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Abstract— Power grids are undergoing major changes due to
rapid growth in renewable energy and improvements in battery
technology. Prompted by the increasing complexity of power
systems, decentralized solutions are emerging that arrange local
communities into transactive microgrids. This paper addresses
the problem of implementing transactive energy mechanisms
in a distributed setting, providing both privacy and safety.
Specifically, we design and implement an automated auction and
matching system that ensures safety (e.g., satisfaction of line
capacity constraints), preserves privacy, and promotes local trade
and market efficiency for transactive energy systems. This design
problem is challenging because safety, market efficiency, and
privacy are competing objectives. We implement our solution as
a decentralized trading platform built on blockchain technology
and smart contracts. To demonstrate the viability of our platform,
we analyze the results of experiments with dozens of embedded
devices and energy production and consumption profiles using
an actual dataset from the transactive energy domain.

Index Terms—Transactive energy systems, blockchain, privacy,
security, safety, smart contract.

I. INTRODUCTION

Current energy markets are competitive wholesale markets
that are run by Regional Transmission Organizations (RTO).
An RTO typically runs two energy markets: a day-ahead
market, which occurs 24 hours prior to energy dispatch, and
a real-time market, which is run once each hour based on
predicted energy demand. Any adjustments necessary to meet
changing energy demands are handled by ancillary services,
such as Reserves, which can be integrated with the grid
in under an hour, and Regulation, which maintains system
frequency by adjusting output. In this market, power plants
and utility operators place offers that are matched to determine
pricing.

Due to the advent of individually-owned distributed energy
resources (DER), such as solar panels [1] and energy storage
devices, balancing supply and demand becomes more chal-
lenging for a centralized controller. These challenges stem
from the fact that supply (e.g., solar, wind, etc.)[2] and demand
(e.g., electric vehicle charging) are more volatile. They also
more frequently occur “behind the meter,” meaning they are
harder to measure. These conditions are further complicated
since they are controlled by many different users, making them
hard to manage [3]. Maintaining the balance between supply
and demand is vital because imbalances shift the frequency
of alternating current (AC) power, which in turn alters the
behavior of devices connected to the power line. If these errors

are not appropriately addressed, they can lead to physical
system damage.

These challenges with DER have led to a recent surge of
interest in peer-to-peer transactive energy systems (TES), as
shown in Fig. 1. In TES, energy producers and consumers

Fig. 1. DER Enables Transition from Top-down Energy Distribution to Peer-
to-Peer Energy Transfers.

(known as “prosumers”) submit offers to trade energy. If the
trades in the system are not balanced—or if they exceed
the safety constraints of the system—they can cause physical
damage.

Safe trades can be incentivized by recording trades and
fining prosumers for deviating from them. Providing this
degree of oversight, however, requires knowledge about which
prosumer has made a given offer. In turn, this type of infor-
mation could violate privacy concerns if it is not carefully
managed.

An example TES is shown in Fig. 2, where each node is
associated with a participant in the local peer-to-peer energy
trading market. This figure shows how a feeder consists of a
number of nodes, some of which have the capability to sell
energy. Each feeder is protected by an overcurrent relay at
the junction of the common bus. The inset figure shows that
a node in the network has different types of loads, some of
which can be scheduled, making it possible for a consumer to
bid in advance for those loads. A smart meter ensures proper
billing per node.

A. Common Problems in Transactive Energy Systems

Using TES effectively in practice requires addressing the
following problems (which we cover in this paper):

1) Ensuring the physical stability and safety of the grid ap-
paratus, e.g., dynamically balancing supply and demand
without violating line capacity constraints.

2) Ensuring that a peer-to-peer market operates in a trust-
worthy manner, even if some of the nodes are malicious.
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Fig. 2. A Multi-feeder Microgrid Example of a Transactive Energy System.

3) Ensuring privacy since TES disseminate information
amongst participants to enable finding suitable trade
partners.1

Our recent work [4] introduced Privacy preserving Energy
Transactions (PETra), which is a blockchain-based solution
that (1) enables trading energy futures in a secure and ver-
ifiable manner and (2) preserves prosumer privacy. These
objectives were accomplished via a public distributed ledger
for (1) and anonymized identifiers with a mixing service that
prevents tracing the assets being traded back to the owner for
(2). Our market mechanism was opportunistic, however, since
each consumer looked at the available asks from producers
and chose the one that fit the needs of the consumer the best,
which was tedious and error-prone.

To address limitations with our prior work, this paper
describes the structure, functionality, and performance of an
automated matching system that maximizes the amount of
energy traded within the local market. Moreover, we now con-
sider system-wide safety constraints, whereas our prior work
only considered constraints on individual prosumers. As in
our prior work [4], we use the Ethereum blockchain platform
to implement parts of our design via distributed ledgers. We
chose Ethereum because it meets our requirements better than
the alternatives. In particular proof-of-work consensus is better
understood and has more formal analysis ([5], [6], [7]). There
are alternatives such as Hyperledger Sawtooth [8] which uses
a “Proof of Elapsed Time” consensus algorithm, however this

1In contrast, non-transactive smart metering systems require sharing pro-
sumer information only with the distribution system operator (DSO), which
eliminates/minimizes unauthorized privacy disclosures.

relies on the Intel SGX hardware and we did not want to
include that requirement in the system. Another alternative is
Hyperledger Fabric [9] whose consensus is deterministic and
relies on a known number of participants in the blockchain
network and does not handle partitions well. We want a trans-
active energy market to continue operating despite partitions.
To fully attain this goal we would require a special version of
the consensus protocol that allowed two chains of transactions
to be merged after the partition healed since trades must have
happened on both sides. This is something to be explored in
the future. Additionally we required a blockchain platform that
is popular and well-documented. This approach is consistent
with the recent trends in the research community and power
industry focused on transactive energy markets [10], [11].

Disintermediation of trust is widely regarded as the primary
feature of blockchain-based transaction systems [12]. Apply-
ing them in TES is appealing since they elegantly integrate
the ability to immutably record the ownership and transfer of
assets, with essential distributed computing services, such as
Byzantine fault-tolerant consensus on the ledger state, as well
as event chronology. The ability to establish consensus on state
and ordering of events is important in the context of TES to
detect trades that could destabilize the system.

B. Research Contributions

This paper makes the following contributions to research on
transactive energy systems (TES):
• We co-design an automated matching mechanism and

a decentralized transaction management platform that
supports the energy trading workflow while ensuring
prosumer privacy (i.e., their identity) and system safety



(e.g., satisfaction of line capacity constraints). This design
problem is hard due to inherent conflicts between safety,
privacy, and market efficiency.

• We enable the market controller to consider the effects
of energy storage in batteries by enabling prosumers to
specify multiple time intervals in which they could trade
energy by explicitly indicating their flexibility.

• We describe the architecture and the protocol specifica-
tion of our platform. Our solution combines the security
and immutability of blockchain-based smart contracts
with the efficiency of traditional computational platforms
via a hybrid solver that is used to match energy trades.

• We present an experimental evaluation of our Trans-
action Management Platform (TMP) and the resulting
market performance, with and without the availability of
prosumer-owned battery storage. We consider total en-
ergy trade throughput as the market performance metric.

Paper Organization The remain of this paper is organized as
follows: Section II describes our transactive microgrid model
and reviews system requirements; Section IV formalizes the
energy trading problem used as a case study throughout this
paper; Section V examines our hybrid approach to solve the
energy trading problem efficiently despite our use of a decen-
tralized computing platform; Section VI explores the structure
and functionality of a TMP we developed to provide the energy
trading and market clearing functionality described in earlier
sections. Section VII analyzes the results of experiments we
conducted to evaluate the performance of our system; and
Section VIII presents concluding remarks and lessons learned
from our work.

II. SYSTEM MODEL

We consider a microgrid with a set of feeders arranged in a
radial topology. Although the methods presented in this paper
are extensible to general tree topologies involving branching,
we apply a radial topology to simplify checking the load
flow constraints. A feeder has a fixed set of nodes, each
representing a residential load or a combination of load and
distributed energy resources (DERs), such as rooftop solar and
batteries, as shown in Fig. 2. Each node is associated with a
participant in the local peer-to-peer energy trading market.

Fig. 2 shows that a distribution system operator (DSO) also
participates in the market. It may use this market to incentivize
timed energy production within the microgrid to stabilize the
grid and promote ancillary services [13], such as those outlined
in Section I. Moreover, the DSO supplies residual demand not
met through the local market.

Participants in our system model settle trades in advance,
which allows them to schedule their power transfers into the
local distribution system. There are typically three phases in
these operations: (1) discovery of compatible offers, (2) match-
ing of buying offers to selling offers (either by each prosumer
individually or by an automated matching algorithm), and (3)
performing the energy transaction and financial transaction.

A. System Requirements

Below we describe the requirements we addressed when
building a decentralized Transaction Management Platform
(TMP) that supports the workflow across the microgrid de-
scribed above.

1) Communication Fabric: The first requirement is the
existence of an appropriate communication and messaging
architecture. The TMP must collect participants’ offers and
make them available to buyers and sellers. Moreover, the mar-
ket algorithm must communicate clearing prices and buyer-
seller matchings.

To meet the operational and safety requirements described
below, these messages must be delivered reliably under strict
timing constraints derived from the deadline by which a trade
must clear. Moreover, the TMP must be capable of han-
dling high volumes of micro-transactions anticipated in peer-
to-peer trading scenarios. Finally, the communication fabric
must support confidentiality, integrity, and non-repudiation of
transactional data.

2) Operational Safety and Stability: Trading activity should
not compromise the stability of the physical system operation.
For instance, capacity constraints along any feeder should be
respected, e.g., each feeder is rated for a maximal power
capacity.2 Local energy trade settlements should therefore
ensure the instantaneous power flows stemming from power
production and consumption never violate safety constraints.

3) Market Security and Efficiency: The TMP must include
provisions for ensuring the protection of prosumer interests,
as well as those of the DSO. Prosumer interests include being
billed correctly based on energy prices set by the market and
the measurements made by smart meters. In the context of
microgrids connected to the broader power grid, the system
should match supply and demand as closely as possible, while
respecting safety constraints. In particular, the TMP should
aim to maximize the amount of energy traded.

4) Privacy: Information like the amount of energy pro-
duced, consumed, bought, or sold by any prosumer should
be available only to the DSO.3 The owners of the bids and
asks should remain anonymous to other participants. It should
not be possible to infer a participant’s energy usage patterns
and personal information, such as financial standing, from
their trading activity. In particular, inference of energy usage
patterns can be exploited by inferring the presence or absence
of a person in their home.

III. STATE-OF-THE-ART AND RELATED WORK REVIEW

This section presents an overview of the state-of-the-art
and compares our approach with related work on transactive
energy systems (TES).

2Physically, the capacity limit of a feeder can be enforced using an
overcurrent protection unit that limits the total current flowing through the
feeder.

3This paper focuses on building a trading system, so we do not explicitly
address the problem of billing. Multiple billing approaches can be imple-
mented using blockchain technology, however, some providing a high degree
of privacy, which is the focus of our future work.



A. Existing Implementations
The Brooklyn Microgrid project is a practical implemen-

tation of a TES [14]. This project was initially evaluated in
terms of its ability to meet requirements deemed necessary
for an efficient microgrid energy market. The first requirement
noted by the authors (which they call the“microgrid setup”)
defines who the participants are and their respective capabili-
ties, access control, and assumptions regarding their behavior
(honesty, rationality, etc.). This setup also defines the system
objectives and the form of energy to trade, as well as the
physical transfer mechanism, whether it be via the bulk power
grid or an internal microgrid.

The second requirement the authors describe is a “grid
connection,” which is the connection from a microgrid to the
bulk power grid. This component serves the same purpose
as the specification of the transfer mechanism in the first
requirement above. The authors’ third requirement identified is
the “information system,” which hosts the market and provides
the communication framework for participants using a private
blockchain implementation built upon Tendermint [15], which
is a platform for replicating applications securely and con-
sistently on many machines. This platform provides a variant
of the Practical Byzantine Fault Tolerance (PBFT) consensus
mechanism and a general-purpose application interface [16].

The information system outlined above hosts the fourth
required component called the “market mechanism.” This
mechanism defines how transactions are made, including pay-
ment and allocation rules. These rules ensure that the trades
do not violate grid power constraints.

The market mechanism defines the fifth requirement, known
as the “pricing mechanism”, which determines the cost of
energy to exchange. This pricing mechanism is implemented
using Ethereum “smart contracts” [17]. In this context, a smart
contract is a custom program that operates on the data stored
on a distributed ledger. It can be used to establish agreements
between participants by ensuring some computation occurs
when conditions specified in the program are true.

The final two required components defined by the Brooklyn
Microgrid project are an automated trader for the participants
and the regulations in which the TES is deployed. Despite
the authors’ thorough description of these market compo-
nents, they did not assess the costs associated with using a
blockchain-based ledger as their information system, which
could limit efficiency of the system. They also rely on privacy
associated with using public keys, though keys in blockchain-
based systems can be associated to owners through transaction-
graph analysis [18].

The Brooklyn Microgrid system ensures safety and stability
via the connection to the bulk power grid. Their approach,
however, does not allow independent operation since this
would require time synchronized action, which was not part
of their design. Their system’s resilience is thus limited.

The Brooklyn Microgrid project utilized a smart contract to
implement the market mechanisms, as outlined above. Smart
contracts, however, often suffer from vulnerabilities that are
hard to correct due to the nature of distributed ledgers. For

example, Newman [19] analyzed 19,366 smart contracts and
found that 8,833 contracts had one or more security issues.

Errors in smart contracts can result in devastating security
incidents. For example, in the “DAO attack” $50 million in
cryptocurrency was stolen [20] and in the multi-signature
Parity Wallet library hack $280 million in cryptocurrency was
lost. These vulnerabilities highlight that if such approaches
are used, care is needed to ensure contract correctness due
to the significant impact on safety, security, resilience, and
reliability.

Vieira, the author of [21], implements a micromarket setup
based on the Brooklyn Microgrid project where they com-
pare the costs of traditional energy systems to a distributed
ledger-based microgrid market. Vieira’s paper examines two
auction mechanisms: (1) a continuous double auction and (2)
a uniform-price double-sided auction. Vieira concludes that
the continuous double auction could be implemented with
Ethereum, though it is subject to expensive transaction costs.
A Uniform-price double-sided auction was too complex using
Ethereum, so it was performed on a centralized server.

B. Understanding the Gaps

Implementing a Transaction Management Platform (TMP)
requires a communication architecture, as well as trading
mechanisms that provide the capability to match bids and asks.
Blockchain-based solutions have the potential to enable large-
scale energy trading based on distributed consensus systems.
However, popular blockchain solutions, such as Bitcoin [22]
and Ethereum [23], possess design limitations that prevent
their direct application to matching energy trades. These
limitations stem from the complexity of additional constraints
and checks required, beyond the transactional integrity check
provided by proof-of-work algorithms.

For example, Aitzhan and Svetinovic [24] implemented a
proof-of-concept platform for decentralized smart grid energy
trading using blockchains. Their system is based on proof-of-
work consensus and they do not consider grid control, stability,
or scalability. Moreover, their approach still incurs privacy
problems since all transactions in these systems are public
[25].

Most related work discussing privacy examines it in the con-
text of smart meters. For example, McDaniel and McLaugh-
lin [26] discuss privacy concerns of energy usage profil-
ing, which smart grids potentially enable. Efthymiou and
Kalogridis [27] describe a method for securely anonymizing
frequent electrical metering data sent by a smart meter via a
third-party escrow mechanism.

Tan et al. [28] study privacy in a smart metering system
from an information-theoretic perspective in the presence of
energy harvesting and storage units. Their results show that
energy harvesting provides increased privacy by diversifying
the energy source, while a storage device can be used to
increase both energy efficiency and privacy. Transaction data,
however, provides more fine-grained information than smart
meter usage patterns [29]. Majumder et al. [30] present an
iterative double auction trading mechanism that preserves



participants’ privacy. However, this privacy property pertains
to the participants’ utility function models, not their identities.

Existing energy trading markets, such as the European
Energy Exchange [31] and project NOBEL in Spain, employ
the double-auction market mechanism [32], which can pre-
serve participant privacy. Typical exchange implementations,
however, involve centralized database architectures that are
prone to single points of failure.

Faqiry and Das [33] present an auction mechanism for
maximizing social welfare of buyers and sellers if the supply
is small. Their approach also provides some privacy, i.e.,
participants do not reveal their utility function. The objective
function of the microgrid controller is to maximize the power
sold. The social welfare objective function can simultaneously
be maximized by constricting buyers’ utility functions to be
convex.

To make the trading fair, the latter part of Faqiry and
Das’s paper considers an approach that discards the privacy
maintained during the first phase. Their work contains no
mechanism to check whether the buyer can produce the power
they claim they can supply, which may result in instability.
The authors also briefly mentioned that a distributed algorithm
could be applied to their auction mechanism, though they did
not implement this approach.

In contrast, our work presented in this paper provides a
distributed systems mechanism that considers the problem of
a broader definition of privacy, safety, and protection from
malicious actors as a combined problem.

IV. OVERVIEW OF THE ENERGY TRADING PROBLEM

This section formulates the problem of matching energy
future bids with asks (i.e., matching offers to buy energy
intended for delivery in the future with offers to sell energy)
in the local energy trading market. Our formulation aims
to promote market efficiency by maximizing the amount of
energy futures traded within the microgrid, while satisfying
microgrid safety requirements. We first introduce an initial
problem formulation that solves the energy trading problem
offline. We then describe the version of this problem that
considers a stream of incoming offers, which are cleared
periodically.

A. Safety Requirements

While trades are being cleared, we must consider safety
requirements. At the distribution level, the amount of power
that can be sent over a transmission line is typically limited
by the thermal properties of the conductor and is physically
enforced by protection equipment, such as overcurrent relays.
In traditional power systems, these capacity constraints are
enforced by deploying some combination of load and gen-
eration curtailment schemes, which effectively impose upper
bounds on the amount of power consumed by each load and
the amount of power injected into the network by each source.
For dispatchable generation, these upper bounds are typically
calculated by solving some variant of an optimal power flow
problem [34].

The settings of a TES is fundamentally different from set-
tings in which economic dispatch is appropriate, i.e., privately-
owned DERs are not dispatchable by the DSO. We therefore
implement line capacity safety constraints by formulating them
as constraints in the trading problem described below.

B. Problem Formalization

We begin by introducing a notation for elements of the
microgrid, which is summarized in Table I. We let F denote
the set of feeders. For a feeder f ∈ F , we let Cextf denote the

TABLE I
LIST OF SYMBOLS

Symbol Description
Microgrid

F set of feeders
Cext

f maximum net power consumption or net power
production in feeder f ∈ F

Cint
f maximum total power consumption or total power

production in feeder f ∈ F
∆ length of time intervals
Tclear minimum number of time intervals between the

finalization and delivery of a trade
Offers

Sf set of selling offers from feeder f ∈ F
Bf set of buying offers from feeder f ∈ F
S, B set of all selling and buying offers, resp.
S(t), B(t) set of selling and buying offers submitted by the

end of time interval t, resp.
Es, Eb amount of energy to be sold or bought by offers

s ∈ S and b ∈ B, resp.
Is, Ib time intervals in which energy could be provided

or consumed by offers s ∈ S and b ∈ B, resp.
Rs, Rb reservation prices of offers s ∈ S and b ∈ B, resp.
M(s), M(b) set of offers that are matchable with offers s and b,

resp.
I(s, b) Is ∩ Ib

Solution
ps,b,t amount of energy that should be provided by s to

b in interval t
πs,b,t unit price for the energy provided by s to b in

interval t
Feasible(S,B) set of feasible solutions given sets of selling and

buying offers S and B
p̂s,b,t, π̂s,b,t finalized trade values

Implementation Parameters
L prediction window used by prosumers when post-

ing selling and buying offers (min(L) = 2)
∆̂ length of the time step used for simulating the real-

interval of length ∆

∆s periodicity of solver that matches offers

maximum amount of power allowed to flow into or out of the
feeder at any point in time. Similarly, we let Cintf denote the
maximum amount of power that can be consumed or produced
within the feeder at any point in time.4 We assume that time
is divided into intervals of fixed length ∆ and we refer to the
tth interval as time interval t.

4In other words, limit Cext
f is imposed on the net production and net

consumption of all prosumers in feeder f , while limit Cint
f is imposed on

the total production and total consumption.



The input of the energy trading problem is the set of buying
and selling offers posted by the participants.5 For feeder f ∈
F , we let Sf and Bf denote the set of selling and buying offers
posted by participants located in that feeder, respectively.6 A
selling offer s ∈ Sf is a tuple (Es, Is, Rs), where

• Es is the amount of energy to be sold,
• Is is the set of time intervals in which the energy could

be provided,
• Rs is the reservation price, i.e., lowest unit price for

which the participant is willing to sell energy.

Similarly, a buying offer b ∈ Bf is a tuple (Eb, Ib, Rb),
where the values pertain to consuming/buying energy instead
of producing/selling, and Rb is the highest price that the
participant is willing to pay. For convenience, we also let S
and B denote the set of all buying and selling offers (i.e., we
let S = ∪f∈FSf and B = ∪f∈FBf ).

We say that a pair of selling and buying offers s ∈ S and
b ∈ B is matchable if

Rs ≤ Rb (1)
Is ∩ Ib 6= ∅. (2)

In other words, a pair of offers is matchable if there exists a
price that both participants would accept and a time interval in
which the seller and buyer could provide and consume energy.
For a given selling offer s ∈ S, we let the set of buying offers
that are matchable with s be denoted by M(s). Similarly, we
let the set of selling offers that are matchable with a buying
offer b be denoted by M(b) and we let I(s, b) = Is ∩ Ib.

A solution to the energy trading problem is a pair of vectors
(p,π), where

• ps,b,t is a non-negative amount of power that should be
provided by the seller s ∈ S and consumed by the buyer
b ∈M(s) in time interval t ∈ I(s, b).7

• πs,b,t is the unit price for the energy provided by seller
s ∈ S to buyer b ∈M(s) in time interval t ∈ I(s, b).

A pair of vectors (p,π) is a feasible solution to the energy
trading problem if it satisfies the following constraints:

• The amount of energy sold or bought from each offer is
at most the amount of energy offered:

∀s ∈ S :
∑

b∈M(s)

∑
t∈I(s,b)

ps,b,t ·∆ ≤ Es (3)

∀b ∈ B :
∑

s∈M(b)

∑
t∈I(s,b)

ps,b,t ·∆ ≤ Eb (4)

5Participants may include both prosumers and the DSO. The DSO can
shape load and trade energy futures by participating in the energy market in
the same way as prosumers.

6If the DSO wants to participate in this energy trading market, it can be
assigned to a “dummy” feeder in the problem formulation.

7We require the both the seller and buyer to produce a constant level of
power during the time interval.

• The amount of power flowing into or out of each feeder
is below the safety limit in all time intervals:

∀f ∈F , t :∑
s∈Sf

∑
b∈B

ps,b,t

−
∑
b∈Bf

∑
s∈S

ps,b,t

 ≤ Cextf

(5)
∀f ∈F , t :∑

s∈Sf

∑
b∈B

ps,b,t

−
∑
b∈Bf

∑
s∈S

ps,b,t

 ≥ −Cextf

(6)

• The amount of energy consumed and produced within
each feeder is below the safety limit in all time intervals:

∀f ∈ F , t :
∑
b∈Bf

∑
s∈S

ps,b,t ≤ Cintf (7)

∀f ∈ F , t :
∑
s∈Sf

∑
b∈B

ps,b,t ≤ Cintf (8)

• The unit prices are between the reservation prices of the
seller and buyer:

∀s ∈ S, b ∈M(s), t ∈ I(s, b) : Rs ≤ πs,b,t ≤ Rb (9)

The objective of the energy trading problem is to maximize
the amount of energy traded. Formally, an optimal solution to
the energy trading problem is

max
(p,π)∈ Feasible(S,B)

∑
s∈S

∑
b∈M(s)

∑
t∈I(s,b)

ps,b,t , (10)

where Feasible(S,B) is the set of feasible solutions given
selling and buying offers S and B (i.e., set of solutions
satisfying Equations (3) to (9) with S and B).

C. Advanced Problem Formulation

Our basic problem formulation described in Section IV-B
assumed that (1) all buying and selling offers B and S are
available at once and (2) the market is cleared in one take. In
practice, however, prosumers and the DSO may continuously
submit new offers as their predictions, their physical state,
and the market conditions change over time. As the set of
submitted offers grows, the optimal solution to the energy
trading problem may change, and the optimal value of each
ps,b,t may vary.

While each change can increase the amount of energy
traded, the trade values ps,b,t and πs,b,t must be finalized at
some point in time. At the very latest, values for interval t must
be finalized by the end of interval t − 1 or else participants
would have no chance of actually delivering the trade. We
therefore extend the energy trading problem to consider a
growing set of offers and a time constraint for finalizing
trades. Our approach finalizes a minimum set of trades in each
interval, which maximizes efficiency while providing safety.

We assume that all trades for time interval t (i.e., all
values ps,b,t and πs,b,t) must be finalized by the end of time



interval t−Tclear, where Tclear is a positive integer constant,
which is set by the operator. Preventing “last-minute” changes
is crucial for safety and fairness since it allows both the DSO
and the prosumers to prepare for delivering (or consuming) the
right amount of power. In practice, the value of Tclear must be
chosen by taking into account both physical constraints (e.g.,
how long it takes to turn on a generator) and communication
delay (e.g., some participants may be delayed in learning of a
trade due to network disruptions).

We let p̂s,b,t and π̂s,b,t denote the finalized trade values.
Likewise, we let B(t) and S(t) denote the set of buying and
selling offers that participants have submitted by the end of
time interval t. The system then takes the following steps at
the end of each time interval t:
• Find an optimal solution (p∗,π∗) to the extended energy

trading problem:

max
(p,π)∈ Feasible(S(t),B(t))

∑
s∈S(t)

∑
b∈M(s)

∑
τ∈I(s,b)

ps,b,τ (11)

subject to

∀ τ < t+ Tclear : ps,b,τ = p̂s,b,τ (12)
πs,b,τ = π̂s,b,τ (13)

• Finalize trade values for time interval t+Tclear based on
the optimal solution (p∗,π∗):

p̂s,b,t+Tclear
:= p∗s,b,t+Tclear

(14)

π̂s,b,t+Tclear
:= π∗s,b,t+Tclear

(15)

By performing the steps outlined above at the end of each
time interval, trades are always cleared based on as much
information as possible (i.e., considering as many offers as
possible) without violating any safety or timing constraints.

V. OUR SOLUTION APPROACH TO THE ENERGY TRADING
PROBLEM

This section presents our hybrid approach for solving the
energy trading problem on a decentralized computing plat-
form. This hybrid approach combines the auditability and
trustworthiness of Ethereum blockchain-based smart contracts
with the efficiency of more traditional computing platforms.
We first show how to solve the problem by formulating it
as a linear program and then describe the computation and
verification performed by the computational nodes and the
smart contract in a decentralized microgrid.

A. Linear-Programming Solution

We solve the basic energy trading problem efficiently by
formulating it as a linear program. First, we create real-valued
variables ps,b,t and πs,b,t for each s ∈ S, b ∈ M(s), t ∈
I(s, b). We then reformulate the matching problem as a linear
program:

max
p,π

∑
s∈S

∑
b∈M(s)

∑
t∈I(s,b)

ps,b,t (16)

subject to Equations (3) to (9) and

p ≥ 0 and π ≥ 0. (17)

The extended energy trading problem introduced in Sec-
tion IV-C can similarly be reformulated as a linear program
by considering S(t), B(t), p̂, π̂, and the additional constraints.

B. Hybrid Solver Implementation

Although solving linear programs is not computationally
hard, it can be challenging in resource-constrained computing
environments with a large number of variables and constraints.
Moreover, computation is relatively expensive on blockchain-
based distributed platforms, so solving the energy trading
problem using a blockchain-based smart contract does not
scale in practice.8 We therefore apply a hybrid approach
that combines the trustworthiness of blockchain-based smart
contracts with the efficiency of more traditional computational
platforms.

Our hybrid approach uses a high-performance computer
to solve the computationally expensive linear program off-
blockchain and then applies a smart contract to record the
solution on the blockchain. Implementing this hybrid approach
securely and reliably required us to address the following
issues:
• Computations performed off-blockchain do not satisfy the

auditability and security requirements that smart contracts
do. The results of any off-blockchain computations must
therefore be verified in some way by the smart contract
before recording them on the blockchain.

• Due to network disruptions and other errors (including
deliberate denial-of-service attacks), the off-blockchain
solver may not provide the smart contract with a solution
on time (i.e., before trades should be finalized). The smart
contract must therefore be able to proceed without an up-
to-date solution.

• To enhance reliability, the smart contract should accept
solutions from multiple off-blockchain sources, though
these sources may provide different solutions. The smart
contract must therefore be able to choose from multiple
solutions, some of which may come from compromised
computers.

1) A Blockchain-based Smart Contract: We implement a
smart contract that can (1) verify whether a solution (p,π) is
feasible and (2) compute the value of the objective function for
a feasible solution. Compared to finding an optimal solution,
these operations are computationally inexpensive and can thus
be performed on a blockchain-based decentralized platform.
Our smart contract uses these capabilities to provide the
following functionality:
• Solutions may be submitted to the contract at any time.

The contract verifies the feasibility of each submitted
solution and if the solution is feasible the value of the
objective function is then computed. The smart contract
always keeps track of the best feasible solution submitted
so far, which we call the candidate solution.

8Solidity (the preferred high-level language for Ethereum) currently lacks
built-in support for certain features (such as floating-point arithimetic) that
would facilitate the implementation of a linear programming solver.



• At the end of each time interval t, the smart contract
finalizes the trade values for interval t+ Tclear based on
the candidate solution.9

This smart contract functionality achieves a high level of
security and reliability. In particular, an adversary cannot
force the contract to finalize trades based on an unsafe (i.e.,
infeasible) solution since such a solution would be rejected.
Likewise, an adversary cannot force the contract to choose an
inferior solution instead of a superior one. The only action
available to an adversary, therefore, is proposing a superior
feasible solution, which would actually improve energy trading
in the microgrid.

The contract is also reliable and can tolerate temporary
disruptions in the solver or the communication network. In
fact, any solution (p,π) that is feasible for sets S and B is
also feasible for supersets S ′ ⊇ S and B′ ⊇ B. As the sets of
offers only grow over time, the contract can use a candidate
solution submitted during time interval t to finalize trades in
any subsequent time interval τ > t.

Without receiving new solutions, the difference between the
amount of finalized trades and the optimum only increases
gradually. In particular, the earlier candidate solution can
specify trades for any future time interval. The difference is
therefore due only to the offers that have been posted since
the solution was found and submitted.

2) An Off-blockchain Solver: We complement the smart
contract with an efficient linear programming solver (e.g.,
CPLEX [35]). This solver can be run off-blockchain on any
capable computer or on multiple computers for reliability. The
solver runs periodically to find a solution to the energy trading
problem based on the latest set of offers posted.

After the solver finds a solution, it is submitted to the
smart contract in a blockchain transaction. If new offers have
been posted since the solver started working on the solution,
the contract will still consider the solution as feasible. This
capability stems from the fact that any feasible solution for sets
S and B are also feasible for supersets S ′ ⊇ S and B′ ⊇ B.

From the solver’s perspective, there are many advantages
of submitting multiple solutions to the smart contract for the
same problem. For example, this design allows the linear pro-
gramming solver to run as an “anytime algorithm.” Moreover,
multiple—potentially untrusted—entities can try to solve the
problem and submit solutions since the smart contract always
chooses the best feasible one, which is important in microgrids
where a trusted third-party may no always be present. In such
settings, prosumers can volunteer and provide solutions to the
energy trading problem.10 We therefore enable finding solu-
tions in an efficient and flexible manner, while reaping smart
contract benefits, such as auditability and trustworthiness.

9If no solution has been submitted to the contract thus far (which may
occur right after the trading system has been launched) p = 0 may be used
as a candidate solution.

10Although each prosumer will try to submit a solution that favors itself,
the submitted solution must still be superior with respect to the optimization
objective, which roughly corresponds to social utility. Hence, prosumers are
incentivized to improve social utility by submitting a superior solutions that
favors the prosumer, which we analyze in future work.

VI. STRUCTURE AND FUNCTIONALITY OF OUR
BLOCKCHAIN-BASED ENERGY TRADING SYSTEM

This section examines the structure and functionality of
a system we developed to provide the energy trading and
market clearing capabilities described in prior sections. We
first summarize the run-time platform and then describe of the
messages exchanged between these components in the trading
workflow.

A. Overview of the RIAPS Platform

In any system that relies on distributed real-time and em-
bedded computing, a key ingredient is the computing platform
that provides the foundations for all algorithms, isolates the
hardware details from the algorithms, and provides essential
mechanisms for resource management, fault tolerance, and
security. The work presented in this paper is based on the
‘Resilient Information Architecture Platform for Smart Grid’
(RIAPS) [36], which supports scalable, dependable, and secure
dissemination of information between actors. Each actor in
RIAPS is a composition of several libraries that provide the
following capabilities:
• a component model that provides a concurrent model

of computation for building distributed real-time appli-
cations,

• a messaging framework for facilitating interactions
among actors,

• a resource-management framework for controlling the use
of computational resources,

• a fault-management framework for detecting and mitigat-
ing faults in all layers of the system,

• a security framework to protect the confidentiality, in-
tegrity, and availability of system under cyber-attacks,

• a fault tolerant time synchronization service,
• a discovery framework for establishing the network of

interacting actors in an application, and
• a deployment and management framework for adminis-

tering and coordinating the distributed applications from
a control room.

B. Energy Trading System Architecture

Figure 3 shows the architecture of our energy trading
system. Our implementation uses the Ethereum blockchain

Prosumer
(Python, geth)

Prosumer
(Python, geth)

DSO
(Python, geth)

Solver
(Python, CPLEX)

Blockchain
miner (geth)

Blockchain
miner (geth)

Blockchain
miner (geth)

Smart contract
(Solidity)

∅MQ

Ethereum

Fig. 3. Components of Our Blockchain-based Energy Trading System.



middleware as the decentralized computation platform running
smart contracts. Other components interact with the blockchain
network using the geth Ethereum client.

The smart contract is implemented in Solidity (which is
a high-level language for programming Ethereum) and is
executed by a network of geth mining nodes. The specific
platforms and tools used in our implementation are shown in
parentheses and as arrow labels in Figure 3. All components
are written in Python and communicate with each other using
ZeroMQ, which is high-performance asynchronous messaging
middleware supported by the RIAPS platform.

C. Providing Privacy

To protect prosumer privacy, anonymous addresses are
used when interacting with the blockchain (e.g., posting of-
fers). By periodically generating new anonymous addresses
at random, other participants are prevented from linking the
anonymous addresses to their actual identities [4]. This ap-
proach ensures that trading activities are private. In contrast
with our prior work [4], the addresses used in the workflow
described in Section VI-D are not completely anonymous.
Since the blockchain-based smart contract must check feeder-
level safety constraints, each anonymous address must be
linked to a feeder. An anonymous address can thus only hide
the prosumer’s identity, but not its feeder. This design is a
manifestation of the trade-off between safety and privacy.11

Ironically, anonymous addresses pose a further threat to
safety since participants can generate anonymous addresses at
almost no cost, which enables them to post selling and buying
offers for large amounts of energy, without any intention of
delivering and without facing any repercussions. A malicious
or faulty participant could easily destabilize the grid with this
form of reckless trading. Consequently, the amount of energy
that may be traded by anonymous addresses belonging to a
participant must be limited.

To enforce this constraint, we employ the concept of energy
assets, initially introduced in [4] and used in the trading work-
flow described in Section VI-D. An energy asset represents
a permission to sell or buy a specific amount of energy in
a specific set of time intervals. Each prosumer wanting to
transfer assets to an anonymous address must first ask the
DSO, which then checks whether it is safe to give permission
to the participant. If so, the DSO records this transfer on the
blockchain.

When a participant subsequently posts an offer from the
anonymous address, the smart contract can check whether
the address has the assets required for the offer. Only the
DSO can link the anonymous address to the participant. These
energy assets thus enforce participant-level constraints without
violating privacy.

D. Energy Trading Workflow

Fig. 4 depicts the energy trading workflow.

11Actually, participants can remain anonymous among a class of feeders
with same number of participants and identical safety constraints.

Solid lines in this figure represent messages, including
smart-contract function calls (i.e., blockchain transactions),
whereas dashed lines represent smart-contract events. To sim-
plify the presentation, the figure shows only one prosumer
and only a single message of each type. In practice, a large
number of prosumers may interact with the DSO and the smart
contract, and each of them may exchange multiple messages.

The trading workflow includes the following messages:
• withdrawAssets(anonAddress, energy, intervals,

amount), which is a message sent by a prosumer to the
DSO, asking the DSO to transfer energy and/or financial
assets from the prosumer’s account at the DSO to an
anonymous address. Before sending this message, the
prosumer first generates a random anonymous address
to protect its privacy. This message specifies the assets
the prosumer wishes to withdraw (i.e., amount of energy
and time intervals) and the anonymous address to which
the DSO should transfer them. The prosumer may send
this message long before actually engaging in trading,
so the DSO need not be online continuously.

• failedWithdrawal(anonAddress, msg), which is a mes-
sage sent by the DSO to the prosumer notifying the
prosumer that the requested assets cannot be withdrawn,
e.g., due to energy safety requirements or insufficient
funds.

• addEnergy(anonAddress, energy, intervals),
addFinancialBalance(anonAddress, amount), which
are smart contract functions called by the DSO (i.e.,
transactions recorded on the blockchain) in response
to the prosumer’s request used to create energy and
financial assets on the blockchain and transfer them to
an anonymous address. Before recording this transaction,
the DSO must first verify that enabling the prosumer to
trade these assets does not violate any safety constraints
and that the anonymous address is linked to the correct
feeder.

• AssetAdded(anonAddress, energy, intervals),
FinancialAdded(anonAddress, amount), which are
broadcast messages emitted by the smart contract (i.e.,
events logged on the blockchain) notifying the prosumer
that the requested assets have been transferred to the
anonymous address.

• postOffer(energy, intervals, price), which is a
smart-contract function called by a prosumer (from its
anonymous address), publicly posting an energy bid or
ask.

• OfferPosted(offerID, energy, intervals, price),
which is a message broadcast by the smart contract
notifying solvers that an offer was posted.

• submitSolution(powers, prices), which is a smart-
contract function called by a solver submitting a new
solution for the energy trading problem.

• SolutionFinalized(powers, prices), which is a mes-
sage broadcast by the smart contract notifying both
prosumers and solvers of energy trades that have been
finalized.
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Fig. 4. Sequence Diagram of the Trading Workflow.

• depositEnergy(energy, intervals),
depositFinancial(amount), which are smart-contract
functions called by a prosumer to deposit energy and
financial assets to the prosumer’s account. To protect
privacy, these calls do not specify the prosumer, so the
DSO must keep track of which prosumer uses which
anonymous address.

• EnergyDeposited(anonAddress, energy, intervals),
FinancialDeposited(anonAddress, amount), which are
messages broadcast by the smart contract notifying the
DSO that assets have been deposited from anonymous
address. These messages in turn triggers the transfer of
the designated assets to the prosumer’s account at the
DSO.

E. Implementation Considerations

1) Parameters: The system of prosumers, solvers, DSO,
and smart contract operates mostly asynchronously. They all
operate as independent processes running on remote nodes,
with their own time bases. In particular, the solver can op-
erate as a periodic process (with a period ∆s), waiting on
information from the smart contract about all the offers that
have been posted in the prior period. The only synchronous
communication occurs between prosumers and the DSO.

Prosumers can also operate as periodic processes, submit-
ting their offers and bids to the smart contract. In practice,
prosumers are synchronized with real wall-clock time, making
their bids and asks known for future intervals, depending upon
the time at which they post their bids/asks and how far in the
future they can predict their usage or operation. We make their
prediction window L a parameter of the system.

The value of the predication window parameter is at least 2,
because prosumers must make a bid/ask for at least the next
interval (we count the current interval in L). A larger value of
this prediction window increases the risk of uncertainty for the

prosumer since they are expected to fulfill their bid or ask.12

During the experiments presented in Section VII, we simulated
∆ as ∆̂ to accelerate the process.13 These parameters are
described in Table I.

2) Speed and Synchronization Considerations: A relevant
problem for TMP is deciding how fast it can run and ensuring
that trades for the next interval can clear before the Tclear
parameter, which has a minimum bound of 1. Our trading sys-
tem assumes that regular network communication mechanisms
are fast. Communication with the smart contract, however, is
limited by the block mining rate and multiple messages must
be exchanged in each interval (see Fig. 4).

Given these constraints, miners need to work fast enough
to mine a few blocks in each time interval. In a closed
environment, this goal can be achieved by reducing the dif-
ficulty of the cryptographic puzzle solved for proof-of-work
consensus. In our system we can clear transactions much faster
than one 15-minute time interval (see Fig. 11). To scale up
performance in larger systems, the proof-of-work consensus
may be replaced, e.g., by a proof-of-stake mechanism.

Another challenged addressed by our trading system was
the synchronization between different agents. The RIAPS run-
time platform provides high-precision time synchronization
[37]. Even if only the network time protocol (NTP) is used as
the synchronization mechanism, however, the system operates
correctly for the following reasons:

• In practice, time intervals are relatively long (e.g., 15
minutes), compared to typical communication delays.

• Our smart contract ensures that the system always pro-
ceeds to the next time interval, though the accuracy of

12The size of the prediction window is part of the prosumer strategy, which
is not explored in this paper since we focus on the implementation of the TMP.

13This value represents the amount of real time passed in the simulation
before proceeding to the next interval, which allows us to accelerate the
experiment since running the system slower would be easier.



this is limited by the mining rate.
• Our trading system can tolerate or discard out-of-order

and delayed messages due to the event chronology im-
plemented in the blockchain platform.

Nevertheless, prosumers should try to post their offers early
within a time interval so that solvers include them in the
solution for the current time interval. Conversely, solvers
should wait for some time before starting to work so they
can collect all (or at least most) of the offers posted in the
interval.

VII. EXPERIMENT TESTBED AND ANALYSIS OF RESULTS

This section analyzes the results of experiments performed
to evaluate the performance of our energy trading system
described in Section VI. The source code is available online
at [38].

A. Overview of the Microgrid Configuration

The experiments presented in this section are based on a
collection of load traces recorded by Siemens from a microgrid
in Germany that contained 102 homes across 11 feeders (5
producers and 97 consumers). Figure 5 describes the feeder
structure, the number of participants per feeder, and the feeder
safety limits of this microgrid. Brown nodes in this diagram

Fig. 5. Feeder Diagram.

are feeder junctions, numbered 1 to 11 from top to bottom.
Black nodes are the overcurrent relays, which ensure that the
total power flowing in and out of the feeder is below 20 kW.
Green nodes are the junction points for the producers (5) and
red nodes are junction points for the consumers (97). There
are 102 prosumers in total. We use ∆ = 15 minute intervals,
resulting in a total of 96 intervals across the whole day.

Figure 6 shows the total production and consumption across
this microgrid. The horizontal axis shows the starting time for
each of the 96 intervals. Since the dataset does not include
prices, we assume that reservation prices are uniform in our
experiments and thus focus on studying the amount of energy
traded and the performance of the system.

The graph in Figure 6 also shows the energy traded per
interval without battery (Test A), and with battery Tests C and
D (see Table II). The amount of energy traded can be lower
than both supply and demand at the same time due to safety
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Fig. 6. Load Profile (i.e., Total Consumption) and Generation Profile (i.e.,
Total Production) in kWh per 15 Minute Intervals Aggregated Across the
Microgrid.

constraints. These constraints limit the amount of energy that
can flow out of producers’ feeders.

A key contribution in our work is the ability to specify mul-
tiple time intervals for selling offers. We therefore extended
the trace collected by Siemens to allow each producer to have
a battery with a total capacity of 90 kWh. Producers can use
their batteries to store energy generated within a time interval
and make it available in future time intervals. The resulting
offers always span a contiguous set of time intervals, so they
can be specified by their starting time and length.

Figure 7 shows the time intervals for one producer. The red
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Fig. 7. Energy Offered in Each Time Interval by the First Prosumer of the
First Feeder When Using a Battery (shown by the blue line).

bars in this figure indicate the number of contiguous intervals
for which the offer is valid. The total battery capacity is
90 kWh and we assume the battery charges at a rate of 10
kWh per interval. Producers are assumed to keep the battery
available until the end of the test, which is the 95th interval, so
the red bars taper off in consecutive intervals. Producers charge
their batteries only when total consumption is less than total
production, which happens just after 12:00 PM, as shown in
Figure 6.

B. Experiment Testbed Structure and Functionality

Our experiment testbed comprises a cluster of 31 Beagle-
Bone Black (BBB) single-board computers, which are shown



in Figure 8. These BBBs act as participants in the energy

Fig. 8. Hardware Testbed.

trading system and are configured as light clients because
they are resource-constrained and thus not suitable for mining
or acting as solvers. As a result, they can safely access the
blockchain, but do not participate in the consensus process.

In the dataset provided by Siemens, there are 95 consumers
and 7 producers of power, as shown in Figure 5. These
participants are divided between the BBBs in the cluster. The
Platform for Transactive IoT Blockchain Applications with
Repeatable Testing (PlaTIBART) environment [39] provided
us with the necessary DevOps support.

The block mining is provided by external hardware, lo-
cally or in a cloud server. We had a single miner instance
that maintained the blockchain and a single solver instance
that used CPLEX [35] to solve the energy trading problem.
This setup can easily be scaled up to add more miners and
solvers if sufficient computational resources are available. The
communication between the components was implemented
using ZeroMQ, which a communication protocol supported
by RIAPS.

C. Experiment Tests and Analysis of Results

Table II describes the specifics of the four categories of tests
that we ran in our experiments. The tests vary the different

TABLE II
PARAMETER VALUES FOR EXPERIMENTS (SEE TABLE I FOR SYMBOL

DEFINITIONS)

A B C D
∆[m] 15 15 15 15
∆s [s] 5 5 5 5
∆̂ [s] 120 120 120 120
L 2,3,5,7,10,13 2,3,7,10 5 13
Battery no yes yes yes
Figure 9 9 10,11,6,9 6,9

implementation parameters (see Table I for symbol definitions
and Section VI-E). This flexibility enabled us to study how
changing these parameters affected the total amount of energy
traded.

Figure 9 shows the total energy traded for different tests. We
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Fig. 9. Total Amount of Energy Traded in the Entire Microgrid (With and
Without Batteries) for Various Prediction Window Lengths.

varied the prediction window (L) for the participants from 2 to
13, i.e., in each interval participants submitted offers starting
from the next 1 to 12 intervals (the current interval is always
counted in the prediction window). The experiment simulated
the whole day from the first interval starting at 0:00 (12:00
AM) to the 95th interval ending at 23:59 (11:59 PM).

As expected, increasing the prediction window without
batteries had no effect on the total amount energy traded. This
result occurred because any production must be dispatched
within one time interval. The solver therefore cannot optimize
energy usage across multiple intervals, even if future offers
are available.

If batteries were available in the system, however, the
amount of energy traded increased since the solver matched
offers across multiple time intervals at once. Trading increased
with the prediction window due to the increased analysis space
available to the solver. Fig. 6 shows the per interval trades for
three of these cases (A, C, and D): without battery, with battery
and L = 5, as well as with battery and L = 13.

Fig. 10 shows the energy matched per interval in test case C
for the first prosumer of the first feeder. The stacked colors
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show the different consumers that were matched with the
prosumer in each interval (the same color across multiple
intervals does not necessarily mean it is the same consumer).
When the energy traded exceeded the generation, the excess
was drawn from the battery.

Fig. 11 shows a histogram of the time between posting an
offer and recording a trade on the blockchain that includes the
offer (also in Test Case C). This time included the communi-
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Fig. 11. Real Time in Seconds Between Posting an Offer and Recording a
Trade that Includes the Offer (Test Case C).

cation delay, the time to mine the blockchain, and the running
time required to find a solution. The time length was always
less than ∆̂, which was 120 seconds (see Table II). Since
the solver ran periodically and received offers asynchronously,
there were a few runs before a suitable match was found.

VIII. CONCLUDING REMARKS

This paper describes the design and implementation of a
transaction management platform (TMP) for transactive mi-
crogrids. Our solution enables prosumers to trade energy with-
out threatening their privacy or compromising system safety.
The Ethereum blockchain platform provides decentralized trust
and consensus capabilities, which protect the transactive en-
ergy system from malicious actors. Our hybrid solver approach
combines a validator based on Ethereum smart contracts with
an external optimizer, which enables the platform to clear
offers securely and efficiently. Likewise, the ability to trade
across multiple time intervals enables participants to take full
advantage of batteries, thereby smoothing the load on the bulk
power grid.

The following are key lessons we learned during this work
(see Table III for a synopsis).
• The performance results in Figure 11 demonstrate that

our TMP can process and match trades much faster
than what would typically be required in practice (see
Section VI-E). This performance stems largely from
the communication architecture provided by combining
Ethereum and our RIAPS middleware.

• A key design challenge was resolving the conflict be-
tween safety, privacy, and efficiency. For example, the
enforcement of feeder-level safety constraints required
prosumers to reveal their feeder during trading, instead
of being completely anonymous. Likewise, feeder-level
safety constraints confounded meeting energy demand

with local supply, even if there was surplus production in
the microgrid (Figure 6).

• Feeder-level operational safety and stability constraints
on trading were enforced via a blockchain-based smart
contract (see Section V-B), in addition to the prosumer-
level constraints enforced by tracking energy assets (see
Section VI-C and [4]).

• Market efficiency and security were ensured by enabling
the Ethereum smart contract to validate and evaluate the
trading solutions that it receives (see Section V-B).

• Prosumer privacy was enabled by allowing them to
hide their identity using anonymous addresses (see Sec-
tion VI-C and [4]). To enable enforcing feeder-level
safety constraints, however, prosumers still needed to
reveal the feeder to which they belonged.

TABLE III
REQUIREMENTS AND PROPOSED SOLUTIONS

Requirement Solution Approach

Communication Fabric RIAPS [36] and Ethereum

Operational Safety and
Stability

Feeder-level constraints modeled in the energy
trading problem and enforced by the smart contract
(Section V-B); prosumer-level constraints enforced
by energy asset tracking (Section VI-C, [4])

Market Efficiency and
Security

Objective modeled in the energy trading problem
and enforced by the smart contract (Section V-B)

Privacy Anonymous addresses (Section VI-C, [4])

Our future work will extend the approach presented in this
paper to enable the energy trading system to recovery from
failures by using a fault tolerance matching algorithm that
ensures supply and demand can still be matched even if a
certain number of physical elements fail or prosumers are
disconnected. The datasets presented in this article are not
readily available because as they are proprietary. This limits
replicability, however, researchers are welcome to try the code
with synthetic datasets available on our repository. Requests
to access the datasets should be directed to the authors.
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[14] E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and
C. Weinhardt, “”Designing microgrid energy markets: A case study:
The Brooklyn Microgrid”,” Applied Energy, vol. 210, pp. 870 – 880,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S030626191730805X

[15] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “Dissecting tendermint,” in Networked Systems, M. F. Atig
and A. A. Schwarzmann, Eds. Cham: Springer International Publishing,
2019, pp. 166–182.

[16] Tendermint, “What is Tendermint?” [Online]. Available: https:
//docs.tendermint.com/master/introduction/what-is-tendermint.html

[17] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, Sep. 1997. [Online]. Available:
https://journals.uic.edu/ojs/index.php/fm/article/view/548

[18] J. Bonneau, “What Bitcoin’s White Paper Got Right, Wrong and What
We Still Don’t Know,” 2018, available at: https://www.coindesk.com/
what-bitcoins-white-paper-got-right-wrong-and-what-we-still-dont-know.

[19] L. Newman, “$280M Worth of Ethereum Is Trapped Thanks
to a Dumb Bug,” Available at: https://www.wired.com/story/
280m-worth-of-ethereum-is-trapped-for-a-pretty-dumb-reason/,
November 2017.

[20] K. Finley, “A $50 Million Hack Just Showed That the DAO
Was All Too Human,” Available at: https://www.wired.com/2016/06/
50-million-hack-just-showed-dao-human/, June 2016.

[21] G. B. Vieira, “A Blockchain Energy Trading Platform For Microgrids,”
Master’s thesis, University of Southampton, 2018, available at:
https://github.com/guibvieira/Microgrid-Blockchain-Project/blob/
master/msc dissertation final.pdf.

[22] S. Nakamoto. (2008) Bitcoin: a peer-to-peer electronic cash system.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[23] V. Buterin et al., “Ethereum white paper,” 2013.
[24] N. Z. Aitzhan and D. Svetinovic, “Security and Privacy in Decentralized

Energy Trading through Multi-signatures, Blockchain and Anonymous
Messaging Streams,” IEEE Transactions on Dependable and Secure
Computing, 2016.

[25] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart

contracts,” in 37th IEEE Symposium on Security and Privacy (S&P).
IEEE, May 2016, pp. 839–858.

[26] P. McDaniel and S. McLaughlin, “Security and privacy challenges in
the smart grid,” IEEE Security & Privacy, vol. 7, no. 3, 2009.

[27] C. Efthymiou and G. Kalogridis, “Smart grid privacy via anonymization
of smart metering data,” in 1st IEEE International Conference on Smart
Grid Communications (SmartGridComm). IEEE, 2010, pp. 238–243.

[28] O. Tan, D. Gunduz, and H. V. Poor, “Increasing smart meter privacy
through energy harvesting and storage devices,” IEEE Journal on
Selected Areas in Communications, vol. 31, no. 7, pp. 1331–1341, 2013.

[29] A. Hussain, V. H. Bui, and H. M. Kim, “A Resilient and Privacy-
Preserving Energy Management Strategy for Networked Microgrids,”
IEEE Transactions on Smart Grid, 2017.

[30] B. P. Majumder, M. N. Faqiry, S. Das, and A. Pahwa, “An efficient
iterative double auction for energy trading in microgrids,” in 2014 IEEE
Symposium on Computational Intelligence Applications in Smart Grid
(CIASG). IEEE, December 2014, pp. 1–7.

[31] European Power Exchange, “EPEX SPOT operational rules,” 2017. [On-
line]. Available: http://www.epexspot.com/en/extras/download-center/
technical documentation

[32] D. Ilic, P. G. D. Silva, S. Karnouskos, and M. Griesemer, “An energy
market for trading electricity in smart grid neighbourhoods,” in 6th
IEEE International Conference on Digital Ecosystems and Technologies
(DEST), June 2012, pp. 1–6.

[33] M. N. Faqiry and S. Das, “Transactive energy auction with hidden
user information in microgrid,” arXiv preprint arXiv:1608.03649, 2016.
[Online]. Available: https://arxiv.org/abs/1608.03649

[34] S. Frank and S. Rebennack, “An introduction to optimal power flow:
Theory, formulation, and examples,” IIE Transactions, vol. 48, no. 12,
pp. 1172–1197, 2016.

[35] IBM ILOG CPLEX, “V12. 1: User’s manual for CPLEX,” International
Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[36] https://riaps.isis.vanderbilt.edu/redmine/projects/riaps.
[37] P. Volgyesi, A. Dubey, T. Krentz, I. Madari, M. Metelko, and G. Karsai,

“Time synchronization services for low-cost fog computing applica-
tions,” in 28th International Symposium on Rapid System Prototyping
(RSP). IEEE, October 2017.

[38] S. Lab, “transactive-blockchain,” 2019. [Online]. Available: https:
//github.com/scope-lab-vu/transactive-blockchain

[39] M. A. Walker, A. Dubey, A. Laszka, and D. C. Schmidt, “PlaTIBART:
a platform for transactive IoT blockchain applications with repeatable
testing,” in 4th Workshop on Middleware and Applications for the IoT
(M4IoT), December 2017.

[40] A. Laszka, S. Eisele, M. Walker, and K. Kvater-
nik, “Design and implementation of safe and private
forward-trading platform for iot-based transactive microgrids,”
2017. [Online]. Available: https://pdfs.semanticscholar.org/402e/
580d90132db773c69b74806cdc6bf1716683.pdf

[41] A. Laszka, S. Eisele, A. Dubey, G. Karsai, and K. Kvaternik, “Transax:
A blockchain-based decentralized forward-trading energy exchanged
for transactive microgrids,” 2018 IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS), pp. 918–927, 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/86450011


