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1 Intent

The Acceptor-Connector design pattern decouples connec-
tion establishment and service initialization in a distributed
system from the processing performed once a service is ini-
tialized. This decoupling is achieved with three compo-
nents:acceptors, connectors, andservice handlers. A con-
nectoractively establishes a connection with a remote ac-
ceptor component and initializes a service handler to pro-
cess data exchanged on the connection. Likewise, an ac-
ceptorpassivelywaits for connection requests from remote
connectors, establishing a connection upon arrival of such a
request, and initializing a service handler to process data ex-
changed on the connection. The initialized service handlers
then perform application-specific processing and communi-
cate via the connection established by the connector and ac-
ceptor components.

2 Example

To illustrate the Acceptor-Connector pattern, consider the
multi-service, application-levelGateway shown in Fig-
ure 1. In general, aGateway decouples cooperating com-
ponents in a distributed system and allows them to interact
without having direct dependencies on each other. The par-
ticular Gateway in Figure 1 routes data between different
service endpoints running on remotePeers used to mon-
itor and control a satellite constellation. Each service in
thePeers sends and receives several types of data via the
Gateway , such as status information, bulk data, and com-
mands. In general,Peers can be distributed throughout lo-
cal area networks (LANs) and wide-area networks (WANs).

TheGateway is a router that coordinates the communi-
cation among itsPeers Ḟrom theGateway ’s perspective,
thePeer services whose data it routes differ solely in terms
of their application-level communication protocols, which
may use different framing formats and payload types.
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Figure 1: The Physical Architecture of a Connection-
oriented Application-level Gateway

The Gateway transmits data between itsPeers using
the connection-oriented TCP/IP protocol [1]. In our exam-
ple network configuration, each service is bound to a con-
nection endpoint designated by an IP host address and a TCP
port number. The port number uniquely identifies the type of
service. Maintaining separate connections for each type of
service/port increases the flexibility of routing strategies and
provides more robust error handling if network connections
shutdown unexpectedly.

In our distributed application,Gateway andPeers must
be able to change their connection roles to support different
use-cases. In particular, either may initiate a connection ac-
tively or may wait passively for connection requests. For
example, in one configuration, theGateway may actively
initiate connections to remotePeers in order to route data
to them. In another configuration, theGateway may pas-
sively receive connection requests fromPeers which then
route data through theGateway to anotherPeer . Like-
wise,Peers may be active connection initiators in one use-
case and then be passive connection acceptors in another use-
case.
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Due to the nature of our distributed application, con-
ventional designs that designate connection establishment
and service initialization roles a priori and hard-code them
into the Gateway and Peer components are too inflexi-
ble. Such a design overly couples the connection establish-
ment, service initialization, and service processing compo-
nents. This tight coupling make it hard to change connection
roles independently of the communication roles.

3 Context

A client/server application in a distributed system that uti-
lizes connection-oriented protocols to communicate between
service endpoints.

4 Problem

Distributed applications often contain complex code that per-
forms connection establishment and service initialization. In
general, the processing of data exchanged between service
endpoints in a distributed application is largely independent
of configuration issues such as (1) which endpoint initiated
the connection,i.e., theconnection rolevs. thecommunca-
tion roleand (2) the connection management protocol vs. the
network programming API. These issues are outlined below:

� Connection role vs. communication role: Connection
establishment roles are inherentlyasymmetrical, i.e., the pas-
sive service endpointwaits and the active service endpoint
initiates the connection. Once the connection is established,
however, the communication role can beorthogonalto the
connection role. Thus, data can be transferred between ser-
vice endpoints in any manner that obeys the service’s com-
munication protocol. Common communication protocols in-
clude peer-to-peer, request-response, and oneway streaming.

� The connection management protocol vs. the network
programming API: Different network programming in-
terfaces, such as sockets or TLI, provide different APIs to
establish connections using various connection management
protocols. Regardless of the protocol used to establish a con-
nection, however, data can be transferred between endpoints
using uniform message passing operations,e.g., send /recv
calls.

In general, the strategies for connection establishment and
service initialization change much less frequently than ap-
plication service implementations and communication pro-
tocols. Thus, decoupling these aspects so that they can vary
independently is essential for developing and maintaining
distributed applications. The followingforcesimpact the so-
lution to the problem of separating the connection and ini-
tialization protocols from the communication protocol:

� It should be easy to add new types of services, new ser-
vice implementations, and new communication proto-
cols without affecting the existing connection establish-
ment and service initialization software. For instance, it

may be necessary to extend theGateway to interoper-
ate with a directory service that runs over the IPX/SPX
communication protocol, rather than TCP/IP..

� It should be possible to decouple (1) theconnection
roles, i.e., which process initiates a connection vs. ac-
cepts the connection, from (2) thecommunication roles,
i.e., which service endpoint is the client or the server. In
general, the distinction between “client” and “server”
refer to communication roles, which may be orthogo-
nal to connection roles. For instance, clients often play
the active role when initiating connections with a pas-
sive server. However, these connection roles can be re-
versed. For example, a client that plays an active com-
munication role may wait passively for another process
to connect to it. The example in Section 2 illustrates
this latter use-case.

� It should be possible to write communication software
that is portable to many OS platforms in order to max-
imize availability and market share. Many low-level
network programming APIs have semantics that are
only superficially different. Therefore, it hard to write
portable application using low-level APIs, such as sock-
ets and TLI, due to syntactic incompatibilities.

� It should be possible to shield programmers from the
lack of typesafety in low-level network programming
APIs like sockets or TLI. For example, connection es-
tablishment code should be completely decoupled from
subsequent data transport code to ensure that endpoints
are used correctly. Without this strong decoupling, for
instance, services may mistakenly read or write data on
passive-mode transport endpoint factories that should
only be used to accept connections.

� It should be possible to reduce connection latency by
using OS features like asynchronous connection es-
tablishment. For instance, applications with a large
number of peers may need to asynchronously establish
many connections concurrently. Efficient and scalable
connection establishment is particularly important for
applications that run over long-latency WANs.

� It should be possible to reuse as much general-purpose
connection establishment and service initialization soft-
ware as possible in order to leverage prior development
effort.

5 Solution

For eachserviceoffered by a distributed application, use the
Acceptor-Connectorpattern to decouple connection estab-
lishment and service initialization from subsequent process-
ing performed by the two endpoints of a service once they
are connected and initialized.

Introduce two factories that produce connected and ini-
tialized service handlers, which implement the application
services. The first factory, called acceptor, creates and ini-
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Figure 2: Structure of Participants in the Acceptor-Connector Pattern

tializes a transport endpoint that passively listens at a par-
ticular address for connection requests from remote connec-
tors. The second factory, a connector, actively initiates a con-
nection to a remote acceptor. Acceptor and connectors both
initialize the corresponding service handlers that process the
data exchanged on the connection. Once the service handlers
are connected and initialized they perform the application-
specific processing, and generally do not interact with the
acceptor and connector any further.

6 Structure

The structure of the participants in the Acceptor-Connector
pattern is illustrated by the Booch class diagram [2] in Fig-
ure 2.1

Service Handler: A Service Handler implements an
application service, typically playing the client role, server
role, or both roles. It provides a hook method that is called
by anAcceptor orConnector to activate the application
service when the connection is established. In addition, the
Service Handler offers a data-mode transport endpoint
that encapsulates an I/O handle, such as a socket. Once con-
nected and initialized, this endpoint is used by theService
Handler to exchange data with its connected peer.

Acceptor: An Acceptor is a factory that implements
the strategy forpassivelyestablishing a connection and
initializing its associatedService Handler . In addi-
tion, theAcceptor contains a passive-mode transport end-
point factory that creates new data-mode endpoints used by
Service Handler ’s to transmit data between connected
peers. TheAcceptor ’s open method initializes its trans-
port endpoint factory once by binding it to a network address,
such as the TCP port number theAcceptor is listening on.

Once initialized, the passive-mode transport endpoint fac-
tory listens for connection requests from peers. When a con-
nection request arrives, theAcceptor creates aService

1In this diagram dashed clouds indicate classes; dashed boxes in the
clouds indicate template parameters; a solid undirected edge with a hollow
circle at one end indicates a uses relation between two classes.

Handler and uses its transport endpoint factory to accept a
new connection into theService Handler .

Connector: A Connector is a factory that implements
the strategy foractivelyestablishing a connection and ini-
tializing its associatedService Handler . It provides a
method that initiates a connection to a remoteAcceptor .
Likewise, it provides another method that finishes activating
Service Handlers whose connections were initiated
either synchronously or asynchronously. TheConnector
uses two separate methods to support asynchronous connec-
tion establishment transparently.

Both the Acceptor and Connector activate a
Service Handler by calling its activation hook method
when a connection is established. Once aService
Handler is completely initialized by anAcceptor or
Connector factory it typically does not interact with these
components any further.

Dispatcher: For theAcceptor , the Dispatcher de-
multiplexes connection requests received on one or more
transport endpoints to the appropriateAcceptor . The
Dispatcher allows multipleAcceptors to register with
it in order to listen for connections from different peers on
different ports simultaneously.

For the Connector , the Dispatcher handles the
completion of connections that were initiated asyn-
chronously. In this case, theDispatcher calls back to
the Acceptor when an asynchronous connection is es-
tablished. TheDispatcher allows multipleService
Handlers to have their connections initiated and com-
pleted asynchronously by aConnector . Note that the
Dispatcher is not necessary for synchronous connection
establishment since the thread of control that initiates the
connection also completes the service handler activation.

A Dispatcher is typically implemented using an event
demultiplexing pattern, such those provided by the Re-
actor [3] or Proactor [4], which handle synchronous and
asynchronous demultiplexing, respectively. Likewise, the
Dispatcher can be implemented as a separate thread or
process using the Active Object pattern [5].
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7 Dynamics

The following section describes the collaborations per-
formed by theAcceptor and Connector components
in the Acceptor-Connector pattern. We examine the three
canonical scenarios: for theAcceptor , asynchronous
Connector , and synchronousConnector .

7.1 Acceptor Component Collaborations

Figure 3 illustrates the collaboration between the
Acceptor andService Handler participants. These
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Figure 3: Collaborations Among Acceptor Participants

collaborations are divided into three phases:

1. Endpoint initialization phase: To initialize a connec-
tion passively, an application calls theopen method of the
Acceptor . This method creates a passive-mode trans-
port endpoint and binds it to a network address,e.g. the
local host’s IP name and a TCP port number, and then
listens for connection requests from peerConnector s.
Next, the open method registers theAcceptor object
with a Dispatcher so that the dispatcher can call back
to theAcceptor when connection events arrive. Finally,
the application initiates theDispatcher ’s event loop,
which waits for connection requests to arrive from peer
Connector s.

2. Service initialization phase: When a connection
request arrives, theDispatcher calls back to the
Acceptor ’s accept method. Theaccept method
assembles the resources necessary to (1) create a new
Service Handler , (2) use its passive-mode transport
endpoint factory to accept the connection into the data-
mode transport endpoint of this handler, and (3) activate the
Service Handler by calling itsopen hook. Theopen
hook of the Service Handler can perform service-
specific initialization, such as allocating locks, spawning

threads, opening log files, and/or registering theService
Handler with aDispatcher .

3. Service processing phase:After the connection has
been established passively and theService Handler
has been initialized, the service processing phase begins.
In this phase, an application-level communication protocol,
such as HTTP or IIOP, is used to exchange data between the
local Service Handler and its connected remotePeer
via its peer stream endpoint. When this exchange is
complete the connection andService Handler s can be
shut down and resources released.

7.2 Connector Component Collaborations

The Connector component can initialize itsService
Handler using two general schemes:synchronousand
asynchronous. Synchronous service initialization is useful
for the following situations:

� If the latency for establishing a connection is very low,
e.g., establishing a connection with a server on the same
host via the loopback device; or

� If multiple threads of control are available and it is effi-
cient to use a different thread to connect eachService
Handler synchronously; or

� If the services must be initialized in a fixed order and
the client cannot perform useful work until connections
are established.

Likewise, asynchronous service initialization is useful in
opposite situations:

� If connection latency is high and there are many peers to
connect with,e.g., establishing a large number of con-
nections over a high-latency WAN; or

� If only a single thread of control is available,e.g., if the
OS platform does not provide application-level threads;
or

� If the order in which services are initialized is not im-
portant and if the client application must perform addi-
tional work, such as refreshing a GUI, while the con-
nection is being established.

The collaborations among the participants in thesyn-
chronousConnector scenario can be divided into the fol-
lowing three phases:

1. Connection initiation phase: To synchronously ini-
tiate a connection between aService Handler and
its remotePeer , an application calls theConnector ’s
connect method. This method actively establishes the
connection by blocking the thread of control of the calling
thread until the connection completes synchronously.
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Synchronous Connections

2. Service initialization phase: After the connection
completes, theConnector ’s connect method calls the
complete method to activates theService Handler .
The complete method performs the activation by invok-
ing theService Handler ’s open hook method, which
performs service-specific initialization.

3. Service processing phase:This phase is similar to the
service processing phase aService Handler performs
once it is created by anAcceptor . In particular, once a
Service Handler is activated it performs application-
specific service processing using data exchanged with the
remoteService Handler it is connected to.

The collaboration for synchronous service initialization
is shown in Figure 4. In this scheme, theConnector
combines the connection initiation and service initialization
phases into a single blocking operation. In this scenario,
only one connection is established for every invocation of
connect in each thread of control.

The collaborations among the participants in theasyn-
chronousConnector can be divided into the following
three phases:

1. Connection initiation phase: To asynchronously ini-
tiate a connection between aService Handler and
its remotePeer , an application calls theConnector ’s
connect method. As with the synchronous scenario, the
Connector actively establishes the connection. How-
ever, it does not block the thread of control of the caller
while the connection completes asynchronously. Instead,
it registers theService Handler ’s transport endpoint,
which we call peer stream in this example, with the
Dispatcher and returns control to its caller.

2. Service initialization phase: After the connection com-
pletes asynchronously, theDispatcher calls back the
Connector ’s complete method. This method activates
the Service Handler by calling its open hook. This
open hook performs service-specific initialization.

3. Service processing phase:This phase is similar to the
other service processing phases described earlier. Once the
Service Handler is activated it performs application-
specific service processing using the data exchanged with the
remoteService Handler it is connected to.

Figure 5 illustrates these three phases of collaboration us-
ing asynchronous connection establishment. In the asyn-
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Figure 5: Collaborations Among Connector Participants for
Asynchronous Connections

chronous scenario, note how the connection initiation phase
is separated temporally from the service initialization phase.
This decoupling enables multiple connection initiations (via
connect ) and completions (viacomplete ) to proceed in
parallel within each thread of control.

8 Implementation

This section explains the steps involved in building commu-
nication software applications using the Acceptor-Connector
pattern. The implementation in this section is based on the
reusable components and applications in the ACE OO net-
work programming toolkit [6]. ACE provides a rich set of
reusable C++ wrappers and framework components that per-
form common communication software tasks across a range
of OS platforms.

The participants in the Acceptor-Connector pattern are di-
vided into theReactive, Connection, andApplicationlayers,
as shown in Figure 6.2

The Reactive and Connection layers perform generic,
application-independent strategies for dispatching events
and initializing services, respectively. The Application layer
instantiates these generic strategies by providing concrete

2This diagram illustrates additional Booch notation: directed edges in-
dicate inheritance relationships between classes; a dashed directed edge in-
dicates template instantiation; and a solid circle illustrates a composition
relationship between two classes.
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Figure 6: Layering and Partitioning of Participants in the Acceptor-Connector Pattern Implementation

classes that establish connections and perform service pro-
cessing. This separation of concerns increases the reusabil-
ity, portability, and extensibility in the implementation of the
Acceptor-Connector pattern.

The following discussion of the Acceptor-Connector pat-
tern implementation starts at the bottom with the Reactive
layer and works upwards through the Connection layer and
Application layer.

8.1 Reactive Layer

The Reactive layer handles events that occur on transport
endpoints represented by I/O handles, such as socket end-
points. The two participants in this layer, theInitiation
Dispatcher and Event Handler , are defined by the
Reactor pattern [3]. This pattern enables efficient demul-
tiplexing of multiple types of events from multiple sources
within a single thread of control.

The two main roles in the Reactive layer are:

Event Handler: Specifies an interface consisting of hook
methods [7] that abstractly represent the event processing op-
erations that can be provided by an application. For instance,
these hook methods signify events such as a new connec-
tion request, a completion of a connection request started
asynchronously, or the arrival of data from a connected peer.
TheAcceptor andConnector components are concrete
event handlers that derive fromEvent Handler .

Initiation Dispatcher: Defines an interface for regis-
tering, removing, and dispatchingEvent Handler s.
The Synchronous Event Demultiplexer , such as
select [8] or WaitForMultipleObjects [9], in-
forms theInitiation Dispatcher when to call back
application-specific event handlers in response to certain
types of events. Common events include connection ac-
ceptance events, data input and output events, and timeout
events.

Note that theInitiation Dispatcher is an imple-
mentation of theDispatcher participant described in Sec-
tion 6. In general, the Acceptor-ConnectorDispatcher
participant can be reactive, proactive, or multi-threaded. The
particularInitiation Dispatcher in this implementa-
tion uses the reactive model to demultiplex and dispatch con-
crete event handlers in a single thread of control. In our ex-
ample theInitiation Dispatcher is a Singleton [10]
since we only need one instance of it for the entire process.

8.2 Connection Layer

The Connection layer

1. CreatesService Handler s;

2. Passively or actively connectsService Handlers
to their remote peers; and

3. ActivatesService Handlers once they are con-
nected.
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All behavior in this layer is completely generic. In particu-
lar, note how the classes in the implementation described be-
low delegate to concrete IPC mechanisms andConcrete
Service Handler s, which are instantiated by the Appli-
cation layer described in Section 8.3.

The manner in which the Application layer delegates
to the Connection layer is similar to how the Connection
layer delegates to the Reactive layer. For instance, the
Initiation Dispatcher in the Reactive layer pro-
cesses initialization-related events, such as establishing con-
nections asynchronously, on behalf of the Connection layer.

There are three primary roles in the Connection layer:
Service Handler , Acceptor , andConnector .

Service Handler: This abstract class inherits from
Event Handler and provides a generic interface for pro-
cessing services provided by clients, servers, or components
that perform both roles. Applications must customize this
class via inheritance to perform a particular type of service.
TheService Handler interface is shown below:

// PEER_STREAM is the type of the
// Concrete IPC mechanism.
template <class PEER_STREAM>
class Service_Handler : public Event_Handler
{
public:

// Pure virtual method (defined by a subclass).
virtual int open (void) = 0;

// Accessor method used by Acceptor and
// Connector to obtain the underlying stream.
PEER_STREAM &peer (void) {

return peer_stream_;
}

// Return the address that we’re connected to.
PEER_STREAM::PEER_ADDR &remote_addr (void) {

return peer_stream_.remote_addr ();
}

protected:
// Concrete IPC mechanism instance.
PEER_STREAM peer_stream_;

};

Once theAcceptor or Connector establishes a con-
nection, they call theopen hook of aService Handler .
This pure virtual method must be defined by aConcrete
Service Handler subclass, which performs service-
specific initializations and subsequent processing.

Connector: This abstract class implements the generic
strategy for actively establishing connections and initializing
Service Handler s. The interface of theConnector
is shown below:

// The SERVICE_HANDLER is the type of service.
// The PEER_CONNECTOR is the type of concrete
// IPC active connection mechanism.
template <class SERVICE_HANDLER,

class PEER_CONNECTOR>
class Connector : public Event_Handler
{
public:

enum Connect_Mode {
SYNC, // Initiate connection synchronously.
ASYNC // Initiate connection asynchronously.

};

// Initialization method.
Connector (void);

// Actively connecting and activate a service.
int connect (SERVICE_HANDLER *sh,

const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode);

protected:
// Defines the active connection strategy.
virtual int connect_service_handler

(SERVICE_HANDLER *sh,
const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode);

// Register the SERVICE_HANDLER so that it can
// be activated when the connection completes.
int register_handler (SERVICE_HANDLER *sh,

Connect_Mode mode);

// Defines the handler’s concurrency strategy.
virtual int activate_service_handler

(SERVICE_HANDLER *sh);

// Activate a SERVICE_HANDLER whose
// non-blocking connection completed.
virtual int complete (HANDLE handle);

private:
// IPC mechanism that establishes
// connections actively.
PEER_CONNECTOR connector_;

// Collection that maps HANDLEs
// to SERVICE_HANDLER *s.
Map_Manager<HANDLE, SERVICE_HANDLER *>

handler_map_;

// Inherited from the Event_Handler -- will be
// called back by Eactor when events complete
// asynchronously.
virtual int handle_event (HANDLE, EVENT_TYPE);

};

// Useful "short-hand" macros used below.
#define SH SERVICE_HANDLER
#define PC PEER_CONNECTOR

The Connector is parameterized by a particular type of
PEER CONNECTORand SERVICE HANDLER. The PEER
CONNECTORprovides the transport mechanism used by the
Connector to actively establish the connection, either syn-
chronously or asynchronously. TheSERVICE HANDLER
provides the service that processes data exchanged with its
connected peer. C++ parameterized types are used to decou-
ple (1) the connection establishment strategy from (2) the
type of service handler, network programming interface, and
transport layer connection protocol.

Parameterized types are an implementation decision that
help improve portability. For instance, they allow the
wholesale replacement of the IPC mechanisms used by
the Connector . This makes theConnector ’s connec-
tion establishment code portable across platforms that con-
tain different network programming interfaces,e.g., sock-
ets but not TLI, or vice versa. For example, thePEER
CONNECTORtemplate argument can be instantiated with ei-
ther aSOCK Connector or aTLI Connector , depend-
ing on whether the platform supports sockets or TLI [11].
Another motivation for using parameterized types is to im-
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prove run-time efficiency since template instantiation occurs
at compile-time.

An even more dynamic type of decoupling could be
achieved via inheritance and polymorphism by using the
Factory Method and Strategy patterns described in [10]. For
instance, aConnector could store a pointer to aPEER
CONNECTORbase class. Theconnect method of this
PEER CONNECTORcould be dynamically bound at run-
time in accordance with the subclass ofPEER CONNECTOR
returned from a Factory. In general, the tradeoff between
parameterized types and dynamic binding is that parameter-
ized types can incur additional compile/link-time overhead,
whereas dynamic binding can incur additional run-time over-
head.

The connect method is the entry point an application
uses to initiate a connection via aConnector . It’s imple-
mentation is shown below.3

template <class SH, class PC> int
Connector<SH, PC>::connect

(SERVICE_HANDLER *service_handler,
const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode)

{
connect_service_handler (service_handler,

addr, mode);
}

This method uses the
Bridge pattern [10] to allowConcrete Connector s to
transparently modify the connection strategy, without chang-
ing the component interface. Therefore, theconnect
method delegates to theConnector ’s connection strategy,
connect service handler , which initiates a connec-
tion as shown below:

template <class SH, class PC> int
Connector<SH, PC>::connect_service_handler

(SERVICE_HANDLER *service_handler,
const PEER_CONNECTOR::PEER_ADDR &remote_addr,
Connect_Mode mode)

{
// Delegate to concrete PEER_CONNECTOR
// to establish the connection.

if (connector_.connect (*service_handler,
remote_addr,
mode) == -1) {

if (mode == ASYNC && errno == EWOULDBLOCK) {
// If connection doesn’t complete immediately
// and we are using non-blocking semantics
// then register this object with the
// Initiation_Dispatcher Singleton so it will
// callback when the connection is complete.
Initiation_Dispatcher::instance

()->register_handler (this, WRITE_MASK);

// Store the SERVICE_HANDLER in the map of
// pending connections.
handler_map_.bind

(connector_.get_handle (), service_handler);
}

}
else if (mode == SYNC)

// Activate if we connect synchronously.
activate_service_handler (service_handler);

}

3To save space, most of the error handling in this paper has been omitted.

If the value of theConnect Mode parameter isSYNCthe
SERVICE HANDLERwill be activated once the connection
completes synchronously, as illustrated in Figure 7. This
figure is similar to Figure 4, but provides additional imple-
mentation details, such as the use of theget handle and
handle event hook methods.
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Figure 7: Collaborations Among the Connector Participants
for Synchronous Connections

To connect with multiple Peers efficiently, the
Connector also may need to actively establish connec-
tions asynchronously,i.e.,without blocking the caller. Asyn-
chronous behavior is specified by passing theASYNCcon-
nection mode toConnector::connect , as illustrated in
Figure 8. This figure is similar to Figure 5, but it also pro-
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Figure 8: Collaborations Among the Connector Participants
for Asynchronous Connections

vides additional details that correspond to the current imple-
mentation.

Once instantiated, thePEER CONNECTORclass pro-
vides the concrete IPC mechanism to initiate connections
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synchronously or asynchronously. The implementation
of the Connector pattern shown here uses asynchronous
connection mechanisms provided by the OS and com-
munication protocol stack. For instance, on UNIX or
Win32 theConnector can set sockets into non-blocking
mode and use an event demultiplexer likeselect or
WaitForMultipleObjects to determine when the con-
nection completes.

To handle asynchronous connections that are still pending
completion, theConnector maintains a map ofService
Handlers . Since theConnector inherits fromEvent
Handler , the Initiation Dispatcher can automat-
ically call back to theConnector’s handle event
method when a connection completes.

The handle event method is an Adapter [10] that
transforms theInitiation Dispatcher ’s event han-
dling interface to a call to the Connector pattern’s
complete method.

The Connector’s handle event method is shown
below:

template <class SH, class PC> int
Connector<SH, PC>::handle_event (HANDLE handle,

EVENT_TYPE type)
{

// Adapt the Initiation_Dispatcher’s event
// handling API to the Connector’s API.
complete (handle);

}

Thecomplete method activates theSERVICE HANDLER
whose non-blocking connection just completed successfully,
as follows:

template <class SH, class PC> int
Connector<SH, PC>::complete (HANDLE handle)
{

SERVICE_HANDLER *service_handler = 0;

// Locate the SERVICE_HANDLER corresponding
// to the HANDLE.
handler_map_.find (handle, service_handler);

// Transfer I/O handle to SERVICE_HANDLER *.
service_handler->set_handle (handle);

// Remove handle from Initiation_Dispatcher.
Initiation_Dispatcher::instance

()->remove_handler (handle, WRITE_MASK);

// Remove handle from the map.
handler_map_.unbind (handle);

// Connection is complete, so activate handler.
activate_service_handler (service_handler);

}

The complete method finds and removes the connected
SERVICE HANDLERfrom its internal map and trans-
fers the I/O HANDLE to the SERVICE HANDLER. Fi-
nally, it initializes the SERVICE HANDLERby calling
activate service handler . This method delegates
to the concurrency strategy designated by theSERVICE
HANDLER’s open hook, as follows:

template <class SH, class PC> int

Connector<SH, PC>::activate_service_handler
(SERVICE_HANDLER *service_handler)

{
service_handler->open ();

}

The Service Handler ’s open hook is called when
a connection is established successfully. Note that it is
called regardless of whether (1) connections are initiated
synchronously or asynchronously or (2) they are connected
actively or passively. This uniformity makes it possible to
write Service Handler s whose processing can be com-
pletely decoupled from how they are connected and initial-
ized.

Acceptor: This abstract class implements the generic strat-
egy for passively establishing connections and initializing
Service Handler s. The interface of theAcceptor is
shown below.

// The SERVICE_HANDLER is the type of service.
// The PEER_ACCEPTOR is the type of concrete
// IPC passive connection mechanism.
template <class SERVICE_HANDLER,

class PEER_ACCEPTOR>
class Acceptor : public Event_Handler
{
public:

// Initialize local_addr transport endpoint factory
// and register with Initiation_Dispatcher Singleton.
virtual int open

(const PEER_ACCEPTOR::PEER_ADDR &local_addr);

// Factory Method that creates, connects, and
// activates SERVICE_HANDLER’s.
virtual int accept (void);

protected:
// Defines the handler’s creation strategy.
virtual SERVICE_HANDLER *

make_service_handler (void);

// Defines the handler’s connection strategy.
virtual int accept_service_handler

(SERVICE_HANDLER *);

// Defines the handler’s concurrency strategy.
virtual int activate_service_handler

(SERVICE_HANDLER *);

// Demultiplexing hooks inherited from Event_Handler,
// which is used by Initiation_Dispatcher for
// callbacks.
virtual HANDLE get_handle (void) const;
virtual int handle_close (void);

// Invoked when connection requests arrive.
virtual int handle_event (HANDLE, EVENT_TYPE);

private:
// IPC mechanism that establishes
// connections passively.
PEER_ACCEPTOR peer_acceptor_;

};

// Useful "short-hand" macros used below.
#define SH SERVICE_HANDLER
#define PA PEER_ACCEPTOR

The Acceptor is parameterized by a particular type of
PEER ACCEPTORand SERVICE HANDLER. The PEER
ACCEPTORprovides the transport mechanism used by the
Acceptor to passively establish the connection. The
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SERVICE HANDLERprovides the service that processes
data exchanged with its remote peer. Note that theSERVICE
HANDLERis a concrete service handler that is provided by
the application layer.

Parameterized types decouple theAcceptor ’s connec-
tion establishment strategy from the type of service handler,
network programming interface, and transport layer connec-
tion initiation protocol. As with theConnector , the use
of parameterized types helps improve portability by allow-
ing the wholesale replacement of the mechanisms used by
the Acceptor. This makes the connection establishment code
portable across platforms that contain different network pro-
gramming interfaces, such as sockets but not TLI, or vice
versa. For example, thePEER ACCEPTORtemplate argu-
ment can be instantiated with either aSOCK Acceptor or
a TLI Acceptor , depending on whether the platform sup-
ports sockets or TLI more efficiently.

The implementation of theAcceptor ’s methods is pre-
sented below. Applications initiatize anAcceptor by call-
ing itsopen method, as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::open

(const PEER_ACCEPTOR::PEER_ADDR &local_addr)
{

// Forward initialization to the PEER_ACCEPTOR.
peer_acceptor_.open (local_addr);

// Register with Initiation_Dispatcher, which
// ‘‘double-dispatches’’ without get_handle()
// method to extract the HANDLE.
Initiation_Dispatcher::instance

()->register_handler (this, READ_MASK);
}

Theopen method is passed alocal addr . This parame-
ter contains a network address,e.g., the local host’s IP name
and TCP port number, used to listen for connections. It
forwards this address to the passive connection acceptance
mechanism defined by thePEER ACCEPTOR. This mecha-
nism initializes the transport endpoint factory, which adver-
tises its address to clients who are interested in connecting
with theAcceptor .

The behavior of the transport endpoint factory is deter-
mined by the type ofPEER ACCEPTORinstantiated by a
user. For instance, it can be a C++ wrapper [12] for sockets
[13], TLI [14], STREAM pipes [15], Win32 Named Pipes,
etc.

After the transport endpoint factory has been initialized,
the open method registers itself with theInitiation
Dispatcher . The Initiation Dispatcher per-
forms a “double dispatch” back to theAcceptor ’s
get handle method to obtain the underlying transport
endpoint factoryHANDLE, as follows:

template <class SH, class PA> HANDLE
Acceptor<SH, PA>::get_handle (void)
{

return peer_acceptor_.get_handle ();
}

The Initiation Dispatcher stores thisHANDLE
internally in a table. A Synchronous Event

Demultiplexer , such asselect , is then used to de-
tect and demultiplex incoming connection requests from
clients. Since theAcceptor class inherits fromEvent
Handler , the Initiation Dispatcher can auto-
matically call back to theAcceptor’s handle event
method when a connection arrives from a peer. This
method is an Adapter that transforms theInitiation
Dispatcher ’s event handling interface to a call to the
Acceptor ’s accept method, as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::handle_event (HANDLE,

EVENT_TYPE)
{

// Adapt the Initiation_Dispatcher’s event handling
// API to the Acceptor’s API.
accept ();

}

As shown below, theaccept method is a Template
Method [10] that implements the Acceptor-Connector pat-
tern’s passive initialization strategy for creating a new
SERVICE HANDLER, accepting a connection into it, and
activating the service:

template <class SH, class PA> int
Acceptor<SH, PA>::accept (void)
{

// Create a new SERVICE_HANDLER.
SH *service_handler = make_service_handler ();

// Accept connection from client.
accept_service_handler (service_handler);

// Activate SERVICE_HANDLER by calling
// its open() hook.
activate_service_handler (service_handler);

}

This method is very concise since it factors all low-level
details into the concreteSERVICE HANDLERand PEER
ACCEPTOR, which are instantiated via parameterized types
and can be customized by subclasses of theAcceptor . In
particular, since theaccept is a Template Method, sub-
classes can extend any or all of theAcceptor ’s connec-
tion establishment and initialization strategies. This flexibil-
ity makes it possible to writeService Handlers whose
behavior is decoupled from the manner in which they are
passively connected and initialized.

The make service handler factory method defines
the default strategy anAcceptor uses to createSERVICE
HANDLERs, as follows:

template <class SH, class PA> SH *
Acceptor<SH, PA>::make_service_handler (void)
{

return new SH;
}

The default behavior uses a “demand strategy,” which cre-
ates a newSERVICE HANDLERfor every new connection.
However, subclasses ofAcceptor can override this strat-
egy to createSERVICE HANDLERsusing other strategies,
such as creating an individual Singleton [10] or dynamically
linking theSERVICE HANDLERfrom a shared library.
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The SERVICE HANDLERconnection acceptance strat-
egy used by theAcceptor is defined below by the
accept service handler method:

template <class SH, class PA> int
Acceptor<SH, PA>::accept_service_handler

(SH *handler)
{

peer_acceptor_->accept (handler->peer ());
}

The default behavior delegates to theaccept method pro-
vided by thePEER ACCEPTOR. Subclasses can override the
accept service handler method to perform more so-
phisticated behavior such as authenticating the identity of the
client to determine whether to accept or reject the connec-
tion.

The Acceptor’s SERVICE HANDLER concurrency
strategy is defined by theactivate service handler
method:

template <class SH, class PA> int
Acceptor<SH, PA>::activate_service_handler

(SH *handler)
{

handler->open ();
}

The default behavior of this method is to activate the
SERVICE HANDLERby calling its open hook. This
allows the SERVICE HANDLERto choose its own
concurrency strategy. For instance, if theSERVICE
HANDLERinherits from Event Handler it can regis-
ter with the Initiation Dispatcher . This allows
theInitiation Dispatcher to dispatch theSERVICE
HANDLER’s handle event method when events oc-
cur on its PEER STREAMendpoint of communication.
Concrete Acceptor s can override this strategy to do
more sophisticated concurrency activations. For instance,
a subclass could make theSERVICE HANDLERan Active
Object [5] that processes data using multi-threading or multi-
processing.

When an Acceptor terminates, either due to er-
rors or due to the entire application shutting down,
the Initiation Dispatcher calls theAcceptor ’s
handle close method, which can release any dynami-
cally acquired resources. In this case, thehandle close
method simply forwards theclose request to thePEER
ACCEPTOR’s transport endpoint factory, as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::handle_close (void)
{

peer_acceptor_.close ();
}

8.3 Application Layer

The Application Layer supplies concrete interprocess com-
munication (IPC) mechanisms and a concreteService
Handler . IPC mechanisms are encapsulated in C++
classes to simplify programming, enhance reuse, and to en-
able wholesale replacement of IPC mechanisms. For ex-
ample, theSOCK Acceptor , SOCK Connector , and

SOCK Stream classes used in Section 9 are part of the
ACE C++ socket wrapper library [11]. These wrappers
encapsulate the stream-oriented semantics of connection-
oriented protocols like TCP and SPX with efficient, portable,
and type-safe C++ wrappers.

The three main roles in the Application layer are described
below.

Concrete Service Handler: This class defines the con-
crete application service activated by aConcrete
Acceptor or a Concrete Connector . A Concrete
Service Handler is instantiated with a specific type of
C++ IPC wrapper that exchanges data with its connected
peer.

Concrete Connector: This class instantiates the generic
Connector factory with concrete parameterized type argu-
ments forSERVICE HANDLERandPEER CONNECTOR.

Concrete Acceptor: This class instantiates the generic
Acceptor factory with concrete parameterized type argu-
ments forSERVICE HANDLERandPEER ACCEPTOR.

Concrete Service Handler s can also define a ser-
vice’s concurrency strategy. For example, aService
Handler may inherit from theEvent Handler and em-
ploy the Reactor [3] pattern to process data from peers in a
single-thread of control. Conversely, aService Handler
might use the Active Object pattern [5] to process incoming
data in a different thread of control than the one used by the
Acceptor to connect it. Below, we implementConcrete
Service Handlers for our Gateway example, illus-
trates how several different concurrency strategies can be
configured flexibly without affecting the structure or behav-
ior of the Acceptor-Connector pattern.

In the sample code in Section 9,SOCK Connector and
SOCK Acceptor are the IPC mechanisms used to estab-
lish connections actively and passively, respectively. Like-
wise, aSOCK Stream is used as the data transport deliv-
ery mechanism. However, parameterizing theConnector
andAcceptor with different mechanisms (such as aTLI
Connector or Named Pipe Acceptor ) is straightfor-
ward since the IPC mechanisms are encapsulated in C++
wrapper classes. Likewise, it is easy to vary the data trans-
fer mechanism by parameterizing theConcrete Service
Handler with a differentPEER STREAM, such as an SVR4
UNIX TLI Stream or a Win32Named Pipe Stream .

Section 9 illustrates how to instantiate aConcrete
Service Handler , Concrete Connector , and
Concrete Acceptor that implement thePeers and
Gateway described in Section 2. This particular example
of the Application layer customizes the generic initializa-
tion strategies provided by theConnector andAcceptor
components in the Connection layer.

9 Example Resolved

The code below illustrates how thePeers andGateway
described in Section 2 can use the Acceptor-Connector pat-
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terns to simplify connection establishment and service ini-
tialization. Section 9.1 illustrates how thePeers play a
passive role and Section 9.2 illustrates how theGateway
plays an active role in establishing connections with the pas-
sivePeers .

9.1 Concrete Components for Peers

Figure 9 illustrates how theConcrete Acceptor and
Concrete Service Handler components are struc-
tured in aPeer . TheAcceptor components in this figure
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Figure 9: Structure of Acceptor Participants forPeers

complement theConnector components in Figure 11.

Service Handlers for Communicating with a Gateway:
The classes shown below,Status Handler , Bulk
Data Handler , andCommand Handler , process rout-
ing messages sent to and received from aGateway .
Since theseConcrete Service Handler classes in-
herit from Service Handler they are capable of being
initialized passively by anAcceptor .

To illustrate the flexibility of the Acceptor-Connector pat-
tern, eachopen routine in theService Handlers can
implement a different concurrency strategy. In particular,
when theStatus Handler is activated it runs in a sep-
arate thread; theBulk Data Handler runs as a sep-
arate process; and theCommand Handler runs in the
same thread as theInitiation Dispatcher that de-
multiplexes connection requests for theAcceptor facto-
ries. Note how changes to these concurrency strategies do
not affect the implementation of theAcceptor , which is
generic and thus highly flexible and reusable.

We start by defining aService Handler that uses
SOCK Stream for socket-based data transfer:

typedef Service_Handler <SOCK_Stream>
PEER_HANDLER;

The PEER HANDLERtypedef forms the basis for all the
subsequent service handles. For instance, theStatus

Handler class processes status data sent to and received
from aGateway :

class Status_Handler : public PEER_HANDLER
{
public:

// Performs handler activation.
virtual int open (void) {

// Make handler run in separate thread (note
// that Thread::spawn requires a pointer to
// a static method as the thread entry point).

Thread::spawn (&Status_Handler::service_run,
this);

}

// Static entry point into thread, which blocks
// on the handle_event () call in its own thread.
static void *service_run (Status_Handler *this_) {

// This method can block since it
// runs in its own thread.
while (this_->handle_event () != -1)

continue;
}

// Receive and process status data from Gateway.
virtual int handle_event (void) {

char buf[MAX_STATUS_DATA];
stream_.recv (buf, sizeof buf);
// ...

}

// ...
};

ThePEER HANDLERalso can be subclassed to produce con-
crete service handlers that process bulk data and commands.
For instance, theBulk Data Handler class processes
bulk data sent to and received from theGateway .

class Bulk_Data_Handler : public PEER_HANDLER
{
public:

// Performs handler activation.
virtual int open (void) {

// Handler runs in separate process.
if (fork () == 0) // In child process.

// This method can block since it
// runs in its own process.
while (handle_event () != -1)

continue;
// ...

}

// Receive and process bulk data from Gateway.
virtual int handle_event (void) {

char buf[MAX_BULK_DATA];
stream_.recv (buf, sizeof buf);
// ...

}

// ...
};

The Command Handler class processes bulk data sent to
and received from aGateway :

class Command_Handler : public PEER_HANDLER
{
public:

// Performs handler activation.
virtual int open (void) {

// Handler runs in same thread as main
// Initiation_Dispatcher singleton.
Initiation_Dispatcher::instance

()->register_handler (this, READ_MASK);
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}

// Receive and process command data from Gateway.
virtual int handle_event (void) {

char buf[MAX_COMMAND_DATA];
// This method cannot block since it borrows
// the thread of control from the
// Initiation_Dispatcher.
stream_.recv (buf, sizeof buf);
// ...

}

//...
};

Acceptors for creating Peer Service Handlers: The
s acceptor , bd acceptor , andc acceptor objects
shown below areConcrete Acceptor factory instances
that create and activateStatus Handlers , Bulk Data
Handlers , andCommand Handlers , respectively.

// Accept connection requests from Gateway and
// activate Status_Handler.
Acceptor<Status_Handler, SOCK_Acceptor> s_acceptor;

// Accept connection requests from Gateway and
// activate Bulk_Data_Handler.
Acceptor<Bulk_Data_Handler, SOCK_Acceptor> bd_acceptor;

// Accept connection requests from Gateway and
// activate Command_Handler.
Acceptor<Command_Handler, SOCK_Acceptor> c_acceptor;

Note how the use of templates and dynamic binding per-
mits specific details to change flexibly. In particular, no
Acceptor component changes when the concurrency strat-
egy is modified throughout this section. The reason for this
flexibility is that the concurrency strategies have been fac-
tored out into theService Handler s, rather than coupled
with theAcceptor s.

The Peer main function: The main program initializes the
concreteAcceptor factories by calling theiropen hooks
with the TCP ports for each service. EachAcceptor
factory automatically registers itself with an instance of
the Initiation Dispatcher in its open method, as
shown in Section 8.2.

// Main program for the Peer.

int main (void)
{

// Initialize acceptors with their
// well-known ports.
s_acceptor.open (INET_Addr (STATUS_PORT));
bd_acceptor.open (INET_Addr (BULK_DATA_PORT));
c_acceptor.open (INET_Addr (COMMAND_PORT));

// Event loop that handles connection request
// events and processes data from the Gateway.

for (;;)
Initiation_Dispatcher::instance

()->handle_events ();
}

Once theAcceptor s are initialized, the main pro-
gram enters an event loop that uses theInitiation
Dispatcher to detect connection requests from the

Gateway . When connections arrive, theInitiation
Dispatcher calls back to the appropriateAcceptor ,
which creates the appropriatePEER HANDLERto perform
the service, accepts the connection into the handler, and ac-
tivates the handler.

Figure 10 illustrates the relationship betweenConcrete
Acceptor components in thePeer after four connections
have been established with theGateway shown in Figure 12
and fourService Handler have been created and ac-
tivated. While theConcrete Service Handlers ex-

: Service: Service
HandlerHandler

: Status: Status

ACTIVEACTIVE

HANDLERSHANDLERS

: Service: Service
HandlerHandler

: Status: Status

: Service: Service
HandlerHandler

: Bulk Data: Bulk Data

: Service: Service
HandlerHandler

: Command: Command

: Acceptor: Acceptor

: Command: Command

: Acceptor: Acceptor

: Bulk Data: Bulk Data

PASSIVEPASSIVE

LISTENERSLISTENERS: Acceptor: Acceptor

: Status: Status

: Initiation: Initiation
DispatcherDispatcher

Figure 10: Object Diagram for Acceptor Components in the
Peer

change data with theGateway , the threeAcceptors con-
tinue to listen for new connections in the main thread.

9.2 Concrete Components for the Gateway

Figure 11 illustrates how theConcrete Connector and
Concrete Service Handler components are struc-
tured in a hypothetical configuration of theGateway . The
Connector components in this figure complement the
Acceptor components in Figure 9.

Service Handlers for Gateway routing: The classes
shown below,Status Router , Bulk Data Router ,
and Command Router , route data they receive from
a source Peer to one or more destinationPeers .
Since theseConcrete Service Handler classes in-
herit from Service Handler they can be actively con-
nected and initialized by aConnector .

To illustrate the flexibility of the Acceptor-Connector pat-
tern, eachopen routine in aService Handler imple-
ments a different concurrency strategy. In particular, when
the Status Router is activated it runs in a separate
thread; theBulk Data Router runs as a separate pro-
cess; and theCommand Router runs in the same thread as
the Iniitation Dispatcher that demultiplexes con-
nection completion events for theConnector factory. As
with the Acceptor , note how changes to these concur-
rency strategies do not affect the implementation of the
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Figure 11: Structure of Connector Participants for the
Gateway

Connector , which is generic and thus highly flexible and
reusable.

We start by defining aService Handler that is spe-
cialized for socket-based data transfer:

typedef Service_Handler <SOCK_Stream>
PEER_ROUTER;

This class forms the basis for all the subsequent routing ser-
vices. For instance, theStatus Router class routes sta-
tus data to or fromPeers :

class Status_Router : public PEER_ROUTER
{
public:

// Activate router in separate thread.
virtual int open (void) {

// Thread::spawn requires a pointer to a
// static method as the thread entry point).
Thread::spawn (&Status_Router::service_run,

this);
}

// Static entry point into thread, which blocks
// on the handle_event() call in its own thread.
static void *service_run (Status_Router *this_) {

// This method can block since it
// runs in its own thread.
while (this_->handle_event () != -1)

continue;
}

// Receive and route status data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_STATUS_DATA];
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}

// ...
};

The PEER ROUTERcan be subclassed to produce concrete
service handlers for routing bulk data and commands. For
instance, theBulk Data Router routes bulk data to or
from Peers :

class Bulk_Data_Router : public PEER_ROUTER
{
public:

// Activates router in separate process.
virtual int open (void) {

if (fork () == 0) // In child process.
// This method can block since it
// runs in its own process.
while (handle_event () != -1)

continue;
// ...

}

// Receive and route bulk data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_BULK_DATA];
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}

};

The Command Router class routes Command data to or
from Peers :

class Command_Router : public PEER_ROUTER
{
public:

// Activates router in same thread as Connector.
virtual int open (void) {

Initiation_Dispatcher::instance
()->register_handler (this, READ_MASK);

}

// Receive and route command data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_COMMAND_DATA];
// This method cannot block since it borrows the
// thread of control from the Initiation_Dispatcher.
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}
};

A Connector for creating Peer Service Handlers: The
following typedef defines aConnector factory special-
ized forPEER ROUTERS:

typedef Connector<PEER_ROUTERS, SOCK_Connector>
PEER_CONNECTOR;

Unlike theConcrete Acceptor components, we only
require a singleConcrete Connector . The reason for
this is that eachConcrete Acceptor is used as a fac-
tory to create a specific type ofConcrete Service
Handler , such as aBulk Data Handler or aCommand
Handler . Therefore, the complete type must be knowna
priori , which necessitates multipleConcrete Acceptor
types. In contrast, theConcrete Service Handler s
passed to theConnector ’s connect method are initial-
ized externally. Therefore, they can be treated uniformly as
PEER ROUTERS.
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The Gateway main function: The main program for the
Gateway is shown below. Theget peer addrs func-
tion creates theStatus , Bulk Data , and Command
Routers that route messages through theGateway . This
function (whose implementation is not shown) reads a list of
Peer addresses from a configuration file or naming service.
EachPeer address consists of an IP address and a port num-
ber. Once theRouters are initialized, theConnector
factories defined above initiate all the connections asyn-
chronously by passing theASYNCflag to theconnect
method.

// Main program for the Gateway.

// Obtain an STL vector of Status_Routers,
// Bulk_Data_Routers, and Command_Routers
// from a config file.

void get_peer_addrs (vector<PEER_ROUTERS> &peers);

int main (void)
{

// Connection factory for PEER_ROUTERS.
PEER_CONNECTOR peer_connector;

// A vector of PEER_ROUTERs that perform
// the Gateway’s routing services.
vector<PEER_ROUTER> peers;

// Get vector of Peers to connect with.
get_peer_addrs (peers);

// Iterate through all the Routers and
// initiate connections asynchronously.

for (vector<PEER_ROUTER>::iterator i = peers.begin ();

i != peers.end ();
i++) {

PEER_ROUTER &peer = *i;
peer_connector.connect (peer,

peer.remote_addr (),
PEER_CONNECTOR::ASYNC);

}
// Loop forever handling connection completion
// events and routing data from Peers.

for (;;)
Initiation_Dispatcher::instance

()->handle_events ();
/* NOTREACHED */

}

All connections are invoked asynchronously. They com-
plete concurrently via theConnector ’s complete
method, which is called back within the event loop
of the Initiation Dispatcher . This event loop
also demultiplexes and dispatches routing events for
Command Router objects, which run in theInitiation
Dispatcher ’s thread of control. TheStatus Routers
andBulk Data Routers execute in separate threads and
processes, respectively.

Figure 12 illustrates the relationship between compo-
nents in theGateway after four connections have been
established with thePeer shown in Figure 10 and four
Concrete Service Handlers have been created and
activated. This diagram illustrates four connections to an-
otherPeer that have not yet completed are “owned” by the
Connector . When allPeer connections are completely
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: Status

: Status
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: Service
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: Service
Handler

: Command

: Initiation
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Figure 12: Object Diagram for Connector Components in the
Gateway

established, theGateway will route and forward messages
sent to it byPeers .

10 Known Uses

The Acceptor-Connector pattern has been used in a wide
range of frameworks, toolkits, and systems:

UNIX network superservers: such as inetd [13],
listen [14], and theService Configurator dae-
mon from theASXframework [6]. These superservers utilize
a master Acceptor process that listens for connections on a
set of communication ports. Each port is associated with a
communication-related service (such as the standard Internet
servicesftp , telnet , daytime , andecho ). The Accep-
tor process decouples the functionality of theinetd super-
server into two separate parts: one for establishing connec-
tions and another for receiving and processing requests from
peers. When a service request arrives on a monitored port,
the Acceptor process accepts the request and dispatches an
appropriate pre-registered handler to perform the service.

CORBA ORBs: The ORB Core layer in many implemen-
tations of CORBA [16] use the Acceptor-Connector to pas-
sively initialize server object implementations when clients
request ORB services. [17] describes how the Acceptor-
Connector pattern is used to implement The ACE ORB
(TAO) [18], which is a real-time implementation of CORBA.

WWW Browsers: The HTML parsing components in
WWW browsers like Netscape and Internet Explorer use the
asynchronous version of theconnector component to es-
tablish connections with servers associated with images em-
bedded inHTMLpages. This behavior is particularly impor-
tant so that multiple HTTP connections can be initiated asyn-
chronously to avoid blocking the browsers main event loop.
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Ericsson EOS Call Center Management System: this
system uses the Acceptor-Connector pattern to allow
application-level Call Center Manager Event Servers [19] to
actively establish connections with passive Supervisors in a
distributed center management system.

Project Spectrum: The high-speed medical image trans-
fer subsystem of project Spectrum [20] uses the Acceptor-
Connector pattern to passively establish connections and ini-
tialize application services for storing large medical images.
Once connections are established, applications then send and
receive multi-megabyte medical images to and from these
image stores.

ACE Framework: Implementations of theService
Handler , Connector , andAcceptor classes described
in this paper are provided as reusable components in the ACE
object-oriented network programming framework [6].

11 Consequences

11.1 Benefits

The Acceptor-Connector pattern provides the following ben-
efits:

Enhances the reusability, portability, and extensibility of
connection-oriented software by decoupling mechanisms
for initializing services from subsequent service process-
ing. For instance, the application-independent mechanisms
in the Acceptor and Connector are reusable compo-
nents that know how to (1) establish connections passively
and actively, respectively and (2) initialize the associated
Service Handler once the connection is established. In
contrast, theService Handler knows how to perform
application-specific service processing.

This separation of concerns is achieved by decoupling
the initialization strategy from the service handling strategy.
Thus, each strategy can evolve independently. The strategy
for active initialization can be written once, placed into a
class library or framework, and reused via inheritance, ob-
ject composition, or template instantiation. Thus, the same
passive initialization code need not be rewritten for each
application. Services, in contrast, may vary according to
different application requirements. By parameterizing the
Acceptor andConnector with aService Handler ,
the impact of this variation is localized to a small number of
components in the software.

Improves application robustness: Application robust-
ness is improved by strongly decoupling theService
Handler from the Acceptor . This decoupling en-
sures that the passive-mode transport endpoint factory
peer acceptor cannot accidentally be used to read or
write data. This eliminates a common class of errors that can
arise when programming with weakly typed network pro-
gramming interfaces such as sockets or TLI [11].

Efficiently utilize the inherent parallelism in the network
and hosts: By using the asynchronous mechanisms shown
in Figure 8, the Connector pattern can actively establish con-
nections with a large number of peers efficiently over long-
latency WANs. This is an important property since a large
distributed system may have several hundredPeers con-
nected to a singleGateway . One way to connect all these
Peers to theGateway is to use the synchronous mecha-
nisms shown in Figure 7. However, the round trip delay for a
3-way TCP connection handshake over a long-latency WAN
(such as a geosynchronous satellite or trans-atlantic fiber ca-
ble) may take several seconds per handshake. In this case,
synchronous connection mechanisms cause unnecessary de-
lays since the inherent parallelism of the network and com-
puters is underutilized.

11.2 Drawbacks

The Acceptor-Connector pattern has the following draw-
backs:

Additional indirection: The Acceptor-Connector pattern
can incur additional indirection compared with using the un-
derlying network programming interfaces directly. However,
languages that support parameterized types (such as C++,
Ada, or Eiffel), can implement these patterns with no signif-
icant overhead since compilers can inline the method calls
used to implement these patterns.

Additional complexity: This pattern may add unneces-
sary complexity for simple client applications that connect
with a single server and perform a single service using a sin-
gle network programming interface.

12 See Also

The Acceptor-Connector pattern use the Template Method
and Factory Method patterns [10]. TheAcceptor ’s
accept and theConnector ’s connect andcomplete
functions are Template Methods that implements a generic
service strategy for connecting to remote peers and initial-
izing aService Handler when the connection is estab-
lished. The use of the Template Method pattern allows sub-
classes to modify the specific details of creating, connect-
ing, and activatingConcrete Service Handlers . The
Factory Method pattern is used to decouple the creation of a
Service Handler from its subsequent use.

The Acceptor-Connector pattern has an intent similar
to the Client-Dispatcher-Server pattern described in [21].
They both are concerned with separating active connec-
tion establishment from the subsequent service. The pri-
mary difference is that the Acceptor-Connector pattern ad-
dresses passive and active service initialization for both syn-
chronous and asynchronous connections, whereas the Client-
Dispatcher-Server pattern focuses on synchronous connec-
tion establishment.

16



Acknowledgements

Thanks to Frank Buschmann and Hans Rohnert for their
helpful comments on this paper.

References
[1] W. R. Stevens,TCP/IP Illustrated, Volume 1. Reading, Mas-

sachusetts: Addison Wesley, 1993.

[2] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[3] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design(J. O.
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA:
Addison-Wesley, 1995.

[4] T. Harrison, I. Pyarali, D. C. Schmidt, and T. Jordan, “Proac-
tor – An Object Behavioral Pattern for Dispatching Asyn-
chronous Event Handlers,” inThe4th Pattern Languages of
Programming Conference (Washington University technical
report #WUCS-97-34), September 1997.

[5] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” inPattern
Languages of Program Design(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[6] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[7] W. Pree,Design Patterns for Object-Oriented Software De-
velopment. Reading, MA: Addison-Wesley, 1994.

[8] W. R. Stevens,UNIX Network Programming, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1997.

[9] H. Custer,Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[11] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the1st Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[12] D. C. Schmidt, “IPCSAP: An Object-Oriented Interface to
Interprocess Communication Services,”C++ Report, vol. 4,
November/December 1992.

[13] W. R. Stevens,UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[14] S. Rago,UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[15] D. L. Presotto and D. M. Ritchie, “Interprocess Communica-
tion in the Ninth Edition UNIX System,”UNIX Research Sys-
tem Papers, Tenth Edition, vol. 2, no. 8, pp. 523–530, 1990.

[16] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.0 ed., July 1995.

[17] D. C. Schmidt and C. Cleeland, “Applying Patterns to De-
velop Extensible ORB Middleware,”Submitted to the IEEE
Communications Magazine, 1998.

[18] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Com-
puter Communications, vol. 21, pp. 294–324, Apr. 1998.

[19] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[20] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,”HIMSS, Health
Care Communications, pp. 71–81, 1994.

[21] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal,Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

17


