
A Flexible Infrastructure for Distributed
Deployment in Adaptive Sensor Webs.

William R. Otte, John S. Kinnebrew, Douglas C. Schmidt, Gautam Biswas
Institute for Software Integrated Systems

Department of Electrical Engineering and Computer Science
Vanderbilt University, 2015 Terrace Place

Nashville, TN, 615-343-8197
wotte@dre.vanderbilt.edu, john.s.kinnebrew@vanderbilt.edu,

schmidt@dre.vanderbilt.edu, biswas@vuse.vanderbilt.edu

Abstract—Distributed sensor webs typically operate in dy-
namic environments where operating conditions, transient
phenomena, availability of resources, and network connec-
tion quality change frequently and unpredictably. Often these
changes can neither be completely anticipated nor accurately
described during development or deployment. Our prior
work has described how we developed agents and services
that are capable of monitoring these changing conditions and
adapting system parameters using the CORBA Component
Model (CCM) deployment infrastructure as part of theMulti-
agent Architecture for Coordinated Responsive Observations
(MACRO) platform.

Our recent application of MACRO to theSouth East Alaska
MOnitoring Network for Science, Telecommunications, Ed-
ucation, and Research(SEAMONSTER) project has iden-
tified new distributed deployment infrastructure challenges
common to computationally constrained field environments
in adaptive sensor webs. These challenges include standard-
ized execution of low-level hardware-dependent actions and
on-going data tasks, automated provisioning of agents for het-
erogeneous field hardware, and minimizing deployment in-
frastructure overhead. This paper describes how we extended
MACRO to address these sensor web challenges by creating
an action/effector framework standardizing the executionof
lightweight actions and providing for automated provision-
ing of MACRO agents, in addition to footprint optimizations
to the underlying CCM infrastructure.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 MOTIVATION . 2
3 M INIMIZING I NFRASTRUCTURE OVERHEAD IN

MACRO . 4
4 EXPERIMENTAL RESULTS . 8
5 RELATED WORK . 9
6 CONCLUDING REMARKS . 9

REFERENCES .10

978-1-4244-2622-5/09/$25.00 2009 IEEE
IEEEAC Paper #1339, Version 2 Updated 02/11/2008.

1. INTRODUCTION

A variety of sensor webs [1] can now provide data in near
real-time to help scientists study and predict weather, natural
disasters, and climate change. Modern sensor webs enable in-
formation to be gathered from sensors around the globe and
quickly transmitted to local or remote servers where signif-
icant computational resources are available for model build-
ing, data analysis, and prediction. With the appropriate in-
frastructure, these systems can facilitate the real-time collec-
tion and analysis of sensor data even under changing environ-
mental conditions and multiple concurrent science objectives.

Sensor webs are large-scale, networked systems often
made up of heterogeneous computing platforms including
both commodity servers and distributed real-time embedded
(DRE) systems. Unfortunately, the configuration and opera-
tion of individual sensor webs are often performed in anad
hoc manner, which impedes adding new sensors, updating/-
modifying their software, and reconfiguring them to accom-
modate evolving conditions and changing science needs.

Like other DRE systems, such as shipboard computing [2]
and fractionated spacecraft [3], the field subsystems of sen-
sor webs can benefit from recent advances in middleware in-
frastructures. The use ofquality-of-service (QoS)-enabled
component middlewarehelps automate remoting, lifecycle
management, system resource management, deployment, and
configuration in DRE systems. QoS-enabled component mid-
dleware supports explicit configuration of QoS aspects (e.g.,
priority and threading models), and provides many desirable
real-time features (e.g., priority propagation, scheduling ser-
vices, and explicit binding of network connections). In inte-
grated, adaptive sensor webs, QoS-enabled component mid-
dleware helps address the large, heterogeneous set of sensor
assets and computational resources that must be coordinated
and managed to address weather, climate change, and disaster
prediction/management problems.

Sensor web hardware and sensors are also increasingly con-
figurable and must operate inopenenvironments where oper-
ating conditions, workload, resource availability, and connec-
tivity cannot be accurately characterizeda priori. Our previ-

1

ous work described the design of theMulti-agent Architecture
for Coordinated Responsive Observations(MACRO) [4],
which provides a QoS-enabled component middleware plat-
form that automates many system configuration and manage-
ment tasks for sensor web applications, including dynamic
system management and autonomous operation of config-
urable sensor webs in open DRE system environments. This
paper addresses new distributed deployment challenges re-
sulting from applying the MACRO platform to theSouth
East Alaska MOnitoring Network for Science, Telecommu-
nications, Education, and Research(SEAMONSTER) [5],
which is a representative sensor web for monitoring glacial
change and watershed effects.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes adaptive sensor web challenges in SEA-
MONSTER, including standardized execution of low-level
hardware-dependent actions and on-going data tasks, auto-
mated provisioning of agents for heterogeneous field hard-
ware, and minimizing deployment infrastructure overhead;
Section 3 describes how we addressed these challenges by ex-
tending MACRO to include an action/effector framework that
standardizes the execution of lightweight actions, automates
the provisioning of MACRO agents, and optimizes the foot-
print of the underlying QoS-enabled component middleware;
Section 4 empirically evaluates how these extensions address
deployment challenges; Section 5 compares MACRO with re-
lated work; and Section 6 presents concluding remarks.

2. MOTIVATION

Overview of SEAMONSTER

SEAMONSTER is a glacier and watershed sensor web at the
University of Alaska Southeast (UAS) in Alaska [5]. This
sensor web monitors and collects data regarding glacier dy-
namics and mass balance, watershed hydrology, coastal ma-
rine ecology, and human impact/hazards in and around the
Lemon Creek watershed and Lemon Glacier. The collected
data is used to study the correlation between glacier veloc-
ity, glacial lake formation and drainage, watershed hydrology,
and temperature variation.

The SEAMONSTER sensor web includes sensors and weath-
erized computer platforms that are deployed on the glacier
and throughout the watershed to collect data of scientific in-
terest, as shown in Figure 1. The data collected by the sensors
is relayed via wireless networks to a cluster of servers that
filter, correlate, and analyze the data. These data collection
and processing applications are being transition to run atop a
QoS-enabled component middleware platform consisting of
the Component-Integrated ACE ORB(CIAO) [6], which is
open-source, QoS-enabled, component middleware that im-
plements the OMG Lightweight CORBA Component Model
(CCM) [7] and Deployment and Configuration [8] specifica-
tions.

Distributed Deployment and Adaptation Challenges in SEA-
MONSTER

Effective deployment of data collection and filtering applica-
tions on SEAMONSTER field hardware and dynamic adap-
tation to changing environmental conditions and resource
availability present significant software challenges for effi-
cient operation of SEAMONSTER. While SEAMONSTER
servers provide significant computational resources, the field
hardware is computationally constrained. The server-based
MACRO agents perform extensive planning and scheduling
to provide direction and coordination of tasks performed by
the computationally limited field resources. In the field, the
limited computational resources require software solutions
with a small footprint and low computational complexity.

Field nodes in a sensor web often have a large number of
observable phenomena in their area of interest. The type,
duration, and frequency of observation of these phenomena
may change over time, based on changes in the environment,
occurrence of transient events in the environment, and chang-
ing goals and objectives in the science mission of the sensor
web. Moreover, limited power, processing capability, storage,
and network bandwidth constrain the ability of these nodes
to continually perform observations at the desired frequency
and fidelity. Dynamic changes in environmental conditions
coupled with limited resource availability requires individual
nodes of the sensor web to rapidly revise current operations
and future plans to make the best use of their resources.

To handle dynamic changes effectively, sensor web nodes
must be capable of goal-driven, functional adaptation. More-
over, they must be able to adapt the local system in light of
resource constraints and fluctuations throughout the sensor
web to maintain efficient and correct operation of the over-
all system. Prior work [9] describes how MACRO addresses
these challenges by combining the planning and resource
management services of its server agents with the template
plan schemas of its field agents. This paper extends our prior
work by focusing on the following unexplored challenges as-
sociated with providing a flexible deployment infrastructure
to support system management and dynamic adaptation of the
SEAMONSTER field nodes.

Challenge 1: Standardized Execution of Planned Low-Level
Actions and Data Tasks

Most tasks performed by MACRO agents on the SEAMON-
STER server cluster involve on-going data processing and
analysis that are implemented by components selected and
configured during planning/scheduling. A scheduled plan
for the deployment and operation of these configured com-
ponents is passed to a resource management service, which
allocates them to individual server nodes and adjusts config-
uration settings and operating system parameters to handle
fluctuations in resource usage and availability. The resource
management service employs the deployment infrastructure
to coordinate the deployment, configuration, connection, and

2

Figure 1. SEAMONSTER field sensors and UAS servers

execution of the specified components. This provides a stan-
dardized, flexible system for implementing tasks as config-
ured components.

Data collection and transmission tasks on field nodes are im-
plemented as components for the same reasons as data pro-
cessing tasks on the servers. However, many of the other ac-
tivities that MACRO agents plan and perform on field nodes
consist of low-level, hardware-dependent actions that exe-
cute only briefly to configure sensors or the power manage-
ment hardware subsystem. Implementing these short-lived
“actions” as components would require proportionally much
greater overhead for their deployment and execution than for
data processing “tasks” that execute over a long period of
time and must transmit data streams to other components.
Given the limited computational resources available on field
nodes, the overhead for implementing brief, low-level actions
as components is unacceptable.

An additional, smaller level of granularity for action imple-
mentation is therefore necessary for efficient execution of
many planned activities on field nodes. While the agents
could implement these actions directly, it would require hard-
coding of hardware-dependent actions into each field agent.
Alternatively, grouping these actions into larger pre-planned
sets of actions executing as a component would proportion-
ally reduce the overhead. However this would negatively im-
pact maintainability through duplication of action code seg-
ments and constrain the available options for planning. In-
stead, a standardized deployment and execution framework,
such as that provided by the middleware for components, but
with lower overhead, would greatly enhance the maintain-
ability of the system and simplify initial system development.
Section 3 describes how such a framework has been designed
and incorporated in MACRO to address this challenge.

Challenge 2: Automated Agent Provisioning for a Variety of
Field Hardware

Field nodes in a sensor web may have a large number of pos-
sible configurations, due to a variety of sensors, software,
and situations that they may be tasked to observe and react
to. Consequently, the agents that manage these nodes must
be as flexible as possible. Hard-coding available tasks into
agent code requires that new versions of each agent be cre-
ated as nodes add new responsibilities or hardware. The solu-
tion developed to address the challenge described in Section 2
should include integration with the deployment infrastructure
to download and load at run-time appropriate action imple-
mentations. Section 3 describes how the deployment infras-
tructure may be leveraged to dynamically provision agents
with available, context-specific actions at deployment time.

Challenge 3: Minimizing Deployment Infrastructure Over-
head

The SEAMONSTER sensor web, described in Section 2,
includes many field nodes operating with extremely lim-
ited computational resources. SEAMONSTER includes two
types of computational platforms for field nodes [10]:

• Primary Microservers. These units are weatherized single
board computers (SBC) that are designed to have very lim-
ited power consumption and precise control over the power
consumption of the SBC and attached devices. The SBC is a
commercial off-the-shelf (COTS) product that has a 200 MHz
low-power ARM processor with 64 MB of built-in RAM.

• Adjunct Microservers. These units are repurposed COTS
Linksys NSLU-2 network attached storage devices that are
essentially inexpensive SBCs. These computers consist of
a 133 Mhz (with simple hardware modifications possible to
reach 266 MHz) ARM processor with 32 MB of built in
RAM. These units provide a low-cost alternative to using Pri-
mary Microservers for some field nodes, however they lack

3

powercontrol capabilities and have even more limited compu-
tational power primarily due to the minimal amount of RAM.

Each platform presents an environment where the resident
footprint of the middleware infrastructure and component im-
plementations is critically important. Excessive footprint will
at best cause excessive memory swapping to occur, signifi-
cantly degrading performance and shortening the life of at-
tached flash drives, and at worst cause deployment failure
due to exhaustion of memory, as happened occasionally dur-
ing initial trials of MACRO software in the SEAMONSTER
testbed. Section 3 describes initial efforts to reduce the foot-
print of the middleware and Section 6 describes our planned
approach to further reduce middleware overhead.

3. M INIMIZING I NFRASTRUCTURE
OVERHEAD IN MACRO

This section explains how MACRO addresses the challenges
described in Section 2. We begin with an overview of the
agent-based system developed in our previous work, along
with a description of its middleware infrastructure. We then
outline the new MACRO Action/Effector framework and ex-
plain how it addresses the deployment infrastructure chal-
lenges encountered in the SEAMONSTER project.

Overview of MACRO

The Multi-agent Architecture for Coordinated, Responsive
Observations(MACRO) platform provides a powerful com-
putational infrastructure for enabling the deployment, con-
figuration, and operation of large-scale sensor webs that are
composed of many constituent sensor webs. Figure 2 shows
how MACRO supports intelligent autonomy via agents at the
following two levels of abstraction:

• Mission level, where agents interact with users to allocate
high-level science tasks to sensor webs and coordinate sched-
uled plans to achieve these goals, and

• Resource level, where local server and field agents achieve
mission goals through functional adaptation of a sensor web
in light of current environmental conditions and resource
availability.

The work presented in this paper focuses on the resource level
of MACRO, which is applicable to individual sensor webs,
such as SEAMONSTER.

System adaptation for current conditions and science goals,
described as a set of desired data products and results, is
directed by MACRO server-based agents with functional
knowledge of the sensor web system and available software
components and actions. MACRO server-based agents em-
ploy novel services, such as theSpreading Activation Partial
Order Planner(SA-POP) [11] and theResource Allocation
and Control Engine(RACE) [12]. These agents use the SA-
POP service to (1) decompose goals into subgoals that are

achieved at the server or by individual field nodes and (2)
plan/schedule for their achievement.

With information from field agents about current conditions
and local activities, SA-POP produces scheduled, high ex-
pected utility plans to achieve an optimized set of current
goals. These scheduled plans are also broken into sub-
plans by SA-POP. These subplans describe (1) the selection/-
configuration of server-based software components, which
are allocated and managed by the RACE service on the
servers, and (2) hardware-dependent actions on individual
field nodes, as well as additional component deployments.

Although the sub-plans generated by SA-POP on the servers
can provide an important starting point for deployments and
actions on the field nodes, changing local conditions may in-
validate those plans or require modification to them for effec-
tive, rapid reaction to environmental phenomena and chang-
ing resource availability. Since local field agents have limited
computational resources, extensive planning and scheduling,
such as that provided by SA-POP, is not possible for rapid
reaction to local changes. Instead, field agents use a set of
template plan schemas that cover a range of conditions and
local subgoals to which they are applicable.

Server-based agents provide the field agents with the cur-
rent set of local subgoals to pursue and suggested schema
instantiations corresponding to the sub-plans produced by
SA-POP. The task of the field agent is therefore the simpler
choice of an appropriate set of schemas to instantiate as local
conditions evolve. The extensive planning/scheduling per-
formed by MACRO server agents using SA-POP—together
with the choice of plan schemas to instantiate by MACRO
field agents—provide effective system adaptation to achieve
science goals in light of changing environmental conditions
and resource availability.

The implementation of agents in MACRO is based on the
CIAO [6] QoS-enabled component middleware (described
in Section 3 to ensure interoperability across heterogeneous
computing platforms, reduce development costs, and improve
overall robustness and scalability. The agents operate on the

Figure 3. The MACRO Architecture

CIAO middleware to ensure that a diverse set of science ob-
jectives can be met, as shown in Figure 3. This architecture
helps facilitate real-time, adaptive data acquisition, analysis,

4

Field Node

Resource Level

Mission

Agent

Mission

Agent

User

Agent

User

Agent

Server

SA-POP, RACE

Goals
&

Feedback

Exec

Agent

Science

Agent

G
o

a
ls

&
F

e
e

d
b

a
c
k

F

e
e

d
b

a
c
k

D
e

p
lo

y
m

e
n

t

D
ata

Stream

Broker Agents

(Contract Net

Allocation)

Distributed Planning/

Scheduling

Mission

Agent

Mission Level

CIAO

Subgoals &

Feedback

C
o

m
p

o
n

e
n
t

A
p

p
lic

a
ti
o

n

F

e
e

d
b

a
c
k

D
e

p
lo

y
m

e
n

t
C

o
m

p
o

n
e

n
t

A
p

p
lic

a
ti
o

n

CIAO

Data Stream

Figure 2. MACRO Agent Architecture

fusion, and distribution.

Overview of MACRO’s QoS-enabled Component Middleware

The MACRO middleware infrastructure is based on the
CORBA Component Model (CCM) [13], which is an
extension to the Common Request Broker Architecture
(CORBA) [14] that supports Component Based Software En-
gineering. CCM enhances re-usability by allowing develop-
ers to focus only on application business logic, abstracting
away the details of communication and configuration. Com-
ponents interact with one another only through well-defined
ports, which includefacets (provided interfaces),recepta-
cles(required interfaces), andevent sources and sinks(asyn-
chronous publish/subscribe transport).

The CCM middleware used in MACRO is theComponent In-
tegrated ACE ORB(CIAO) [15]. CIAO is a QoS-enabled im-
plementation of the Lightweight CCM (LWCCM) [16] speci-
fication built on top ofThe ACE ORB(TAO). CIAO provides
a clear separation of concerns betweenconfiguration logic,
specified at deployment time via XML-based meta-data, and
business logic.

CIAO’s deployment and configuration capabilities are pro-
vided by theDeployment and Configuration of Component
Based Systems(DnC) [17] specification, which was created
by the OMG in response to the need for generic and stan-
dard mechanisms for deploying component-based applica-
tions. The DnC standard includes both adata model(i.e.,
descriptions of components, component compositions, target
domains, and associated configuration meta-data) and arun-
time model(i.e., a set of interfaces used to manage application
life-cycles).

The DnCrun-time modelin CIAO is implemented by theDe-
ployment And Configuration Engine(DAnCE) [18]. DAnCE
is a set of daemons executing in thedomain, which is the col-
lection of nodes and communication methods that comprise
the target environment. Important elements of the run-time
model are shown in Figure 4 and include:

Node
Manager

Node

Node
Manager

Node

Node
Manager

Node

Repository
Manager

Execution
Manager

Target
Manager

Figure 4. DAnCE Daemons

• Node Manager, which is a daemon that runs on all nodes
in the domain and is responsible for deploying, configuring,
and managing all components deployed to that node. This
daemon also supports monitors necessary to report resource
status on the node to the MACRO agents. Each node in the
sensor web will have a running Node Manager.

• Execution Manager, which is a daemon that coordinates
the activities of allNode Managersin a given domain. This
daemon is the primary point of control for the life-cycle of
all component applications. Primary microservers with direct

5

connections to the SEAMONSTER server cluster will have
Execution Managers.

• Target Manager, which is a daemon that collates and re-
ports resource availability in a given domain. Informationis
collected from resource monitors installed in individualNode
Managers. Like the Execution Manager, this daemon will
run on primary microservers with direct connections to the
servers.

• Repository Manager, which is a daemon that maintains a
collection of component meta-data and binary implementa-
tions. IndividualNode Managersmay contact nearby reposi-
tories to download binaries for components they are tasked
to deploy, and MACRO agents may query the repository
for information about components available for deployment.
An instance of theRepository Managerwill run on the pri-
mary server for use by the MACRO server agents and server
deployments. Another instance will reside on primary mi-
croservers with direct connections to SEAMONSTER server
cluster for use by nodes in the field.

Applying MACRO to Address SEAMONSTER Challenges

The remainder of this section explains how MACRO applies
and enhances the CIAO and DAnCE middleware described
above addresses the sensor web challenges identified in Sec-
tion 2.

Addressing Challenge 1: MACRO’s Action/Effector Frame-
work—MACRO’s Action/Effector framework has been devel-
oped to provide a standardized mechanism that has two pri-
mary benefits for implementing short-lived, lightweight “ac-
tions,” as opposed to on-going “tasks” implemented as com-
ponents. First, it allows the MACRO agents with their SA-
POP planning service and plan schemas to use a common
vocabulary for describing preconditions, dependencies, and
effects of individual actions, as well as resource requirements
of the associated action implementations. Second, it provides
a clear separation of concerns between invoking the action
and the business logic of the action, similar to that of com-
ponents,i.e., it provides a mechanism that agents can use to
execute a set of actions without knowledge at compile or link
time of the implementation of those actions.

Action meta-data. Listing 1 describes theAction Info
data structure which allows an action to provide meta-data
about itself to the system/agents. This meta-data describes
properties (e.g., a unique identifier, argument identifiers and
types, return value identifier and type) and requirements (e.g.
CPU and memory requirements, hardware/sensor resources,
and component or object references). This data structure is
implemented as a CORBA valuetype, which will leave open
the possibility for derivation though inheritance should addi-
tional fields need to be added later without breaking back-
wards compatibility with the interfaces described below.

Action interface. Listing 2 describes the interface for the

s t r u c t P r o p e r t y {
s t r i n g name;
any va lue;

} ;
t y p e d e f sequence<Proper ty> P r o p e r t i e s;
va lue type A c t i o n I n f o {

pub l i c s t r i n g i d ;
pub l i c P r o p e r t i e s r e s o u r c er e q u i r e m e n t s;
pub l i c P r o p e r t i e s i n i t a r g u m e n t s;
pub l i c P r o p e r t i e s execargum en ts;
pub l i c P r o p e r t i e s r e f e r e n c er e q u i r e m e n t s;

}

Listing 1. Action Meta-Data IDL

l o c a l i n t e r f a c e Act ion {
readon ly a t t r i b u t e A c t i o n I n f o i n f o ;
vo id i n i t i a l i z e (in ObjSeq r e f e r e n c e s);
vo id e x e c u t e (in any arguments ,

out any r e s u l t);
vo id r e l e a s e ();

} ;

Listing 2. Action Interface

Action itself. This interface provides a vehicle for provi-
sion of meta-data, and operations to manage the full lifecy-
cle of an Action. To provide lightweight actions with mini-
mal overhead, this interface is specified as alocal interface,
which instructs the CORBA IDL compiler to omit generation
of code that allows for remote invocation of the object, cre-
ating a locality constrained object. This design substantially
reduces overhead, as shown in Section 4. While this locality
constraint prevents MACRO agents from directly accessing
Action objects, the framework provides a mechanism which
does not constrain their use by those agents. This framework
allows MACRO agents to access and execute actions while
hiding the complexities of action deployment and execution
through the Effector interface described in Section 3.

The Action attributeinfo allows the Action implementation
to self-describe its meta-data, ultimately providing informa-
tion to the agents about its requirements and capabilities.This
information is also used by an implementation of the Effector
interface to determine which object references and arguments
are to be passed to the operations contained in this Action in-
terface.

These operations allow the Effector to manage the lifecycle
of Actions. Theinitialize operation is invoked upon
creation of the Action, providing it with object referencesto
deployed components and objects that the business logic may

6

extern ‘ ‘C ’ ’ {
A c t i o n p t r c r e a t e a c t i o n (vo id) ;

}

Listing 3. Action Factory

i n t e r f a c e E f f e c t o r {
A c t i o n I n f o l o a d a c t i o n (in s t r i n g l i b r a r y n a m e ,

in s t r i n g f ac to ry nam e);
vo id u n l o a d a c t i o n (in s t r i n g i d) ;
A c t i o n I n f o q u e r y a c t i o n (in s t r i n g i d) ;
S t r i n g S e q l i s t a c t i o n s ();
vo id e x e c u t e a c t i o n (in s t r i n g id ,

in any arguments ,
out any r e s u l t);

} ;

Listing 4. Effector Interface

need in order to successfully execute. Theexecute oper-
ation implements the business logic of the Action. This op-
eration accepts two parameters, both of type CORBA Any,
which is a generic container which may contain any valid
CORBA data type, allowing the Actions to accept arguments
or provide results in a flexible, but standardized, manner. Fi-
nally, therelease operation informs the Action that it is
about to be deallocated so that it may release any resources
that it holds.

Each Action implementation provides a factory method (an
example of which is found in Listing 3) that is used by the Ef-
fector to construct instances of the action at run-time. Similar
to the method used by the DnC specification [17] to con-
struct component instances, this factory method is declared
asextern ‘‘C’’, which will allow the Effector interface
to load actions at run-time using methods similar todlopen
anddlsym.

Effector interface. Listing 4 describes the Effector inter-
face, which is used by the MACRO agents to load and ex-
ecute actions. This interface is provided as either a facet or
a supported interface on a component. It is used by MACRO
agents to execute plans/schemas and interact with the com-
ponents providing abstractions of the available hardware,as
shown in Figure 5. For example, theload action method
may be used by an agent or other Effector client to load a new
action from a named shared library that contains a provided
factory symbol. The operations on the Effector interface al-
low MACRO agents to (1) manage the lifecycle of Actions
installed in the Effector, (2) determine which Actions have
been loaded and query their meta-data, and (3) instruct the

component E f f e c t o r P r o v i d e r{
p r o v i d e s E f f e c t o r e f f e c t;
a t t r i b u t e A c t i o n F a c t o r i e s f a c t o r i e s;

} ;

Listing 5. Example Component with Effector

Effector to execute an Action.

Action
Implementation

Effector Implementation

MACRO
Agent

execute_action

execute

Figure 5. The Action/Effector Framework

Addressing Challenge 2: Providing Flexible Agent Provi-
sioning—The Action/Effector framework described in Sec-
tion 3 provides a mechanism through which MACRO agent
implementations may be dynamically provisioned at deploy-
ment time with Action objects apropos to the particular hard-
ware configuration, including its suite of available sensors, on
which the agent resides. Component interface descriptions,
similar to standard CORBA object descriptions, may have at-
tributes of arbitrary types. As seen in Listing 5, the example
component has an attribute of typeAction Factories,
which is a sequence of structures containing a pair of string
member variables indicating a library name and factory sym-
bol name.

Component deployments are described via XML files that
capture information about component configuration, topol-
ogy, and connections. These XML descriptors may be used to
populate the value of this attribute with desired library name/-
factory name pairs at deployment time. Moreover, through
the mechanism used to describe the implementation depen-
dencies of components (i.e., shared libraries implementing a
component), it is possible to indicate to the NodeManager
that shared libraries implementing Actions also be down-
loaded from the RepositoryManager, as described in Sec-
tion 3. This approach allows the component providing the
Effector interface to invoke theload action operation for
each library/entrypoint pair provided during activation.

Addressing Challenge 3: Reducing Middleware Footprint—
Initial efforts to run MACRO (and the associated middleware
infrastructure) presented difficulties and, in some cases,fail-
ures due to the large footprint of the default configuration of
CIAO and the limited memory capacity of the SEAMON-
STER nodes. To reduce memory footprint, the initial applica-

7

tion of the deployment infrastructure to SEAMONSTER field
hardware included two straightforward modifications:

• Leverage compiler optimizations. Most compilers have
the ability to provide space-saving optimizations to most
code, which an experienced programmer can easily leverage
to provide footprint reduction.

• Leverage mechanisms present in underlying middle-
ware. The build system of the middleware underpinning of
CIAO provides configuration settings that allow one to strip
unneeded features from compiled binaries, which can pro-
vide also provide substantial footprint savings in resource-
constrained environments.

While these steps are relatively straightforward and not par-
ticularly novel, Section 4 shows that they were sufficient
to reduce the static footprint of the middleware stack to a
level that allowed successful use of the MACRO platform on
SEAMONSTER hardware. Section 6 discusses the approach
we are undertaking to further reduce middleware footprint/-
overhead.

4. EXPERIMENTAL RESULTS

This section presents the results of experiments that evaluate
(1) the effectiveness of MACRO’s Action/Effector framework
for lightweight, hardware-dependent actions and (2) the re-
duction of middleware footprint described in Section 3. These
results show that the efforts described reduced the total static
footprint of MACRO and its underlying middleware stack.
They also show the reduction in overhead achieved by imple-
menting short-lived actions in the Action/Effector framework
discussed in Section 3, rather than using heavier-weight com-
ponents.

Hardware/Software Testbed and Experiment Methodology

The static footprint results were obtained via a cross-compiler
toolchain used to build software for the SEAMONSTER
hardware. This toolchain consists ofg++ 4.1.2 andld
2.17, which are hosted on Debian Linux 4.0 and target
arm-linux-gnu. The CIAO middleware platform was
version 0.6.6.

For the initial baseline results, this platform was compiled
using default options, with debugging symbols disabled and
the compiler optimization level at03, which instructs the
g++ compiler to optimize for speed. For the results based
on our optimization efforts, the middleware was compiled us-
ing built-in methods for reducing footprint and the compiler
was instructed to optimize using0s, which instructs theg++
compiler to optimize for space. In all cases, we used the GNU
strip utility to remove any debugging symbols from the
compiled binaries to ensure the footprint metrics just mea-
sured the size of the executables.

Executable footprint sizes were determined by statically link-

ing all required symbols from the underlying middleware into
the final binary, ensuring that all necessary symbols from
the underlying middleware are present, while not including
any unnecessary symbols. For the purposes of calculating
the size of a component, we assume that any symbols nec-
essary from the underlying middleware were already present
in the component server, and thus the calculation of the com-
ponent footprint sizes was obtained by summing the size of
thesharedlibraries that implement the component. This size
includes CORBA stubs and skeletons, the servant (the com-
ponent specific portions of the container), and the executor
(business logic) implementation.

Runtime results were obtained using a primary microserver
described in Section 2. This microserver consists of a 266
Mhz ARM processor with 64 MB of built-in RAM. The op-
erating system is a derivative of the Debian Sarge running
GNU/Linux kernel 2.4.26, which was provided by the manu-
facturer of the microserver (Technologic Systems).

Initial Footprint Reduction

The results of the efforts described in Section 3 are sum-
marized in Table 4. TheExecutionManager and

Entity Default Optimized Savings

ExecutionManager 12,203 KB 11,136 KB 1,067 KB
NodeManager 13,865 KB 12,623 KB 1,242 KB
NodeApplication 12,710 KB 11,460 KB 1,250 KB
Null Component 670 KB 605 KB 65 KB

Table 1. Results of Initial Footprint Optimization

NodeManager (which were described in Section 3) and the
NodeApplication (which is a component server spawned
during the deployment process) each experienced a reduc-
tion in footprint of ∼1 megabyte. The combined savings
reduced the footprint of node-local infrastructure (i.e., the
NodeManager andNodeApplication) from 26.5 MB
to 24 MB.

Although this reduction allowed us to deploy and operate
a prototype MACRO-based application on the SEAMON-
STER hardware, this deployment consumed nearly all avail-
able physical memory on the primary microservers, and re-
sulted in frequent thrashing on the memory-constrained ad-
junct microservers. As discussed in Section 6, additional
work is needed to further reduce the footprint of the infras-
tructure and component implementations.

Impact of Action/Effector Framework on MACRO Execution
Overhead

MACRO’s Action/Effector framework (described in 3) sub-
stantially reduces footprint overhead compared to using
CIAO’s complete component implementations to encapsulate
SEAMONSTER tasks and actions. Table 4 summarizes the
differences in footprint size between these two approaches.

8

When implemented as a component, the action has a foot-

Implementation Type Size

Component 623 KB
Action Implementation 23 KB
Effector 123 KB

Table 2. Action/Effector Footprint

print of over half a megabyte, substantially limiting the num-
ber of action implementations that could simultaneously be
deployed to a single resource-limited field node.

When the action was implemented in MACRO’s new Ac-
tion/Effector framework, however, its footprint was only 23
KB, which is a fraction of the memory required by an exe-
cuting component. Moreover, an implementation of the Ef-
fector framework as a component facet adds only 123 KB to
the footprint of an existing MACRO agent component, one of
which is required per node.

Deployment Latency Average Time (Seconds)

Component 218.96
Action/Effector 3.23

Table 3. Action/Effector Footprint

A more important result, moreover, is the deployment latency
experienced by a component compared against the latency
experienced by an Action implementation. In this case, de-
ployment latency refers to the amount of time from the mo-
ment deployment is started (e.g. load action in the Ac-
tion/Effector framework) until deployment is completed and
the component or Action is ready for invocation. As shown
in Table 4, which documents the average of twenty runs of
each, the difference in deployment latency is dramatic, with
component deployment requiring over three minutes while an
Action is deployed in only three seconds. These results do not
include the time required to download the component imple-
mentation from theRepositoryManager, which could be
substantial over a bandwidth-limited wireless connection, but
is only required the first time a component is used on the mi-
croserver.

5. RELATED WORK

This section compares our work on MACRO with related
work.

Resource-Constrained Component Models.Programming
in the Many (PitM) [19] is anarchitectural styleaimed at
the domain of distributed, highly mobile, severely resource
constrained embedded systems. While this component model
meets the stringent footprint requirements of SEAMON-
STER, it lacks the interoperability and rich ecosystem of ser-
vices offered by CORBA and CCM. PitM also limits com-
munication between components to message-passing, lacking

the rich interface-based communication possible with CIAO.
The SOFtware Architectures (SOFA) component model [20]
based onArchitecture Definition Languages, which view ap-
plications as hierarchies of connected components. This com-
ponent model provides capability for run-time modifications
that may be lighter weight than CIAO components, but which
must be described atdesign time[21], thereby limiting flexi-
bility compared with MACRO.

Decision-theoretic planning and scheduling.The planning
service used by MACRO server-based agents – SA-POP – is a
decision-theoretic planner allowing uncertainty both in envi-
ronmental conditions and action outcome, like C-SHOP [22]
that does so with hierarchical planning and Drips [23] that
produces conditional plans. However, to enable planning with
resource constraints, such as those of sensor webs, many have
chosen to separate the planning and scheduling/resource as-
pects of the problem (e.g., [24] and [25]). This approach
works well when the resource/time constraints are relatively
loose or there are relatively few alternatives in the planning
process that could use fewer or different resources. How-
ever, with tight resource constraints, as are often presentin
sensor webs, others have chosen to integrate planning and
scheduling as SA-POP does. For example, IxTeT [26] uses
partial-order planning like SA-POP and allows interleaving
resource conflict resolution with the planning process, but
does not perform decision-theoretic planning and incorpo-
rates scheduling/timing information directly into the action
representation.

Plan schemas for resource-constrained planning and
scheduling.The MACRO field agents use plan schemas (also
called template plans or skeletal plans) [27], which have also
been used in other situations where complete planning was
too time consuming for appropriate responses. MACRO’s
plan schemas have been enhanced with scheduling informa-
tion, such as in [28], and generated through partial order
planning techniques, like [29]. The combination of MACRO
server-based agents using the SA-POP planning/scheduling
service with generated schemas used by MACRO field agents
provides a uniquely flexible solution for autonomy in sensor
webs with a server cluster connected to DRE field systems.

6. CONCLUDING REMARKS

The SEAMONSTER project exhibits distributed deployment
infrastructure challenges common to computationally con-
strained field environments in adaptive sensor webs, includ-
ing standardized execution of low-level hardware-dependent
actions and on-going data tasks, automated provisioning of
agents for heterogeneous field hardware, and minimizing
deployment infrastructure overhead in general. This paper
presents the results of applying the MACRO platform with
extensions designed to address these deployment challenges
in SEAMONSTER. In particular, the Action/Effector frame-
work addressed key deployment challenges as follows:

• Separate concerns by creating a unified mechanism for de-

9

ploying and executing brief, low-level actions.

• Substantially reduce footprint of individual actions versus
implementation as a component.

• Improve deployment latency by two orders of magnitude
over a similar component implementation.

The remainder of this section summarizes lessons learned
from applying MACRO to SEAMONSTER and outlines our
future work optimizing MACRO’s QoS-enabled component
middleware infrastructure.

Lessons Learned

The lessons learned from our extensions to the MACRO dis-
tributed deployment infrastructure include:

• Feasible integration of non-component entities.The Ef-
fector/Action framework has demonstrated the feasibilityof
integrating non-component entities into component assem-
blies where footprint, latency, or lifetime rules out the use
of a full component.

• Unitary Effector may limit framework flexibility. A uni-
tary Effector (i.e., one which is incapable of operating in a
hierarchical manner with other effectors) may limit flexibility
in dynamic sensor web environments. Extending the Effector
interface to support hierarchical and peer behavior with other
Effectors deployed to the same node(s) potentially has two
advantages: (1) it allows Effectors to expand their vocabu-
lary as nearby nodes and devices power up/down in response
to changing power availability and (2) it allows the creation
of “meta-Actions,” which are ordered compositions of one or
more concrete actions across one or more Effectors.

• A synchronous Effector interface may cause unaccept-
able delays. If an Action hangs or takes longer to complete
than expected, the present synchronous interface will also
cause the agent plan execution code to hang. This behav-
ior is undesirable, however, since it may cause the agent to
miss other important deadlines in its current plan of execu-
tion. Asynchronous Effector and Action interfaces can alle-
viate this concern.

• CIAO footprint is too large for resource constrained
systems.The stringent resource constraints (i.e., 32-64 MB
RAM and processors operating at 266 MHz or less) of SEA-
MONSTER field hardware were a significant hurdle due to
the overhead (especially memory footprint) of CIAO compo-
nents and deployment infrastructure. Previous CIAO devel-
opments focused on environments with significantly greater
resources,e.g., more than a gigabyte of RAM and processors
faster than two gigahertz. While CIAO is operational on the
SEAMONSTER hardware, as indicated in Section 4, further
work is needed to make the middleware efficient under tight
resource constraints.

• DaNCE footprint and deployment latency is too high for
resource constrained systems.As shown in Section 4, the
largest consumers of memory in the middleware stack are the
DAnCE daemons, in particular theExecutionManager
andNodeManager. The footprint of the newer deployment
and configuration aspects of the middleware has been largely
overlooked until now and needs to be addressed. Perhaps
more importantly is the latency experienced during deploy-
ment, which has been observed to take as long as several min-
utes on SEAMONSTER hardware.

Future Work

To further reduce the overhead of CIAO components and the
DAnCE deployment infrastructure, we are working on mul-
tiple approaches, including context-aware generative tech-
niques to prune unnecessary code/features:

• Generative component specialization.The CCM specifi-
cation includes several features and capabilities in the com-
ponent definition that may not be necessary in all situations,
such as generic navigation, introspection, and security fea-
tures, which contribute to footprint bloat. Generative tech-
niques could be used to prune these features on a case-by-case
basis.

• Generative container specialization.The CIAO container
is intended to be a generic solution providing a large fea-
ture set to satisfy user needs in most situations. As such,
it contains features and services that may not be necessary
in specific deployments, and could be pruned by generating
scenario-specific container implementations.

• Improve separation of concerns in DAnCE.The current
DAnCE implementation tangles concerns of deployment and
configuration with the run-time elements of the component
server in theNodeApplication. This entanglement in-
creases footprint by replicating large swathes of deployment
logic in each component server. Careful analysis and re-
factoring is therefore needed to substantially decrease foot-
print and deployment latency.

ACE, TAO, CIAO, DAnCE, RACE, and SA-POP are open-
source software that can be downloaded fromdownload.
dre.vanderbilt.edu.

REFERENCES

[1] K. Delin and S. Jackson, “Sensor Web for In Situ
Exploration of Gaseous Biosignatures,” 2000.

[2] P. Lardieri, J. Balasubramanian, D. C. Schmidt,
G. Thaker, A. Gokhale, and T. Damiano, “A
Multi-layered Resource Management Framework for
Dynamic Resource Management in Enterprise DRE
Systems,”Journal of Systems and Software: Special
Issue on Dynamic Resource Management in
Distributed Real-time Systems, vol. 80, no. 7, pp.
984–996, July 2007.

10

[3] O. Brown and P. Eremenko, “Fractionated Space
Architectures: A Vision for Responsive Space,” in
Proceedings of the 4th Responsive Space Conference.
Los Angeles, CA: American Institute of Aeronautics &
Astronautics, Apr. 2006.

[4] D. Suri, A. Howell, D. C. Schmidt, G. Biswas,
J. Kinnebrew, W. Otte, and N. Shankaran, “A
Multi-agent Architecture for Smart Sensing in the
NASA Sensor Web,” inProceedings of the 2007 IEEE
Aerospace Conference, Big Sky, Montana, Mar. 2007.

[5] D. R. Fatland, M. J. Heavner, E. Hood, and C. Connor,
“The SEAMONSTER Sensor Web: Lessons and
Opportunities after One Year,”AGU Fall Meeting
Abstracts, pp. A3+, Dec. 2007.

[6] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues,
B. Natarajan, J. P. Loyall, R. E. Schantz, and C. D. Gill,
“QoS-enabled Middleware,” inMiddleware for
Communications, Q. Mahmoud, Ed. New York:
Wiley and Sons, 2004, pp. 131–162.

[7] Light Weight CORBA Component Model Revised
Submission, OMG Document realtime/03-05-05 ed.,
Object Management Group, May 2003.

[8] Deployment and Configuration Adopted Submission,
OMG Document mars/03-05-08 ed., Object
Management Group, July 2003.

[9] J. S. Kinnebrew, W. R. Otte, N. Shankaran, G. Biswas,
and D. C. Schmidt, “Intelligent Resource Management
and Dynamic Adaptation in a Distributed Real-time
and Embedded Sensor Web System,” Vanderbilt
University, Tech. Rep. ISIS-08-906, 2008.

[10] W. R. Otte, J. S. Kinnebrew, D. C. Schmidt, G. Biswas,
and D. Suri, “Application of Middleware and Agent
Technologies to a Representative Sensor Network,” in
Proceedings of the Eighth Annual NASA Earth Science
Technology Conference, University of Maryland, June
2008.

[11] J. S. Kinnebrew, A. Gupta, N. Shankaran, G. Biswas,
and D. C. Schmidt, “Decision-Theoretic Planner with
Dynamic Component Reconfiguration for Distributed
Real-time Applications,” inThe 8th International
Symposium on Autonomous Decentralized Systems
(ISADS 2007), Sedona, Arizona, Mar. 2007.

[12] N. Shankaran, D. C. Schmidt, Y. Chen,
X. Koutsoukous, and C. Lu, “The Design and
Performance of Configurable Component Middleware
for End-to-End Adaptation of Distributed Real-time
Embedded Systems,” inProc. of the 10th IEEE
International Symposium on
Object/Component/Service-oriented Real-time
Distributed Computing (ISORC 2007), Santorini
Island, Greece, May 2007.

[13] CORBA Components v4.0, OMG Document
formal/2006-04-01 ed., Object Management Group,
Apr. 2006.

[14] The Common Object Request Broker: Architecture and
Specification, 3.0.2 ed., Object Management Group,
Dec. 2002.

[15] N. Wang, K. Balasubramanian, and C. Gill, “Towards a
real-time corba component model,” inOMG Workshop
On Embedded & Real-time Distributed Object Systems.
Washington, D.C.: Object Management Group, July
2002.

[16] Lightweight CCM FTF Convenience Document,
ptc/04-06-10 ed., Object Management Group, June
2004.

[17] Deployment and Configuration of Component-based
Distributed Applications, v4.0, Document
formal/2006-04-02 ed., OMG, Apr. 2006.

[18] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt,
and A. Gokhale, “DAnCE: A QoS-enabled Component
Deployment and Configuration Engine,” in
Proceedings of the 3rd Working Conference on
Component Deployment (CD 2005), Grenoble, France,
Nov. 2005, pp. 67–82.

[19] M. Mikic-Rakic and N. Medvidovic,
“Architecture-level support for software component
deployment in resource constrained environments,” in
CD ’02: Proceedings of the IFIP/ACM Working
Conference on Component Deployment. London,
UK: Springer-Verlag, 2002, pp. 31–50.

[20] T. Kalibera and P. Tuma, “Distributed component
system based on architecture description: The sofa
experience,” inOn the Move to Meaningful Internet
Systems, 2002 - DOA/CoopIS/ODBASE 2002
Confederated International Conferences DOA, CoopIS
and ODBASE 2002. London, UK: Springer-Verlag,
2002, pp. 981–994.

[21] P. Hnetynka and F. Plasil, “Dynamic reconfiguration
and access to services in hierarchical component
models,” inCBSE, 2006, pp. 352–359.

[22] A. Bouguerra and L. Karlsson, “Hierarchical Task
Planning Under Uncertainty,”3rd Italian Workshop on
Planning and Scheduling (AI* IA 2004). Perugia, Italy,
2004.

[23] P. Haddawy, A. Doan, and R. Goodwin, “Efficient
Decision-Theoretic Planning: Techniques and
Empirical Analysis,”Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence,
1995.

[24] B. Srivastava and S. Kambhampati, “Scaling up
Planning by Teasing Out Resource Scheduling,”Proc.
European Conference on Planning, 1999.

[25] A. El-Kholy and B. Richards, “Temporal and Resource
Reasoning in Planning: The parcPLAN Approach,”
Proceedings of the 12th European Conference on
Artificial Intelligence (ECAI-96), pp. 614–618, 1996.

[26] P. Laborie and M. Ghallab, “Planning with Sharable

11

Resource Constraints,”Proc. 14th Int. Joint Conf. on
AI, pp. 1643–1649, 1995.

[27] P. Friedland and Y. Iwasaki, “The concept and
implementation of skeletal plans,”Journal of
Automated Reasoning, vol. 1, no. 2, pp. 161–208, 1985.

[28] S. Miksch, Y. Shahar, and P. Johnson, “Asbru: A
Task-Specific, Intention-Based, and Time-Oriented
Language for Representing Skeletal Plans,” in
Proceedings of the 7th Workshop on Knowledge
Engineering: Methods & Languages (KEML-97),
1997, pp. 9–19.

[29] L. Ihrig and S. Kambhampati, “Design and
Implementation of a Replay Framework Based on a
Partial Order Planner,” inProceedings of the National
Conference on Artificial Intelligence, 1996, pp.
849–854.

William R. Otte is a Ph.D. student in
the Department of Electrical Engineer-
ing and Computer Science (EECS) at
Vanderbilt University. His research fo-
cuses on middleware for distributed real-
time and embedded (DRE) systems. He
is currently involved in several aspects of
developing a Deployment and Configu-

ration Engine (DAnCE) for CORBA Components. This work
involves investigation of techniques for run- time planning
and adaptation for component based applications as well as
specification and enforcement of application quality of ser-
vice and fault tolerance requirements. William graduated
with a B.S. in Computer Science from Vanderbilt University,
Nashville TN in 2005.

John S. Kinnebrew is a PhD student
in computer science at Vanderbilt Uni-
versity. He received his B.A. in com-
puter science from Harvard University
in 2001. His current research focuses
on artificial intelligence planning and
scheduling techniques in autonomous
systems.

Douglas C. Schmidtis a Professor of
Computer Science at the Institute for
Software Integrated Systems (ISIS) at
Vanderbilt University. He is a widely
cited expert on patterns, frameworks,
and middleware for distributed real-time
and embedded (DRE) systems. Dr.
Schmidt has published over 400 techni-

cal papers and 9 books and has given over 400 invited talks
and tutorials that cover a range of research topics, includ-
ing patterns, optimization techniques, and empirical analyses
of software frameworks and domain-specific modeling envi-
ronments that facilitate the development of DRE middleware
and applications running over high-speed networks and em-
bedded system interconnects. Dr. Schmidt has served as a

Deputy Office Director and a Program Manager at DARPAs
Information Technology Office (ITO) and Information eX-
ploitation Office (IXO), where he led the national RandD ef-
fort on middleware and model-driven development technolo-
gies for enterprise DRE systems. In addition to his academic
research and government service, Dr. Schmidt has over fif-
teen years of experience researching and developing ACE,
TAO, CIAO, and CoSMIC, which are widely used, open-
source middleware frameworks and model-driven develop-
ment tools that contain a rich set of components and domain-
specific languages that implement patterns and product-line
architectures for mission-critical enterprise DRE systems.

Gautam Biswasis a Professor of Com-
puter Science and Computer Engineer-
ing as well as a Senior Research Sci-
entist at the Institute for Software Inte-
grated Systems (ISIS) at Vanderbilt Uni-
versity. His primary areas of research
is in modeling, simulation, monitoring,
and control of complex systems as well

as planning, scheduling, and resource allocation algorithms
in manufacturing systems and distributed real-time environ-
ments. Dr. Biswas has published over 300 technical papers
and is well-recognized for his projects in diagnosis, fault-
adaptive control, and learning environments. These projects
have been supported with funding from DARPA, NASA,
NSF, AFOSR, and the Department of Education. He has
served as an associate editor for a number of journals and has
been program chair or co-chair for a number of conferences.

12

