Analyzing the Feasibility of Generating Data Visualizations

from Hand-drawn Sketch

Visualization Implementation Train ML model

(A) (B)
Data Communication Tasks ——» it
Implementation ML Input
: (1) ‘ D
Question +———— ML Model

Description E—

| @<Ll

a pie chart with legends
on the left side

(E)

=fring>

</ Lgand >

Generated DSL

Visualization
| Experts | o —————— R,
T
i) !)
! Efl 7
: ED RE <reve
|Gnmmunity | 1 il | ion>
| A > splid
! <lagend> Trus
i <lagendPos itien
Document | i </mtractures
| i Model input:
|
|

es Using Deep Learning

Construct Dataset Native Visualization Tools

JavaScript
Dataset R
Sketch
Style Transfer

Function

\,

DSL Structure

Evaluation

()

Visualization
Features

{1} coding problems

(2) transfer mode! output
to visualization

(3) generate sketch data
(4) evaluation ML model
from visualization

</simplitication>
</filiBtyla=

« lafe </ legerdPesitions

Visualization in
target tool

Fig. 1. An Overview of the Sketch2Vis problem. Block(A) shows the Sketch2Vis problem where a hand-drawn sketch of a desired
visualization is provided to a deep learning model to generate visualizaton code. Our work covers three areas of this challenge: dataset
construction, machine learning (ML) model improvement, and dataset scaling. Block(B) shows the high-level approach architecture.
Block(C) and Block(D) show how we use Domains-specific Languages (DSLs) and style transfer to aid in dataset generation. Block(E)
shows an example (Input, intermediate output, and visualization output) of the Sketch2Vis model.

Abstract—Data visualization has become a vital tool to help people understand the driving forces behind real-world phenomena.
Although the learning curves of visualization tools have been reduced significantly, domain experts still may require training to use them.
This paper investigates the feasibility of using deep learning techniques and tools to generate the source code for multi-platform data
visualizations automatically from hand-drawn sketches provided by a domain expert. The idea is similar to how an expert might sketch
on a cocktail napkin and ask a software engineer to implement the sketched visualization. We explore key challenges in generating
visualization code from hand-drawn sketches, particularly model training challenges, since acquiring a large dataset of sketches paired
with visualization source code is expensive. We present solutions for these problems and conduct experiments that demonstrate the
feasibility of generating visualizations from hand-drawn sketches. The best models tested reach an structural accuracy of 95% in

generating correct data visualization source code from hand-drawn sketches of visualizations.

Index Terms—Data Visualization, Deep Learning

<+

1 INTRODUCTION

Data visualization is a vital tool that enables people to better understand
the driving forces behind real-world phenomena [13]. These visual-
izations help provide insights by creating graphical representations
of data element relationships, trends, and dominant features. Many
visualization tools are available, ranging from programming-based visu-
alization libraries (such as Matplotlib [42] and D3 [4]) to user-friendly
graphical user interface (GUI) apps (such as Tableau [33]) for building
visualizations interactively.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Building good data visualizations from raw data is hard. Program-
mers need training to use data visualization tools competently, includ-
ing tools that use GUI-based interfaces [10]. A consequence of this
need for training is that domain experts who need visualizations to
understand physical systems (e.g., power grids, pedestrian traffic, or
healthcare processes) often team up with a visualization drafter (e.g., a
software engineer or data scientist) to build a data visualization collab-
oratively [38].

For example, consider a scenario where a physician unfamiliar with
data visualization tools needs several visualizations produced to un-
derstand how data (e.g., heart rate, pulse oxygen, blood glucose data)
from medical devices attached to a patient correlate with changes in the
patient’s blood pressure. The physician could state these requirements
to the drafter and describe the format they want the medical device data
presented in, which could then be used to generate the visualizations.
The physician might also draw a sketch to describe roughly what they
expect the final visualization to look like.

In this scenario, the sketch would provide an abstract representation

& :

User
Drawn Sketch
Model

DSL

Fig. 2. A Scenario of the Sketch2Vis Problem in Mobile Devices.

or set of constraints that the final visualization of the data is expected
to adhere to (e.g., a drawing of a line plot with separate series for each
of heart rate, pulse oxygen, blood glucose vs. blood pressure). The
drafter would take the high-level sketch of the requirements describing
the type of visualization and a description of the data to use (e.g.,
provided by the labels of the sketch). They could then instantiate a
concrete visualization in source code and connect it to the appropriate
data corresponding to labels in the sketch.

Research question: Can deep learning be used to generate vi-
sualizations from hand-drawn sketches automatically? Drawing is
a natural way for domain experts to express their visualization goals
since hand-drawn sketches are rich in information without specifying
visualization terminologies. By leveraging sketches as a type of input
for data visualization, visualization tools could potentially make it eas-
ier for domain experts and untrained professionals to explore data sets.
Moreover, as a natural way to interact with mobile devices, sketches
can be integrated into mobile data exploration tools [32] to help users
operate visualization features easier on mobile devices.

We call the problem of translating human sketches into data vi-
sualization source code the “Sketch2Vis problem.” Figure 2 shows
a scenario of applying the Sketch2Vis problem on mobile apps. As
shown in this figure, users can draw sketches on a mobile device with-
out specifying visualization implementation details and a deep learning
model can then generate source code for the desired visualization in
multiple target visualization libraries. We focus on the generation of
the source code to realize the visualization-only at this point.

The generation of complex queries from natural language to select
data for the plot is a separate and rich domain of research [35,40,41,45].
Combining these approaches could be performed to fully automate the
approach described in this paper. This paper, however, assumes a
manual data selection step from a drop-down menu.

This paper presents the results of our research on generating multi-
platform visualization code from hand-drawn sketches by leveraging
deep learning networks. The key research contributions of this paper
include:

* We show how data visualization code generation from a hand-
drawn sketch can be modeled as an image captioning problem,
allowing the application of current state-of-the-art approaches in
deep learning.

¢ The results demonstrate that Transformer models can achieve
95% structural accuracy in correct source code generation for
hand-drawn sketches.

» The paper presents a novel approach for combining a Domain-
Specific Language (DSL) and style transfer to generate training
data automatically. The proposed solution overcomes the chal-
lenge of sourcing a data set of paired hand-drawn sketches with
data visualization source code. Moreover, the results show that
models trained on this synthetically generated data effectively
generalize to hand-drawn sketches.

=plot=
<structure=>

<line=...</line=
</structure>

<plot>

¢ The problem description enumerates the challenges of adopting
existing evaluation metrics from related work and applying them
directly to this Sketch2Vis problem. We propose new evalua-
tion metrics to score generated visualizations that consider both
structural and decorative features in the generated visualization.

* We compare and evaluate the performance of recurrent neural
network (RNN)-based and Transformer-based networks on the
Sketch2Vis problem. Our empirical results provide insights into
what model architectures and domain-specific language (DSL)
designs perform best on the Sketch2Vis problem.

The remainder of this paper is organized as follows: Section 2 dis-
cusses key challenges of building a model to translate hand-drawn
sketches into multi-platform visualization code; Section 3 analyzes the
feasibility of the Sketch2Vis problem in terms of dataset construction;
Section 4 discusses different approaches for evaluating deep learning
model performance on the Sketch2Vis problem and proposes new eval-
uation metrics; Section 5 analyzes empirical results from experiments
we conducted on two key deep learning architectures: RNN and Trans-
former models; Section 6 compares related work with the techniques
we explore in the paper; and Section 7 presents concluding remarks
and lessons learned.

2 RESEARCH CHALLENGES

Deep learning networks, such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have shown great promise in
understanding images and natural language. An interesting question is
whether the performance they exhibit in other domains translates to the
Sketch2Vis problem. This section discusses challenges specific to this
problem that a deep learning model must address.

2.1 Challenges 1: Source Code is Platform-specific

A deep learning model should ideally be able to generate sketches using
a variety of visualization libraries. However, source code for visual-
ization libraries is typically platform-specific (e.g., Java vs. JavaScript,
D3 vs. Tableau). To convert directly from sketch to data visualization,
therefore, the machine learning (ML) model must be trained how to pro-
duce visualizations using the underlying visualization library to achieve
the desired goal(s), i.e., the ML model must learn the syntax, grammar,
and semantics of the underlying visualization tool. For example, if
D3.js is used as the target visualization platform, the ML model needs
to understand how to produce valid JavaScript code that will achieve a
visualization corresponding to a sketch.

Although two data visualizations may appear similar to a human, if
different programming languages or libraries are used to create them,
the actual implementations can vary greatly, depending on the under-
lying platforms and programming languages. For example, the axis
and plot type in a line graph are explicit to a human, regardless of
whether or not a person has data visualization knowledge. However,
different plotting libraries specify axes via different mechanisms, such
as JavaScript arrays vs. Python lists. Users therefore need to produce

separate implementations for the same visual representation each time
a visualization is instantiated on a different platform and/or with a
different programming language.

To train a deep learning model, a dataset is needed that associates
(i.e., “pairs”) images of sketches with the concrete source code to
realize the appropriate visualization for the sketch. If the dataset is
platform-specific (e.g., the source code targets a particular library),
the model must be retrained for each individual target visualization
platform. Moreover, variations in the target languages and frameworks
may make this training process easier or harder.

2.2 Challenges 2: Sketches and Paired Source Code are
Expensive to Obtain

Deep learning models require large volumes of data to increase their
robustness and generalize effectively to as-yet unseen problems. Public
datasets for most image processing problems typically contain over
100,000 training images and labels. For example, ImageNet [6] has
1,281,167 images with 21,841 labels and the Open Images Dataset [20]
has 9,011,219 images with more than 5,000 labels.

To train a deep learning model to turn sketches into source code,
a dataset that pairs hand-drawn sketches with the source code to in-
stantiate the appropriate visualization is needed. There is no available
dataset containing both hand-drawn visualizations and the correspond-
ing source code representation. It is therefore hard to train and ex-
periment with these models since producing a large dataset of paired
sketches and source code requires working with data visualization ex-
perts, which is prohibitively expensive relative to other domains, such
as labeling what is in an image (e.g., cats, dogs, flowers, etc.).

For example, 10,000 sketches and associated source code would be
needed to train models on the low-end of data volume scale. Obtaining
these types of datasets is not easily crowd-sourced. Moreover, even if
the dataset is somehow crowd-sourced, ensuring that the source code
labels are correct is a much harder problem than simply determining if
a bicycle or street light is in a picture using the mechanisms (such as
captchas) applied in related work.

2.3 Challenges 3: Correlations Among Human-drawn Vi-
sualizations

There is large variation in how a human may sketch a particular visual-
ization. Each type of visualization must therefore be drawn numerous
times in the training set for models to learn. For example, if we want a
20,000-image dataset supporting five visualization types, 4,000 images
for each type of visualizations should be drawn repeatedly.

In contrast, human drawn sketches are affected by personal style,
e.g., sketches drawn by same person are often similar, especially when
the target visualizations are simple. In this case, even if the goals of
data volume can be achieved, getting variation in drawing style still
requires a very large number of human drawers. A quality dataset
must, therefore, provide as much randomness as possible in the sample
sketches.

2.4 Challenges 4: Evaluation of Generated Code

Deep learning models rely on automated scoring of their outputs to
learn and improve throughout the training process. It is hard, however,
to score data visualization quality automatically. The performance of
generated natural language captions, which is the type of model we used
to attack the problem, is often evaluated by n-gram matching metrics [1],
such as Bleu [25] and METEOR [8]. Unfortunately, evaluating the
predicted code snippets for a data visualization (which are the outputs
of a deep learning model) focus on low-level details that may map
poorly to visualization features.

In particular, the importance of different visualization features must
be considered to enhance the usability of visualization implementations.
For example, in a visualization code block, legend selections may
contribute more than color selections to the validity of the visualization.
Therefore, although many prior scoring mechanisms have been applied
in prior natural language deep learning work, it is not clear if they are
sufficient or effective on the Sketch2Vis problem.

3 ANALYZING THE FEASIBILITY OF GENERATING DATA VISu-
ALIZATION SOURCE CODE FROM HAND-DRAWN SKETCHES

Image captioning is the process of producing a textual representation of
an image (e.g., a car parked in front of a copse of trees). In recent work,
a number of problems have been phrased as image captioning, such as
the generation of HTML for a sketch of a web page layout [3]. This
section describes how we investigated the feasibility of phrasing the
Sketch2Vis problem as an image captioning problem. It also explores
a key challenge of obtaining data and explains how we overcame this
challenge by developing a novel approach using a domain-specific
language (DSL) and style transfer, which is a computational process
that makes an image appear as if it was produced by a human artist
rather than a computer.

3.1

Preparing a large volume of hand-drawn images paired with source
code to realize corresponding visualizations is hard, as described in
Section 2.1 and Section 2.2. Style transfer has emerged as an active
area of research. Significant progress has been made to advance style
transfer capabilities, particularly in the domain of deep learning [22].

On the other hand, common off-the-shelf (COTS) visualization li-
braries (such as Matplotlib) have added simpler style transfer mech-
anisms to make charts look hand-drawn. Below we explore how we
applied style transfer as a component of overcoming the challenge
related to obtaining training data described in Section 2.2. In particular,
we propose a solution that applies (1) a DSL (and its grammar) to
generate source code for data visualizations randomly and (2) style
transfer to convert these computer-rendered visualizations into images
that appear hand-drawn.

Our dataset creation process inverts the normal dataset curation
process of obtaining raw data and then labeling it with a human. Instead,
the approach we employ operates as follows:

Developing a Training Dataset

1. Generate the source code (label),

2. Execute the source code to render the visualization and export it
as an image (semi-raw data), and

3. Apply style transfer and image augmentation techniques to pro-
duce human-like sketches of the visualization (raw data).

As discussed in Section 2.1, a key advantage of using a DSL is that
it makes the training process independent of the target visualization
library. Likewise, the language design can be tailored to facilitate
faster learning. Compared with sketches hand-drawn by human artists,
synthesized images that appear hand-drawn have several advantages,
including:

1. Scalable rendering of highly variable sketches. A problem
with a human-driven approach is that each human tends to pro-
duce sketches with a similar style. Using hand-made sketches
to train not only requires a large number of hand-drawn images,
but also a large number of people to ensure the dataset shows
sufficient variation to generalize to the larger population. Our
DSL-based approach enables a much wider variation in visualiza-
tion features/types through randomization.

2. Balanced training data distribution. Since the dataset is cre-
ated in a semi-random way, we can manipulate the distribution
of the training data. Our approach avoids potential deep learn-
ing challenges caused by imbalanced datasets, which can yield
models that generalize poorly.

3. Dramatically lower cost. A large volume of source code labels
can be prepared through source code generation from the DSL
without relying on time-consuming and costly manual creation
of source code for each visualization. Hiring data visualization
engineers to produce source code for sketches is prohibitively
expensive and difficult to crowd-source.

3.2 From DSL to Visualization Code

As described in Section 2.1, a key problem in generating programming
language code from sketches is that the models must be trained on
each programming language that they target, which is suboptimal. To
overcome this challenge—and to support realization of the sketch using
multiple visualization platforms—we employ an intermediate DSL
model that represents the abstract goals of the user with a simple syntax
that can be learned readily by a deep learning model. The deep learning
model produces code using our DSL and then code generators translate
that DSL code into the implementation details of a specific visualization
library.

Our DSL uses an XML-based syntax as shown in Figure 3. A token

<structure>
<type> pie </type>
<simplification> 0.2 </simplification>
<ring> False </ring>
<fillstyle> solid </fillstyle>
<legend> True </legend>
<legendPosition> left </legendPosition>

</structure>

Fig. 3. An Example of Describing a Pie Chart Instance with the DSL
Model.

dictionary (called a token pool) is built and updated for the DSL model,
as shown in Figure 4. Visualization characteristics are described by
tokens enclosed between starting and closing tags, such as ” < type >
and ” < /type > . These tokens are categorical values tokens, such
as the visualization type (e.g., scatter plot), indicating visualization
feature candidates. A specification for a visualization is built from a
sequence of tokens and the appropriate enclosing tags.

Images in a dataset are generated by different visualization tools.
Therefore, the corresponding visualization features in our DSL may
vary, i.e., features supported by some tool A may not be supported
by another tool B. This syntax enables us to assign a visualization
type with flexible features in our DSL (instead of a fixed length of
features), such that each feature is independent. In this case, only
supported features in the target visualization tool must be considered
during dataset preparation.

As shown in Figure 4, after a DSL specification for a visualization
is produced, we can apply a code generation adapter to produce the
native visualization code needed to render the visualization on the target
platform (e.g., matplot, D3, etc.). Adopting an intermediate DSL (rather
than directly relying on native visualization code for the visualization
specification) enables us to decouple the deep learning model from the
generation of the source code.

Different code generators can be plugged into target different vi-
sualization platforms without retraining the underlying deep learning
model. However, if a new platform has visualization capabilities that
were not captured in the DSL language and trained tokens, additional
training data is needed to support these new visualization features that
were not trained on previously.

In summary, our DSL-based approach has the following key benefits:

* Source code generators can produce visualizations for sev-
eral platforms using a single model inference. Since model
outputs describe sketches independently of the concrete imple-
mentation, the deep learning model must only learn one syntax
during the training process. A single inference from the model
can be run through multiple code generators to target different
platforms. The model and the source code generators can be
shared and reused more easily.

¢ The dataset can be updated and expanded easily. When a
training dataset must be enlarged to train more complex plots,
new tags can be added to the token dictionary. After a model is
trained that can interpret sketches and produce DSL instances, a

code adaptor can be built for different target platforms without
retraining the original models.

3.3 Dataset Construction and Expansion

To ensure high quality training images and reduce the possibility of
overfitting, pairs of images and DSL instances in the dataset must be
produced from multiple visualization tools. The goal is to ensure the
rendered sketches of visualizations have different styles and wider vari-
ation that better match the variations in how humans sketch. Figure 4
shows these steps to initialize and extend the training dataset with new
visualization tools.

Visualization
Specifiction

DSLtoken o [DSL Token Meta Data

pool
Style Transfer

h 4 . DSL Images

DSL Images |
J DSL Images
DSL Adapter 1+
Dataset

Fig. 4. Diagram of the Dataset Construction Mechanism.

3.4 Adding New Visualization Capabilities to the Training
Dataset

Before a new visualization tool is used to generate images for the
training dataset, the supported plotting arguments for the tool must be
enumerated carefully. All data used to generate the training images
must be stored for future use. This data is referred to as meradata,
which represents the implementation of the native visualization tool
and influences the design of an updated DSL by creating structural
tokens and allowed values for the tokens, as discussed in Section 3.2.

Since the new tool’s visualization metadata is likely different from
the prior visualization tools used to create the training visualizations, the
expected data formats and naming convention of visualization features
may also be different. Figure 4 shows how a DSL token pool playing
a role of word vocabulary is introduced to ensure a unified format
for the DSL. Instead of generating new DSL tokens directly from the
metadata, the new features must be compared with existing tokens in
the DSL token pool and mapped to equivalent tokens wherever possible
to eliminate semantic duplication across tokens.

By separating the metadata and DSL syntax, we can ensure data
differentiation without introducing excess tokens and reduce the size of
the word vocabulary, which is important for the deep learning models.
Unused information in the metadata, such as the textual name for axes,
can be saved for potential future use. For example, we can train the
model to recognize and label text in sketches so that the model can
communicate with data directly without requiring users to input this
information manually.

3.5 Image Corpus Differentiation

To enhance the robustness of the synthesized hand-drawn image
corpus—thereby overcoming the challenge we discussed in Sec-
tion 2.4—we applied randomization to generate a widely varying corpus
of images, including the following:

1. Visualization type. The types of visualizations (such as line plot,
bar plot, and pie plot) are generated randomly.

2. Specifications to the visualizations. The parameters that are
sent to the underlying visualization libraries for the visualization

type of visualization are randomized. For example, the parameters
of a bar chart may include the height of the bars, color of the bar
faces, color of bar edges, and legend position.

3. Selections of the style transfer. Style transfer approaches of-
ten have a wide variety of arguments that impact the rendering
style. We currently achieve this capability by generating images
from (1) multiple visualization tools, which support style transfer
functions, and (2) Sketch style transfer deep learning models,
which are trained based on real hand-drawn sketches of various
instances.

4. Text differentiation. To ensure randomness in the textual ele-
ments in images, we randomize the labels applied to visualization
elements. In the dataset that we experimented with, text in the
images was randomly chosen from an English dictionary with
different hand-drawn fonts and placed in varying positions on the
chart that were within suitable bounds for the target text purpose
(e.g., in a spot reasonable for an axis label to appear).

Using our randomization approach, a wide variety of sketches can
be generated that appear hand-drawn and cover a large number of
visualizations. Samples of our generated sketches are shown in Fig-
ure 5. Figure 5(a) depicts four visualization types generated via

(a)

=~ il =
\¢ /it

(b)
.‘- E @ |
(c)
Fig. 5. Examples of Synthetically Generated Training Images Using Style
Transfer

D3.js/RoughViz [39] on web browsers . Figure 5(b) shows five sin-
gle visualization types and a visualization instance containing multi-
ple visualization type generated via XKCD() function supported by
Matplotlib [16]. Figure 5(c) shows sketches transferred by Photo-
Sketching [22] based on images generated by visualization tools.

4 SKETCH2VIS EVALUATION METRICS EXPLORATION

A key question explored by our research was what deep learn-
ing architectures were most promising for the Sketch2Vis problem.
RNN [2, 17, 37] and Transformer [44,46] models have each shown
excellent results on image captioning problems. We experimented with
a number of RNN and Transformer architectures and present the best
performing architectures that we found and their accompanying results
on the Sketch2Vis problem.

One challenge of our architectural analysis was determining an ap-
propriate scoring metric to use. We initially looked to establish metrics
from the domain of machine translation since we were translating im-
ages into text. In translation problems, such as English to German

translation, n-gram matching metrics [1] that split a string into n-length
substrings have been widely used. For example, the Bleu score [25] is
widely used in evaluation of translated sentences.

In contrast to natural language translations, n-gram matching is
not well-suited to evaluate the generated DSL code since there are
natural differences in contribution to code quality among different
tokens. N-gram matching focuses on semantic similarities between
the ground truth translation and the generated translation. In contrast,
when evaluating the generated DSL code, execution must be considered
since the DSL code must execute correctly and generate the desired
visualization. For example, generated DSL code snippets that execute
without run time errors should be considered more accurate than DSL
code snippets with higher similarity scores that cannot be executed.

Previous work on natural language to code generation with deep
learning considered both the output code blocks and execution output
as metrics in the evaluation [45]. For example, prior work on GUI code
generation [3] that used GUI screenshots as inputs evaluated models
based on classification errors. That prior work evaluated a model’s
ability to correctly classify the GUI components in images.

The performance of natural language to SQL models has also been
evaluated by the accuracy of the executed query results [45]. That
approach reflected the model’s ability to retrieve the correct data since
even the generated SQL queries may be different from the ground truth.

Our approach presented in this paper evaluates models in the
Sketch2Vis problem with one accuracy metric (Acc,g) from prior re-
search and two additional metrics (Accg, and Accz,.) that we devised to
overcome gaps observed when scoring generated visualizations. Each
of these three metrics are described below:

1. Classification accuracy. Acc,;; consider the results as a classifi-
cation problem, calculating differences between the model output
and ground truth DSL code. Outputs are penalized for producing
tokens that differ from the ground truth and token sequences that
differ in length from the ground truth. Acc.; can be calculated
with Equation 1

Z(Tfalm) + A(Lendsl)
Lengy

ey

Accos=1—

2. Structural accuracy. Accg, evaluates DSL mistakes that can
result in structural errors, including syntax errors and incorrect
visualization types. For example, a model that predicts the wrong
visualization type or gives an invalid feature token to a certain
visualization type will receive a low structural accuracy score,
no matter how accurate the predicted DSL code is in other areas.
Accgr can be calculated with Equation2;

0,
Accgr = {1

3. Decoration accuracy. Accy,. scores the model’s ability to un-
derstand local visualization features in the images, such as the
desired color of lines or positions of legends. In other words, we
want to evaluate if the model can choose the correct decoration to-
kens after generating the DSL structure. Accg,. can be calculated
with Equation3.

if wrong semantic/plotting type @)

otherwise

Tiec
Accgee = %Tjec 3
ec

5 EXPERIMENTAL RESULTS

This section performs an initial exploration of which model architec-
tures performed best on this problem formulation. Empirical results are
presented from experiments we conducted on two key deep learning
architectures: RNN and Transformer models.

Visualization Tools | Plots #Meta Parameters #DSL Tokens | Other Augmentations
Matplotlib Line 4 51
Bar 7 28
Box 5 9 layout
Scatter 3 46 roughness
Pie 6 21 text
RoughViz+React Pie 8 28 text position
Line 9 20 font
Bar 9 22
Scatter 8 15
Photo-Sketching Line 10
Bar 10
Box 10
Scatter 6
Pie 10

Table 1. Sketch2Vis Dataset Single Plot Parameter Description

5.1 Dataset Statistics

The dataset used in our experiments with RNN and Transformer ar-
chitectures was constructed from two visualization tools described
in Section 3.3. We validated these tools with a smaller number of
hand-drawn sketches. Table 1 shows the visualization features and
augmentation methods we used to generate the dataset.

We used style transfer mechanisms to create images that looked
hand-drawn via (1) visualization tools (such as Matplotlib [16] and
RougViz.js [39]) and (2) Photo-Sketching [22], which is a style transfer
deep learning model. We used Matplotlib to generate Line, Bar, Box,
Scatter and Pie plots and RougViz.js to generate Line, Bar and Pie
plots, as shown in Table 1. Deep learning style transfer was performed
with Photo-Sketching on sources images generated by Matplotlib.

Matplotlib is a popular Python 2D visualization library that generates
quality visualizations [16]. The project is widely used and the source
code repository on GitHub has 10,800 watchers and 55,800 questions on
StackOverflow. Matplotlib includes a sketch-style” function, xkcd(),
which can convert any Matplotlib graph into a hand-drawn format. We
used the xkcd() function to generate hand-drawn style plots randomly
using Python. For browser-based visualizations, we used RougViz. js
to generate hand-drawn style visualizations with D3. js.

Unlike style transfer functions provided by visualization tools, deep
learning mechanisms use a dataset containing hand-drawn sketches [22,
29] to learn to transfer a scene into a sketch. These models capture
complex variations in how humans draw and can reproduce images that
mimic these variations. We adopted Photo-Sketching [22] in our dataset
to generate simple monochromatic sketches, which is a different style
compared to the visualizations generated with Matplotlib.

Both source visualization tools (Matplotlib and RoughViz. js in our
experiments) share the same mechanism for producing the randomized
metadata. The number of meta parameters and tokens is determined
by the variability in the underlying visualization feature. For example,
compared to color-related DSL tokens that can have a wide range of
values, a DSL token indicating if a Bar chart is horizontal has only two
possible values: "True” and “False.”

Photo-Sketching focuses on preserving the contours of images. Deep
learning transfer may lose some visual information when applied to a
visualization. For example, colors or data point styles in the original
visualization will be omitted by the Photo-Sketching style transfer
model and only the core features, such as the visualization type are
retained. Therefore, the size of the DSL token pool will be reduced
correspondingly compared to sketches generated by visualization tools.
In particular, the information in metadata may not be rendered in
generated sketches.

As a result, our current dataset contains both images with indi-
vidually colored data series and rich visualization information and
scrawled black and white sketches with basic visualization features.
Moreover, to help avoid overfitting during training, we also include
images containing multiple visualization instances, which helped our
models generalize better.

Table 2 shows the number of tokens in the current DSL files and their
distribution, which corresponds to the usage of different visualization
features in the training set. As discussed in Section 4, we categorized

#Token #T e #Avg T;.. | Avg DSL length
1718138 | 438460 6 22

Table 2. Sketch2Vis Dataset Description

our DSL tokens into structural tokens(7,) and decoration tokens(7y,,.).
Table 2 shows there are 438,460 T, in the dataset, which comprises
25.5% of all tokens. On average, every image contains 6 7, and 16
T, which indicates that Acc.;; will more likely be affected by Ty,
Figure 6 shows the distribution of detailed DSL tokens based on
token types. This dataset has balanced decoration tokens, stemming

%%
% %0
o
“3/9::\?‘@%‘% v
2% o;% Q¢ Ioe
Y0 P
o, % %%
/04,0: Pl Structure Token
2% *s, Plot Type
K254 > i
L o Decoration Token
/& ®
z *
fan
- coral
. orange
z0 skyblue
s8'0 <type>
63> <Stry
0dpud Uctures
uoms 90963\7 True
Lﬂ‘a“(; SPlogs.
A0 £
s e Alse
S0P 9 oy,
EN S O
> Se, 7%
o 8,7 Fers
A DN
R
‘9%0 SN
S v% 3,
$a DTN
2n N3 %
PE&B A AADS 5D R
FEFELELEET %Yy
Ay 3% a
15 1 SR %
F28%29%
o © N 2% 3
Vv v v S
S
v

Fig. 6. Distributions of DSL Tokens in the Sketch2Vis Dataset

from the use of synthetic data generation, The dataset was split into
training, validation, and test sets. The number of samples in each of
these split datasets is shown in Table 3.

#All #Train | #Valid | #Test
76942 | 63945 7105 5892

Table 3. Sketch2Vis Dataset Split Description

5.2 Deep Learning Architectures Explored

The Sketch2Vis problem requires an encoder-decoder architecture. In
the encoder, image features are extracted from input sketches through
a feature extractor, which is usually a convolutional neural network
(CNN). Image features may be processed with a RNN for encoding in
the latter part. The decoder portion of the model is then used to output
sequences of DSL tokens.

Model construction in our experiments was based on different
pairings of encoders and decoders. We constructed and compared
our models based on two primary methods of processing sequenced
data [7,19,24,36], Recurrent Neural Networks (RNNs) and Transform-
ers, as shown in Figure 7 and described below.

S Olg Wm

__________ : :
4 ' : 1
L conv | ! i Reu |
Relu i | Pooling :, Slup
i+ Pooling || i [FG | | Transiormer:
e 5 i :
L FC | ‘__CNN
L CNN | _'L _______ .
Il " | Multi-Head |
e - i | Attention | !
| Feed |
i ‘| Forward |
i ! ', Transformer
. BNN | i I _____ ;
i | Muli-Head | |
{ Attention]
; [Feed] IR S
i Forward
.. Transformer
g

Heplots.....</plots" !

| predicted DSL :

Fig. 7. Sketch2Vis Model Construction and Comparison

5.2.1 RNN Model Construction

Figure 7(a) shows the RNN model construction process.

At each timestamp in the encoder portion of an RNN the output
from the image feature extractor is fed into recurrent units, which
are cells used to process the token input at the #,;, step. At each step,
1y, the inputs consist of feature maps from the feature extractor, in
addition to a sequence of the tokens produced in prior steps (e.g.,
To...T,—1). A token at time t, T;, is predicted from a list of previous
tokens, T;—;, T;_it1,...T;—1, where i is the number of previous tokens
in the DSL grammar. Each unit’s inputs are therefore the aggregation
of the image features and encoded tokens, as shown in the equation
below:

T = Outpm‘(thith—H»h-~~Tt71|Fimage) “4)

The model keeps predicting the next token in the sequence until it
reaches a terminating operator.
5.2.2 Transformer Model Construction

Figure 7(b) shows the Transformer model construction process. En-
coded inputs are used to calculate a self-attention matrix to combine

with attentions from output sequences. This approach allows models to
generate outputs with context.

Transformer models have shown good performance on a number
of natural language to natural language mapping problems, such as
translation. Self-attention layers in the Transformer allow the model to
get feature vectors of sequenced data without recurrent training steps,
thereby enhancing training speed.

It is not clear, however, whether or not it is effective to use a Trans-
former to process the output of a CNN applied to a sketch image, which
is not a sequenced input. In particular, prior research has not validated
whether self-attention mechanism in Transformer encoder should be ap-
plied in features extracted by CNN. We next compare the performance
between model architectures shown in Figure 7 to answer this question.

5.3 Model Architecture Comparison Results

Model construction. Table 4 shows empirical results from the different
RNN and Transformer models that we built using different selections of
encoders and decoders. In general, the CNN Encoder and Transformer

Encoder Decoder Acc.s Accgr Accy
CNN/RNN RNN 0.94 0.98 0.85
CNN/Linear Transformer 0.95 0.97 0.87
CNN/Transformer Transformer 0.77 0.74 0.60

Table 4. Experiment Evaluation Results of Encoder-Decoder Models

Decoder models show promising results in generating visualization
DSL code with the current dataset. Inaccurately predicted visualization
instances were caused primarily by challenges in processing visualiza-
tion features that make up a smaller amount of visual information in
the sketches (i.e., a smaller number of pixels), as well as visualization
features with more options.

The Transformer architecture generally shows better performance
than RNN architectures in the field of natural language processing [9,
36]. By comparing RNN and Transformer based models in our test set,
however, we found that RNN-based models have similar performance
on the Sketch2Vis problem. As a result, both models reached a score
of 0.97 on structural accuracy, which means 97% of predictions are
legal DSL expressions and the correct visualization type. In other
words, 97 % of the predictions produced valid executable code that
generated the correct visualization. Decoration accuracy reaches
0.75, which means 75% of visualization decoration features are legal
decorations for the visualization type and are predicted correctly.

Moreover, inspired by results in image captioning problems, we
also adopted the Transformer as a part of an encoder to process output
features of the CNN, as shown in Figure 7. However, our results
show that image features encoded by a Transformer can hurt overall
performance in the Sketch2Vis problem.

1400

RNN/RNN
CNN/Transformer
1000 Trans/Trans

1200

800

600

400

200

0

7

7 T o7 o7 T 7 7 7 T T AT T T T T T
) 309‘\\5@ £ 0° A 0\0‘66(\\‘)(’ 09 o 2550@ o800 é\‘,\o“ge‘\éL\le(\‘\“e‘.d\
\\\\(f L&\\ P 6‘36 £ Qe(', RoSs Q}Q Lg‘(\ \?,Qr \'\(\e 6&30 P2 49
@ ~ o ¢ e £
A\ A W ()e
L z}%/ z}e

Fig. 8. Distribution of Mispredicted Decoration Tokens

DSL Code Generation Performance. Figure 8 shows the distribu-
tion of the incorrectly predicted visualization features in 3 models.

Errors in other visualization features are distributed more evenly and

vary based on the size of the visualization feature’s token vocabulary.

The smaller a visualization feature’s token vocabulary, the fewer errors
the models make. For example, it is harder to predict the correct
< marker >, which is the style of marker used for the data points in
the visualization.

In contrast, < is_line_legends > indicates if legends are visible in
the visualization and performs much better since legends provide more
information (e.g., cover a larger percentage of pixels) than the style of
dots used for points. A trade-off exists between the model’s usability
(wider visualization capabilities in terms of the types of visualizations
supported) and the model’s accuracy. This trade-off shows the need to
refine the DSL token vocabulary during dataset construction to only
use tokens absolutely required for the needed visualizations.

The results in Figure 8 also indicate that we can combine the
strengths of RNN and Transformer-based models into an ensemble
to better support a wide range of visualization features and improve
model performance. For example, a correcting mechanism can be
appended to the model prediction stage, that weights both model’s
decisions.

Table 5 shows examples of the inputs and outputs in our experiments
and the user-desired visualization. The “Training Sketch” shows an

sates backless

Training Sketch

Validation Sketch

<structure>
<type> pie </type>
<simplification> 0.2 </simplification>

<ring> False </ring>

<fillstyle> solid </fillStyle>

<legend> True </legend>

<legendPosition> left </legendPosition>
</structure>

Generated DSL

-
B
-

Generated Visualization

Table 5. Examples of Model Input and Output

input created from Rough.Viz for encoder-decoder model training. The
”Validation Sketch” shows a real hand-drawn sketch, where concrete
text information is omitted. The "Generated DSL” is the predicted DSL
code, which describes the visualization features, but is independent of
the dataset specification (the data mapped to each axis, series, etc. can
be plugged in separately). The "Generated Visualization” is a concrete
visualization generated from our DSL using Matplotlib.

5.4 Results Discussion and Performance on Hand-drawn
Sketches

In addition to evaluating on the generated test set using a combination of
style transfer approaches in Section 5.3, as discussed in Section 5.1, we
also prepared 100 hand-drawn visualizations drawn on mobile devices
for validation purposes. Each visualization was manually labeled with
its matching DSL code. Examples of hand-drawn sketches are shown
in Figure 9, where half of the sketches are scrawled and the other half
are colored.

Fig. 9. Examples of Hand-drawn Sketches from Humans in the Validation
Set

However, unlike images generated with style transfer mechanisms,
where each sketch has an exact DSL description already determined,
sketches drawn by humans are hard to evaluate with Accg,. since there
may exist multiple valid DSL source code implementations. In this
case, evaluation on Acc,, relies on user feedback. We currently only
test Accg on real hand-drawn sketch sets for validation purposes.

Since we include multi-visualization sketches in the training set, as
discussed in Section 5.1, the model may predict DSL code containing
multiple visualization instances, even if there is only one visualization
instance in the image. If multiple visualizations are generated, users can
select a visualization instance from the predicted options. For scoring
purposes, when evaluating the hand-drawn sketches, any predictions
containing the correct visualization DSL code are considered as correct
in the calculation of Accg,.

Table 6 shows the results of Accy, from the different models. The

Encoder Decoder Accgr
CNN/RNN RNN 0.66
CNN/Linear Transformer 0.95

Table 6. Evaluation Results on Hand-drawn Images

Transformer-based model shows the best performance in processing
real hand-drawn sketches achieving 95% accuracy in identifying the
visualization and correctly generating the correct code to implement the
visualization. Although the RNN-based model performed well on the
test set, it does not generalize well to hand-drawn sketches. This result
indicates that the Transformer-based model is better at generalizing
from style transfer images to real hand-drawn images.

An important result from our analysis is that the Accg, on both
the images generated using a style transfer approach and the hand-
drawn images is close to the same (95% vs. 95%). This resulting
accuracy indicates that using style transfer to generate the training im-
ages is an effective approach for overcoming the challenge of obtaining
human-labeled sketches. Since the Transformer models were able to
generalize to hand-drawn data using synthetic style transfer data, fu-
ture work can be significantly simplified by relying on a much larger
corpus of synthetically generated data for training and smaller sets of
human-labeled data for validation. Although we could not automati-
cally evaluate the decoration accuracy (e.g., colors, line style), Accy,
our user feedback indicated that the decoration accuracy was similar in
accuracy to the synthetic dataset (we are validating this result in future
work with human studies).

Integrating more style transfer mechanisms into our current dataset
is essential to enhance the model robustness. We also incur bias in
our current evaluation on real hand-drawn sketches due to the limited
number of drawers. To enhance the accuracy of our evaluations we are
collecting sketches from more people, as discussed in Section 7.

6 RELATED WORK

This section compares related work with the techniques explored in the
paper.

Data Visualization Efficiency. As an emerging capability in data-
driven applications, data visualization has drawn attention far beyond
the visualization community, in nearly every domain, ranging from
healthcare to smart cities. Due to the broad expansion of users, data
visualization efficiency has become a critical requirement. Various ap-
plications have been designed to reduce the visualization learning curve
and enhance usability for engineers who interact with visualization
tools.

For example, FlowSense [43] allows users to construct dataflow
diagrams from English sentences. Arjun [32] implemented a tablet-
based data exploration tool with multimodal (i.e., pen, touch and voice)
interactions. NL4DV [23] is a Python tool that helps developers create
specifications by taking natural language(s) as input. Data2Vis [11]
adopted Vega-Lite [30] as an interpreter to generate visualizations
automatically from data specifications to visualization specifications.
Qin [27] explored three paths to enhance efficiency in data visualization:

1. Improve the designation and input of visualization specifications,
2. Provide various approaches for data visualization, and

3. Automatically correct or refine users’ generated visualization.

Our work builds upon achievements in path #1 and mainly focuses
on path #2. We are also adding complementary mechanisms to our
current model inspired by path #3. Our goal is to produce adequately
detailed visualizations from hand-drawn sketches, thereby saving time
producing the initial visualization implementation that can be later
refined manually.

Sequenced Output in Deep Learning. Prior research on human-
computer interactions via natural means (such as sketches) relied on
enforcing strict constraints on users due to the challenge of processing
informal human input by machines [18]. For example, earlier pen-
based computer interactions required users to learn an unnatural way to
draw sketch diagrams so computers can understand them [12,21]. To
overcome this challenge, shape recognizers were proposed to interpret
pen strokes in human-drawn sketches and trained via a cluster-based
approach that groups streams of pen strokes [18,26]. Shape recognizers
grant computers the ability to read users’ drawing with more flexibility
and can be extended by improving recognizers with additional types of
supporting shapes.

Deep learning networks provide a solution for computers to extract
features from natural human input, such as images, text, and voices [9,
14,31, 34]. Beyond image classification, researchers attempt to use
images to explain more complex human-comprehensible output, such
as natural language expressions [15]. The encoder-decoder structure
was adopted in the image captioning problem [37], thereby combining
advantages of CNNs in processing images and RNNs in processing
sequences of natural language expressions.

As an object detection mechanism, faster R-CNNs [28] were in-
troduced for models to output captions in the context of classified
objects. Transformers [36] further enhanced model performance and
training speed by substituting RNNs as encoder and decoder. In con-
trast, the image-to-code problem shows significant compatibility with
GUI components. For example, pix2code [3] was proposed to transfer
UI screenshots of web applications into HTML components and was
further extended to mobile app development [5].

7 CONCLUDING REMARKS

This paper analyzed the feasibility of generating data visualizations
from hand-drawn sketches, a problem that we call Sketch2Vis. As
shown in this paper, DSLs and style transfer approaches can be com-
bined to help generate labeled sketches with associated source code.
This combination helps to overcome the key challenge of scalably ob-
taining a dataset for training. Our experiments showed models capable
of reaching 95% structural accuracy on hand-drawn sketches. In addi-
tion, the results show that synthetically generated images that use style
transfer to make them look hand-drawn is an effective approach for
generating a labeled training set.

The following is a summary of the lessons we learned from conduct-
ing the research presented in this paper:

* Models can learn and generalize from synthetically gener-
ated sketches produced with style transfer approaches. The
models achieved an structural accuracy of 97% on this style trans-
fer training set and 95% structural accuracy on the hand-drawn
validation set — indicating that models can train on and generalize
using synthetically produced sketches.

* The CNN-Transformer structures performed best. The re-
sults of on our experiments with RNN and Transformer models
showed that a CNN-Transformer structure model had the best per-
formance in processing input from multiple sources and generally
demonstrated the feasibility of generating simple data visualiza-
tions from sketches. Even though more real hand-drawn sketches
are needed for solid validation.

¢ Labeling visualization instances with a DSL was a scalable
way to address visualization automation problems with deep
learning. Dataset construction methods in our experiments
showed how describing visualization images with DSL instances
enabled deep learning models to extract features from single plot,
and potentially allow users to create subplots.

Our future work is focusing on optimizing and extending our current
dataset by integrating more visualization tools to enlarge sketch styles
for the Sketch2Vis model. In our current work, we did not focus on
processing textual information (such as variable names), and still use a
manual mapping step to map these textual names to data series. We in-
tend to work on automatic translation of axis and series labels into data
queries in future work. We are also refining feature selections in our
DSL model by investigating human demands and problems during the
visualization process from online communities (such as StackOverflow)
to enhance our model’s usability by enlarging its supported features
without greatly expanding the DSL vocabulary size. Finally, we are
preparing more hand-drawn sketches for validation and designing a
competition centered on our public data and evaluation metrics.

The cl:ode and data described in the paper are available in open source
format.

REFERENCES

[1] P. Anderson, B. Fernando, M. Johnson, and S. Gould. Spice: Seman-
tic propositional image caption evaluation. In European conference on
computer vision, pp. 382-398. Springer, 2016.

[2] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and

L. Zhang. Bottom-up and top-down attention for image captioning and

visual question answering. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 6077-6086, 2018.

T. Beltramelli. pix2code: Generating code from a graphical user interface

screenshot. In Proceedings of the ACM SIGCHI Symposium on Engineer-

ing Interactive Computing Systems, p. 3. ACM, 2018.

M. Bostock, V. Ogievetsky, and J. Heer. D? data-driven documents. IEEE

transactions on visualization and computer graphics, 17(12):2301-2309,

2011.

S. Chen, L. Fan, T. Su, L. Ma, Y. Liu, and L. Xu. Automated cross-platform

gui code generation for mobile apps. In 2019 IEEE st International

Workshop on Artificial Intelligence for Mobile (Al4Mobile), pp. 13—16.

IEEE, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on

computer vision and pattern recognition, pp. 248-255. Ieee, 2009.

[7]1 Y. Deng, A. Kanervisto, and A. M. Rush. What you get is what you see:
A visual markup decompiler. arXiv preprint arXiv:1609.04938, 10:32-37,
2016.

[8] M. Denkowski and A. Lavie. Meteor universal: Language specific trans-

lation evaluation for any target language. In Proceedings of the ninth

workshop on statistical machine translation, pp. 376-380, 2014.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

3

—_

[4

=

[5

—_

[6

—_

[9

—

Thttps://blinded

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

M. Diamond and A. Mattia. Data visualization: An exploratory study into
the software tools used by businesses. Journal of Instructional Pedagogies,
18, 2017.

V. Dibia and C. Demiralp. Data2vis: Automatic generation of data visu-
alizations using sequence-to-sequence recurrent neural networks. /EEE
computer graphics and applications, 39(5):33-46, 2019.

M. J. Fonseca, C. Pimentel, and J. A. Jorge. Cali: An online scribble
recognizer for calligraphic interfaces. In AAAI spring symposium on sketch
understanding, pp. 51-58, 2002.

M. Friendly. A brief history of data visualization. In Handbook of data
visualization, pp. 15-56. Springer, 2008.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga. A comprehensive
survey of deep learning for image captioning. ACM Computing Surveys
(CsUR), 51(6):1-36, 2019.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90-95, 2007. doi: 10.1109/MCSE.2007.55

X. Jia, E. Gavves, B. Fernando, and T. Tuytelaars. Guiding the long-short
term memory model for image caption generation. In Proceedings of the
IEEE international conference on computer vision, pp. 2407-2415, 2015.
L. B. Kara and T. F. Stahovich. Hierarchical parsing and recognition
of hand-sketched diagrams. In Proceedings of the 17th annual ACM
symposium on User interface software and technology, pp. 13-22, 2004.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush. OpenNMT: Open-
source toolkit for neural machine translation. In Proceedings of ACL
2017, System Demonstrations, pp. 67-72. Association for Computational
Linguistics, Vancouver, Canada, July 2017.

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, et al. The open images
dataset v4. International Journal of Computer Vision, pp. 1-26, 2020.

J. A. Landay and B. A. Myers. Sketching interfaces: Toward more human
interface design. Computer, 34(3):56-64, 2001.

M. Li, Z. Lin, R. M” ech, , E. Yumer, and D. Ramanan. Photo-sketching:
Inferring contour drawings from images. WACV, 2019.

A. Narechania, A. Srinivasan, and J. Stasko. Nl4dv: A toolkit for gener-
ating analytic specifications for data visualization from natural language
queries. IEEE Transactions on Visualization and Computer Graphics,
2020.

M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and
M. Auli. fairseq: A fast, extensible toolkit for sequence modeling. In
Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, pp.
311-318, 2002.

B. Paulson and T. Hammond. Paleosketch: accurate primitive sketch
recognition and beautification. In Proceedings of the 13th international
conference on Intelligent user interfaces, pp. 1-10, 2008.

X. Qin, Y. Luo, N. Tang, and G. Li. Making data visualization more
efficient and effective: a survey. The VLDB Journal, 29(1):93-117, 2020.
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pp. 91-99, 2015.

P. Sangkloy, N. Burnell, C. Ham, and J. Hays. The sketchy database:
learning to retrieve badly drawn bunnies. ACM Transactions on Graphics
(TOG), 35(4):1-12, 2016.

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE transactions on visualization
and computer graphics, 23(1):341-350, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

A. Srinivasan, B. Lee, N. Henry Riche, S. M. Drucker, and K. Hinckley.
Inchorus: Designing consistent multimodal interactions for data visual-
ization on tablet devices. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pp. 1-13, 2020.

tableau. Tableau. https://www.tableau.com/, 2019.

S. Takaki and J. Yamagishi. A deep auto-encoder based low-dimensional
feature extraction from fft spectral envelopes for statistical parametric
speech synthesis. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5535-5539. IEEE, 2016.

P. Utama, N. Weir, F. Basik, C. Binnig, U. Cetintemel, B. Hittasch,

[36]

(371

[38]

(39]
[40]

(41]

[42]

(43]

[44]

[45]

[46]

A. Ilkhechi, S. Ramaswamy, and A. Usta. An end-to-end neural natu-
ral language interface for databases. arXiv preprint arXiv:1804.00401,
2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: Lessons
learned from the 2015 mscoco image captioning challenge. IEEE transac-
tions on pattern analysis and machine intelligence, 39(4):652-663, 2016.
J. Walny, C. Frisson, M. West, D. Kosminsky, S. Knudsen, S. Carpendale,
and W. Willett. Data changes everything: Challenges and opportunities in
data visualization design handoff. IEEE transactions on visualization and
computer graphics, 26(1):12-22, 2019.

J. Wilber. roughviz.

X. Xu, C. Liu, and D. Song. Sqlnet: Generating structured queries
from natural language without reinforcement learning. arXiv preprint
arXiv:1711.04436, 2017.

N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig. Sqlizer: query syn-
thesis from natural language. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1-26, 2017.

P. Yin and G. Neubig. A syntactic neural model for general-purpose code
generation. arXiv preprint arXiv:1704.01696, 2017.

B. Yu and C. T. Silva. Flowsense: A natural language interface for
visual data exploration within a dataflow system. IEEE transactions on
visualization and computer graphics, 26(1):1-11, 2019.

J. Yu, J. Li, Z. Yu, and Q. Huang. Multimodal transformer with multi-view
visual representation for image captioning. IEEE transactions on circuits
and systems for video technology, 30(12):4467-4480, 2019.

V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning. arXiv preprint
arXiv:1709.00103, 2017.

X.Zhu, L. Li, J. Liu, H. Peng, and X. Niu. Captioning transformer with
stacked attention modules. Applied Sciences, 8(5):739, 2018.

	Introduction
	Research Challenges
	Challenges 1: Source Code is Platform-specific
	Challenges 2: Sketches and Paired Source Code are Expensive to Obtain
	Challenges 3: Correlations Among Human-drawn Visualizations
	Challenges 4: Evaluation of Generated Code

	Analyzing the Feasibility of Generating Data Visualization Source Code from Hand-drawn Sketches
	Developing a Training Dataset
	From DSL to Visualization Code
	Dataset Construction and Expansion
	Adding New Visualization Capabilities to the Training Dataset
	Image Corpus Differentiation

	Sketch2Vis Evaluation Metrics Exploration
	Experimental Results
	Dataset Statistics
	Deep Learning Architectures Explored
	RNN Model Construction
	Transformer Model Construction

	Model Architecture Comparison Results
	Results Discussion and Performance on Hand-drawn Sketches

	Related Work
	Concluding Remarks

