High-performance, Real-time CORBA ORBs for ATM Networks

Douglas C. Schmidt
schmidt@cs.wustl.edu

Washington University, St. Louis
www.cs.wustl.edu/~schmidt/TAO.html

Sponsors
NSF, DARPA, Bellcore, Boeing, CDI,
Kodak, Lucent, Motorola, OTI, SAIC,
Siemens SCR, Siemens MED, Siemens ZT, Sprint
Many applications require QoS guarantees
- e.g., telecom, avionics, WWW

Building these applications manually is hard

Existing middleware doesn’t support QoS effectively
- e.g., CORBA, DCOM, DCE

Solutions must be integrated
Candidate Solution: CORBA

- Goals of CORBA
 - Simplify distribution by automating
 * Object location and activation
 * Parameter marshaling
 * Demultiplexing
 * Error handling
 - Provide foundation for higher-level services

www.cs.wustl.edu/~schmidt/corba.html
Motivation for CORBA

- **Simplifies application interworking**
 - CORBA provides higher level integration than traditional *untyped TCP byte streams*

- **Provides a foundation for higher-level distributed object collaboration**
 - *e.g.*, Windows OLE and the OMG Common Object Service Specification (COSS)

- **Benefits for distributed programming similar to OO languages for non-distributed programming**
 - *e.g.*, encapsulation, interface inheritance, and object-based exception handling
The ACE ORB (TAO)

- **TAO Overview**
 - A high-performance, real-time ORB
 - Telecom and avionics focus
 - Leverages the ACE framework
 - Runs on RTOSs, POSIX, and Win32

- **Related work**
 - QuO at BBN

www.cs.wustl.edu/~schmidt/TAO.html
The ADAPTIVE Communication Environment (ACE)

- **ACE Overview**
 - Concurrent OO networking framework
 - Ported to C++ and Java
 - Runs on RTOSs, POSIX, and Win32

- **Related work**
 - x-Kernel
 - SysV STREAMS

[Diagram of ACE components]

www.cs.wustl.edu/~schmidt/ACE.html

Washington University, St. Louis
ACE Statistics

• ACE contain > 125,000 lines of C++
 – Over 10 person-years of effort
• Ported to UNIX, Win32, MVS, and embedded platforms
 – e.g., VxWorks, LynxOS, pSoS
• Large user community
 – www.cs.wustl.edu/~schmidt/ACE-users.html
• Currently used by dozens of companies
 – Bellcore, Boeing, Ericsson, Kodak, Lucent, Motorola, SAIC, Siemens, StorTek, etc.
• Supported commercially
 – www.riverace.com
TAO's Real-time ORB Endsystem Architecture

- **Solution Approach**
 - Integrate RT dispatcher into ORB endsystem
 - Support multiple request scheduling strategies
 * e.g., RMS, EDF, and MUF
 - Requests ordered *across* thread priorities by OS dispatcher
 - Requests ordered *within* priorities based on *data dependencies* and *importance*
Real-time Experiments over ATM

- One high-priority client
- $1..n$ low-priority clients
- Server factory implements *thread-per-priority*
 - *Highest* real-time priority for high-priority client
 - *Lowest* real-time priority for low-priority clients

www.cs.wustl.edu/~schmidt/RT-perf.ps.gz
ORB Latency Results over ATM

- **Synopsis of results**
 - COOL’s latency is lower for small # of clients
 - TAO’s latency is lowest for large # of clients
 - TAO avoids priority inversion
 * i.e., high priority client always has lowest latency
ORB Jitter Results over ATM

- **Definition**
 - Variance from average latency

- **Synopsis of results**
 - TAO’s jitter is lowest and most consistent
 - MT-Orbix’s jitter is highest and more variable
Douglas C. Schmidt: High-performance, Real-time ORBs

User-level and Kernel-level Locking Overhead

Washington University, St. Louis
Integrating TAO with a Real-time ATM I/O Subsystem

- Key Features
 - Vertical integration of QoS through ORB, OS, and ATM network
 - Real-time I/O enhancements to Solaris kernel
 - Provides rate-based QoS end-to-end
 - Leverages APIC features for cell pacing and zero-copy buffering
Concluding Remarks

• Developers of distributed applications confront recurring challenges that are largely application-independent
 – e.g., service initialization and distribution, error handling, flow control, event demultiplexing, concurrency control, persistence, fault tolerance

• Successful developers resolve these challenges by applying appropriate design patterns to create communication frameworks and components

• CORBA ORBs are an effective way to achieve reuse of distributed software components

• The next-generation of ORBs will provide much better support for real-time QoS over ATM