High-performance, Real-time CORBA ORBs for ATM Networks

Douglas C. Schmidt
schmidt@cs.wustl.edu

Washington University, St. Louis
www.cs.wustl.edu/~schmidt/TAO.html

Sponsors
NSF, DARPA, Bellcore, Boeing, CDI, Kodak, Lucent, Motorola, OTI, SAIC, Siemens SCR, Siemens MED, Siemens ZT, Sprint

Problem: Lack of Real-time Middleware

- Many applications require QoS guarantees
 - e.g., telecom, avionics, WWW
- Building these applications manually is hard
- Existing middleware doesn't support QoS effectively
 - e.g., CORBA, DCOM, DCE
- Solutions must be integrated

Candidate Solution: CORBA

Goals of CORBA
- Simplify distribution by automating
 * Object location and activation
 * Parameter marshaling
 * Demultiplexing
 * Error handling
- Provide foundation for higher-level services

Motivation for CORBA

- Simplifies application interworking
 - CORBA provides higher level integration than traditional untyped TCP byte streams
- Provides a foundation for higher-level distributed object collaboration
 - e.g., Windows OLE and the OMG Common Object Service Specification (COSS)
- Benefits for distributed programming similar to OO languages for non-distributed programming
 - e.g., encapsulation, interface inheritance, and object-based exception handling
The ACE ORB (TAO)

- **TAO Overview**
 - A high-performance, real-time ORB
 - Telecom and avionics focus
 - Leverages the ACE framework
 - Runs on RTOSs, POSIX, and Win32

- **Related work**
 - QuO at BBN

ACE Overview

- Concurrent OO networking framework
- Ported to C++ and Java
- Runs on RTOSs, POSIX, and Win32

Related work

- x-Kernel
- SysV STREAMS

ACE Statistics

- ACE contains > 125,000 lines of C++
 - Over 10 person-years of effort
- Currently used by dozens of companies
 - Bellcore, Boeing, Ericsson, Kodak, Lucent, Motorola, SAIC, Siemens, StorTek, etc.
- Large user community
 - www.cs.wustl.edu/~schmidt/ACE-users.html
- Supported commercially
 - www.riverace.com

TAO's Real-time ORB Endsystm Architecture

- Solution Approach
 - Integrate RT dispatcher into ORB endsystm
 - Support multiple request scheduling strategies
 - e.g., RMS, EDF, and MUF
 - Requests ordered across thread priorities by OS dispatcher
 - Requests ordered within priorities based on data dependencies and importance

Related work

- QuO at BBN
Real-time Experiments over ATM

- One high-priority client
- 1..n low-priority clients
- Server factory implements thread-per-priority
 - Highest real-time priority for high-priority client
 - Lowest real-time priority for low-priority clients

ORB Latency Results over ATM

Synopsis of results
- COOL’s latency is lower for small # of clients
- TAO’s latency is lowest for large # of clients
- TAO avoids priority inversion
 * i.e., high priority client always has lowest latency

ORB Jitter Results over ATM

Definition
- Variance from average latency

Synopsis of results
- TAO’s jitter is lowest and most consistent
- MT-ORBix’s jitter is highest and more variable

User-level and Kernel-level Locking Overhead

<table>
<thead>
<tr>
<th>ORBs Tested</th>
<th>User Level Locks per Request</th>
<th>Kernel Level Locks per Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAO</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>COOL</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>ORB Core</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

Washington University, St. Louis

Douglas C. Schmidt
Integrating TAO with a Real-time ATM I/O Subsystem

Key Features
- Vertical integration of QoS through ORB, OS, and ATM network
- Real-time I/O enhancements to Solaris kernel
- Provides rate-based QoS end-to-end
- Leverages APIC features for cell pacing and zero-copy buffering

Concluding Remarks

- Developers of distributed applications confront recurring challenges that are largely application-independent
 - e.g., service initialization and distribution, error handling, flow control, event demultiplexing, concurrency control, persistence, fault tolerance
- Successful developers resolve these challenges by applying appropriate design patterns to create communication frameworks and components
- CORBA ORBs are an effective way to achieve reuse of distributed software components
- The next-generation of ORBs will provide much better support for real-time QoS over ATM