Communication across networks is more complex than local
communication, because remote communication concerns have to be
considered, e.g. connections need to be established, invocation parameters
have to be converted into a network-capable format and transmitted, and a
new set of possible errors has to be coped with. This requires handling
invocations to local objects differently than invocations of remote objects.
Additionally, the tangling of remote communication concerns with the
overall application structure complicates the application logic.

The following forces must be addressed:

• Location Independence—The location of the remote objects should not
be hard-wired into client applications. It should be possible to run remote
objects on different machines without adaptation of the client's program
code.

• Separation of Concerns—Application logic and remote communication
concerns should be well separated to manage complexity and allow for
evolution of each concern independent of the other.

• Resource Management—Network and other communication resources
have to be managed efficiently to minimize footprint and overhead of
distributed systems.

• Type System Transparency—Differences between type systems should be
coped with transparently.

• Portability—Platform dependencies should be encapsulated and
separated from the application logic.

Solution Separate the communication functionality of a distributed system from the
application functionality by isolating all communication related concerns.
Introduce a client-side requestor and a server-side invoker to mediate
invocations between client and remote object. The client-side requestor
provides an interface to construct and forward invocations to the server-side
invoker. The invoker dispatches incoming requests to the remote object and
returns potential results of remote object invocations to the requestor.

A marshaler on each side of the communication path handles the
transformation of requests and responses from programming-language
native data types into a byte array that can be sent across the wire, and vice
versa.

The details of communication and management of communication
resources is hidden from the client and the remote object by the requestor
and invoker. Further, the invoker provides a registration interfaces. This
allows remote object implementations, so called servants, to be registered
and made accessible to clients.

Structure The following participants form the structure of the Broker Revisited
pattern:

A client interacts with a remote object.

A requestor forwards requests to an invoker across the network.

An invoker invokes requests on a servant. It adapts the interface of the
servant, so that the other participants can stay independent of any remote
object specifics. Depending on the implementation, this invoker-internal
Adapter [GoF] can be decoupled and large parts of the invoker can serve
multiple remote objects.

A servant implements a remote object the clients wants to use, whereas the
remote object may represent an actual object, a component, or a service.

A marshaler transforms between invocation parameters/results and a
serialized format.

The following CRC cards describe the responsibilities and collaborations of
the participants

Class
Invoker

Responsibility
• Allows servants to be

registered.
• Receives requests from the

transport layer.
• Demarshals request

parameters using the
marshaler, and marshals
results of the invocation in
a response using the
marshaler.

• Invokes operations on
servants using the request
parameters.

• Uses the communication
resources and possibly
manages those.

• Sends responses back to
the requestor.

Collaborator
• Marshaler
• Requestor
• Servant

Class
Servant

Responsibility
• Implements the remote

object’s functionality.

Collaborator

Class
Client

Responsibility
• Invokes remote objects on

the requestor
• Collects all invocation

information, such as the
remote object reference
and the invocation
parameters, in a request
object.

Collaborator
• Requestor Class

Requestor

Responsibility
• Provides an invocation

interface, where clients
can hand over the request
object.

• Marshals the invocation
parameters on invocation,
and de-marshal the
returned results using the
marshaler.

• Uses communication
resources, such as
network connections,
threads, and possibly
manages those.

• Sends invocations to
remote objects,
respectively the invoker
instances they are
registered with.

• Hands over the request to
the transport layer.

• Waits for responses from
remote objects and blocks
clients until the result can
be returned.

Collaborator
• Invoker
• Marshaler

Class
Marshaler

Responsibility
• De-/Marshals invocation

parameters and results.

Collaborator

The dependencies between the participants are illustrated by the following
class diagram.

Dynamics For clients to interact with a remote object it is necessary that they first
identify the remote object. This is done via an object reference. The object
reference is different from a reference to a local object, because it must
contain information about the remote host, where the remote object is
located, as well as an indication of how it can be reached, for example the
network protocol and endpoint information.

The client needs a reference to the remote object. One solution is that the
client obtains an object reference to a remote object via Lookup [POSA3].
The client only needs to use the Lookup the first time it invokes this object,
after that it could store the reference. To perform an invocation on the
remote object, it constructs a request, handing over the object reference and
all invocation parameters to the requestor.

The requestor marshals the invocation parameters using the marshaler,
identifies the remote host the request has to be sent to, and sends the request
to the remote host. For a discussion of whether connections are needed or
not, refer to the Implementation section.

On the server-side the invoker, waiting for requests to arrive, receives the
request. The invoker demarshals the invocation parameters, again using a
marshaler, looks up the servant, and invokes the servant with the
parameters. In order to invoke an operation on the server it has to adapt to
the servants interface. When the invocation returns, the results are
marshaled by the invoker and sent back to the requestor.

Client

create request ()
send request ()
receive response ()

Requestor

serialize ()
deserialize ()

Marshaler

receive request ()
register servant ()
handle events ()
dispatch event ()

Invoker

method A ()

Servant

The just mentioned scenario, but without the lookup of the reference to the
remote object, is illustrated in the following figure.

Implementation

There are several steps involved in implementing the Broker Revisited
pattern.

1 Define an invocation interface. The invocation interface of the requestor
must allow clients to construct and send requests. An invocation request
comprises several parameters including at least the reference of the servant,
the method identifier and optional method parameters. A possible solution
could be to provide a Factory method [GoF] for the construction of request
objects:

Request r = requestor.createRequest (servantReference,
 "someOperation");

r.addParameter(xyz);
r.addParameter("12");
requestor.send(r);

If it is desirable to completely hide the details of request creation, another
possible solution could be to provide an invocation method with the request
information as parameters.

requestor.invoke (servantReference,
"someOperation",

send receive request

: Client
<<actor>> : Requestor

Client-side
Marshaler :
Marshaler

: Invoker
Server-side
Marshaler :
Marshaler

: Servant

handle eventscreate request

send request
serialize

Process boundary

deserialize

method A

result

serialize

dispatch event

receive response send

deserialize

result

fill request

args[]);

Keep in mind that all request parameters must be capable to be serialized
into a byte array that can be sent across the wire, and vice versa.

2 Select marshaling protocol and implement the marshaler. Define the
mapping of invocations (request-response) and errors to the underlying
communication protocol. Choose an appropriate marshaling protocol. For
example, support for heterogeneity can be established by using a platform
independent marshaling protocol such as XML.
Define the marshaling mechanism. A possible solution is to use reflection
to introspect the structure of the type that has to be serialized, at runtime.
Many interpreted languages provide this generic, built-in facility.
If it is desirable to provide for the developer the flexibility to implement a
custom serialization algorithm at type level, another possible solution is to
provide a suitable interface that defines operations for serialization and de-
serialization.

ISerializable {
writeObject (byte[] stream);
readObject (byte[] stream);

}

Both solution approaches can be combined in the way, that a type superclass
implements the interface with a default mechanism based on reflection.
Changes, for example to optimze the serialization process, can be done by
the developer for each type individually.

In situations when complete objects need to be transferred, either of the two
patterns, Value Object [Fowl03] or Data Transfer Object [Fowl03], are
recommended. Value Object is useful for small objects, that you eventually
want to compare. Data Transfer Object is useful to make communication
more coarse grained, grouping related data as one object in a request or a
response. In cases when complex data types have to be marshaled, it is often
useful to delegate the marshaling to the object representing the complex
data type.

To allow for easy customizing and extension, a design according to Pipes
and Filter [POSA1] is advisable, where the filters are implemented as
Interceptors [POSA2]. Using this design specific marshalers or additional
processing steps, such as the encryption of invocation messages are easy to
introduce. Below a possible solution of an interface for a custom marshaler
is shown:

IMarshaler {
byte[] serialize (Object o);
Object deserialize (byte[] stream);

}

3 Select communication protocol. Depending on the quality of service that
needs to be provided, either a connection-oriented or connection-less
protocol is used. Additionally, it might be important to verify the Quality-
of-Service (QoS) properties, supported by the communication protocol.

4 Implement the network communication. Use the Acceptor/Connector
[POSA2] pattern for establishing connections between requestor and
invoker. For dispatching incoming requests and asynchronously arriving
responses use the Reactor [POSA2] pattern.

5 Implement resource management. The participants in the Broker Revisited
pattern have to manage multiple kinds of resources, such as connections,
threads, and memory. To ensure the fulfillment of non-functional
properties, such as scalability and stability, it is important to manage those
connections effectively and efficiently. Connections between requestors
and invokers can be reused and shared using the Caching [POSA3] and
Pooling [POSA3] pattern, respectively. For efficient self-management of
threads that use shared resources, the Leader/Followers [POSA2] pattern
provides effective means.

6 Define an registration interface. Define a registration interface on the
invoker for the registration and unregistration of servants. Registered
servants are referenced by the invoker which is then able to dispatch client
requests to the corresponding servant instance. A possible solution could be
that the developer creates the desired servant instance and passes it to the
invoker:

IInvoker{
registerServant (servantInstance instance);
unregisterServant (servantInstance instance);

}

If it is desirable to completely hide the details of servant creation for
example to enable a flexible lifecycle and resource management, another
possible solution could be to pass the required information the invoker
needs to create the servant instance itself. If Reflection [POSA1] is
available the servant implementation class identifier would be a sufficient
imformation candidat.

IInvoker{
registerServant(servantClass class);
unregisterServant(servantClass class);

}

Possible resource management strategies to define the point of time for the
servant instance creation are Lazy Acquisition [POSA3] and Eager
Acquisition [POSA3]. Static Instance [VKZ04], Per-Call Instance [VKZ04]
and Client-Dependent Instance [VKZ04] are strategies for lifecycle
management.

7 Provide a mechanism to reference servants. In order to perform requests on
remote objects, represented by servants, the clients have to obtain
references to those remote objects. Therefore, let the invoker provide so-
called object references that identify a remote object on its remote host,
where it is located. Besides the ID of the remote object, they must also
contain how the remote host can be reached, for example its network

protocol and endpoint information. The object references are created by the
invoker, but the actual distribution of those references to clients is outside
the scope of this pattern. For more details about possible solutions, see the
Lookup [POSA3] pattern.

8 Implement the mechanism to transform request messages into invocations.
Inside the invoker the operation identifier contained in request messages
must be translated into an actual invocations. If Reflection [POSA1] is
available, the invoker can adapt invocations to the servants’ methods at run-
time (so called dynamic dispatch). For programming languages that do not
support reflection, adaptation code must be provided at compile time to
adapt to the interface of the servant (so called static dispatch).

Request r = (Request) marshaller.deserialize
(requestStream);
String methodName = r.getOpName();
 // retuns an array of the types of the parameters
Class paramTypes = r.getParameterTypeArray();
 // retuns the parameters as an array
Object params = r.getParameterArray ();
 // tries to find a suitable method using reflection
Method m = servant.getMethod (methodName, paramTypes);
Response response = null;
if (m != null) {

// invokes the operation on the servant
// (error handling is omitted)
Object result = m.invoke(servant, params);
response = new Response (r.getOpName ());
response.setResult (result);

} else {
response = new ErrorResponse ("Operation not

available");
}
byte[] responseStream = marshaller.serialize (response);

9 Decide on supporting asynchrony (Optional). Asynchrony can be supported
purely in the client (client-side asynchrony) or purely in the server (server-
side asynchrony).

Client-side asynchrony is implemented by having the requestor return after
having sent the request. Responses to an invocation are received by the
requestor independent of the client waiting for it. Clients can receive the
results by a Callback [VKZ04] or Polling [VKZ04] model.

Server-side asynchrony decouples returning results of an invocation from
sending the response. Servants run in a different thread than the thread
receiving requests. When a servant finishes a method execution, it will
inform the invoker by a callback. The invoker in turn will return the
response to the client, the requestor respectively.

10 Optimize local invocations (Optional). Client invocations of operations on
a remote object result in an overhead due to the marshaling and interprocess
communication. This is different from invocations of local objects.
Therefore remote communication should only be used if the remote object
really resides on a remote host. As it is transparent to the client on which

host the remote object is running, a client would have to check for every
object, whether it is remote or actually local. For local invocations, the
client might call the object direcly and not use requestor and invoker. To
avoid the explicit checks in the client’s application logic, a client proxy can
be used, as in the case of the Transparent Broker, see the next
implementation step and the variants section.

Optimizations in the communication between clients and servers residing in
the same process can also be handled in the requestor. The requestor does
not have to marshal invocations but can short-circuit the invocation.
Different levels of such short-circuiting are possible. To find the right short-
circuit concurrency issues have to be considered. For example, if a client
proxy would directly invoke methods on the servant, the servant code would
be executed in the client’s thread and not in a separate thread, as expected.
The multithreading behavior can become undesired or even dangerous with
respect to deadlocks and race conditions. Further, be aware that if the used
client proxy invokes the remote object operation directly, the requestor, nor
the invoker, can perform any security, transaction, or other checks.

11 Determine if transparency is needed (Optional). If remote objects should be
represented as local objects, use the Proxy [POSA1] pattern. Client proxies
will make it transparent to clients whether local or remote objects are
invoked. Nevertheless, because communication to remote objects is
unreliable, clients have to cope with errors specific to remote
communication—this cannot be made transparent without losing the
guarantee of invocation delivery. For more details refer to the Transparent
Broker variant.

Example Resolved

Back to the automation framework: To integrate the services, the Broker
Revisited pattern is introduced. This allows the services to collaborate on
higher level services. The connections between them are abstracted by the
pattern, so that the services can address them logically and are not required
to deal with controller or network details. The developers of services do not
have to understand the communication concerns implemented in the
framework. This is necessary to keep the implementation, reconfiguration
and maintenance overhead low. The responsibilities of service logic and
communication logic is properly separated. Services can even be collocated
on the same controller in order to reduce hardware cost, while the overall
collaboration scenario is not influenced.

Variants Transparent Broker. From an application-developers perspective it would
be ideal, if the remote objects could be invoked as if they were local objects.
The usage of client proxies hides the explicit creation of requests. A client
proxy provides the same interface as the remote object, respectively the
servant. It is transparent to the clients whether they access the client proxy
or the actual remote object. As a special case, remote objects might actually

be local to the client. In this case the implementation of the requestor might
notice this and perform optimizations, such as avoiding overhead by not
marshaling and sending the request across a network connection, but
invoking the object directly or by a short-cut through the invoker.
Client-side Asynchrony. Client sends the request and receives the response via Callback or
Polling.

Server-side Asynchrony. Decouples the execution of a method invocation from sending of
a response. They may run in separate threads.

Consequences

There are several benefits of using the Broker Revisited pattern:

• Location Independence—Clients do not have to care where an object is
located, though for remote objects, they always have to use the more
complex interface, unless a Transparent Broker is used.

• Type System Transparency—Differences in type systems are coped with
by a intermediate network protocol. The marshaler translates between
programming language specific types and the common network protocol.

• Separation of Concerns—The communication and marshaling concerns
are properly encapsulated in the requestor, invoker, and marshaler.

• Resource Management—The management of network and other
communication resources such as connections, transfer buffers and
threads is encapsulated within the Broker Participants and therefore
seperated from the application logic.

• Portability—Platform dependencies which typically arise from low level
I/O and IP communication are encapsulated within the Broker
Participants and therefore seperated from the application logic.

There are also some liabilities using the Broker Revisited pattern:

• Error Handling—Clients have to cope with the inherent unreliability and
the associated errors of network communication.

• Overhead—Developers can easily forget about the location of objects,
which can cause overhead if the expenses of remote communication are
not considered.

Known Uses CORBA. CORBA is the old man amongst the middleware technologies
used in today’s IT world. CORBA stands for Common Object Request
Broker Architecture and is defined by its interfaces, their semantics and
protocols used for communication. CORBA supports the basic Broker
Revisited pattern, as well as the Transparent Broker. For the basic
functionality CORBA supports the so called Dynamic Invocation Interface
(DII) on the client-side. The invoker is separated between Object Request
Broker (ORB) core, Portable Object Adapter (POA), and skeleton. The

server-side skeleton is generated from IDL, as the client-side stub is.
Various ORB extensions support a wide variety of advanced features.
CORBA supports client-side asynchrony via standardized interface. Server-
side asynchrony is only supported proprietarily.
RMI. Sun's Java Remote Method Invocation (RMI) is based on the
Transparent Broker variant pattern. The client-side proxy (so called stub)
and the server-side invoker (so called skeleton) have to be created manually
by an additional compilation step. In contrast to CORBA the servant
interfaces are not written in an abstract IDL, but in Java. Consequently RMI
is limited to the usage of Java. To establish interoperability RMI-IIOP is provided. RMI
doesn't support client-side or server-side asynchrony out of the box. Lifecycle management
strategies are implemented in form of the activation concept of remote objects. A central
naming service (so called RMI registry) allows clients to look up servant identifiers.

.NET Remoting. Microsoft's .NET Remoting platform implements the
Transparent Broker variant pattern to handle remote communication. Since
the .NET platform supports reflection to acquire type information, the client
proxy is created automatically at runtime behind the scene, completely
transparent for the application developer. There is no separate source code
generation or compilation step required. The interface description for the
client proxy can be provided by MSIL-Code or by a WSDL-Description of
the interface itself. The client proxy is responsible of creating the invocation
request, but is not in charge of any communication related aspects.

The remote communication functionality of .NET Remoting is
encapsulated within a framework consisting of marshalers (so called
Formatters in .NET Remoting) and Transport Channels, which abstract
from the underlying transport layer. This framework is designed in a very
flexible manner, allowing any custom extensions to fulfil for example QoS
requirements.

Furthermore .NET Remoting supports the client-side asynchrony broker
variants. Lifecycle management strategies for servants are also included
within the framework. .NET Remoting doesn't have a central naming or
lookup system. Clients have to know the object reference of the servant in
advance. However different strategies avoid the hardcoding of the servants
destination inside the client application code.

Indigo. Microsoft's operating system code-named Longhorn comprises
Indigo as an integrated middleware infrastructure. It combines .NET
Remoting, ASP.NET Web Services, .NET Enterprise Services, and MSMQ
under a common framework. In addition, it offers a unified programming
model for building service-oriented connected systems. The Connector
subsystem of Indigo is structured using the Broker Revisited pattern. Ports
are introduced that represent communication endpoints under which
services are available. Inbound and outbound communication with services
is provided by channels which closely resemble end extend the notion of
.NET Remoting channels. Besides other styles of communication Indigo

provides a remoting paradigm that is built upon the core communication
framework. Message encoders take the role of marshalers. Proxies are
available to provide requestor and invoker functionality. In contrast to .NET
Remoting Indigo comes with built-in activation and security support.

Additional parts of Indigo include messaging services, system services
(transactions, federation), a service model, and different hosting
environments for these services.

See Also Lookup [POSA3] describes how to register and find remote objects. It also
gives guidance on how to bootstrap a distributed system, when no initial
references are available.

Smart Proxies [HoWo03] allow to transparently integrate ‘smart’ services,
such as transaction handling, authentication/authorization, or even Caching
[POSA3].

References

[Fowl03] M. Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley, 2003

[GoF] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

[HoWo03] G. Hophe and E. Woolf, Enterprise Integration Patterns, Pearson Education,
2003

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture—A System of Patterns, John Wiley and
Sons, 1996

[POSA2] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture—Patterns for Concurrent and Distributed Objects,
John Wiley and Sons, 2000

[POSA3] M. Kircher and P. Jain, Pattern-Oriented Software Architecture, Volume 3:
Patterns for Resource Management, John Wiley and Sons, 2004

[VKZ04] M. Voelter, M. Kircher, and Uwe Zdun, Remoting Patterns— Foundations
of Enterprise, Internet, and Realtime Distributed Object Middleware, John
Wiley and Sons, 2004

