
Abstract 

 When the Asynchronous Method Invocation (AMI) 
model was introduced into the CORBA specification, client 
applications benefited from the ability to invoke non-
blocking two-way requests. In particular, AMI improved 
the scalability of clients by removing the restrictions 
associated with Synchronous Method Invocations (SMI).  
Server request handling remained synchronous, however, 
which minimized the benefits of AMI for middle-tier 
servers, such as firewall gateways and front-end database 
servers.   
 
 This paper describes our strategy for implementing a 
scalable server-side asynchrony model for CORBA.  We 
first outline the key design challenges faced when 
developing an Asynchronous Method Handling (AMH) 
model for CORBA and then describe how we are resolving 
these challenges in TAO, our high-performance, real-time 
CORBA ORB.  In general, AMH-based CORBA servers 
provide more scalability than existing concurrency models, 
with only a moderate increase in programming complexity.  
Although targeted for CORBA, similar techniques can also 
be used in other method-oriented middleware, such as 
COM+ and Java RMI. 

1. Introduction 

Background 

Most first-generation implementations of distributed object 
computing middleware, such as CORBA [OMG 2000a], 
DCOM [Box 1997], and Java RMI [Wollrath et al. 1996], 
supported reliable communication solely through 
Synchronous Method Invocation (SMI) models. In an SMI 
model, a client invokes an operation through a local proxy, 
which: 
 
1. Sends the parameters to the target object and blocks 

waiting for the reply 
2. Returns control to the client thread along with the 

response 
 

Figure 1 illustrates a typical two-way SMI interaction 
between a client and server.1  
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Figure 1: The SMI Model.  (1) The client invokes the 
operation and the ORB blocks.  (2) After the response is 
returned, the ORB returns control to the client 
application thread that invoked the operation. 

 
Although SMI is a common invocation model, it does not 
scale well due to its need for a separate client thread to 
execute for each concurrent two-way SMI call. Moreover, 
SMI is not well suited for real-time or interactive 
applications that must remain responsive while waiting for 
replies to arrive from servers [Arulanthu et al. 2000a]. 
 
Recent changes to the CORBA specification [OMG 2000a] 
have added a new type of invocation model known as 
Asynchronous Method Invocation (AMI) [Arulanthu et al. 
2000b].  By separating requests from responses in time and 
space, AMI enables more scalable and responsive clients 
compared with conventional SMI clients. The two variants 
of AMI are polling and callbacks, as shown in Figure 2 and 
Figure 3.  
 
The polling model shown in Figure 2 is characterized by a 
Poller object the client can use to check the status of the 
request. 
 

                                                           
1 In the context of this paper, we assume all operations are 
two-way operations. 
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Figure 2: The AMI Polling Model.  (1) The client 
invokes the operation and the call returns immediately.  
(2) It later checks with the collocated Poller object to 
retrieve the response. 

 
The client uses the Poller object to check for a returned 
response or to block until the response is available.  The 
callback model shown in Figure 3 differs in that the client 
will pass a reply handler object with the request.  This 
object will be called back by the ORB to notify the 
application of an available response [Arulanthu et al. 
2000b]. 
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Figure 3: The AMI Callback Model.   (1) The client 
invokes the operation and the call returns immediately.   
(2) The ORB later invokes the callback when the 
response arrives. 

 
These two AMI models allow a client to make multiple 
requests on remote objects residing on one or more servers 
without blocking synchronously for responses.  Moreover, 
AMI allows clients to initiate many long-running method 
invocations concurrently, without incurring the overhead 
associated with using a separate thread for each request. 
 

An interesting aspect of the CORBA AMI specification is 
that it does not affect server design or behavior.  AMI only 
affects the behavior of clients by decoupling the sending of 
the request and the receiving of the response.  This design 
allows a client to make requests asynchronously, but does 
not (by itself) enable a server to handle the requests 
asynchronously. 

Limitations with CORBA AMI for Middle-tier Servers 

For many types of systems, CORBA AMI improves 
concurrency, scalability, and responsiveness significantly.  
Since AMI allows a client to invoke multiple two-way 
requests without waiting for responses, the client can use 
the time normally spent waiting for replies to perform other 
useful work.  These capabilities are sufficient for a wide 
range of applications, particularly two-tier client/server 
applications. 
 
There is another important class of systems where the 
standard CORBA AMI capabilities are insufficient. These 
systems have multi-tier architectures, such as the three-tier 
structure found in many distributed business systems 
[Eckerson 1995].  In a multi-tier system, one or more 
“middle-tier” servers are placed between a source client 
and a sink server. A source client’s two-way request may 
visit multiple middle-tier servers before it reaches its sink 
server; the result then flows in reverse through these 
intermediary servers before arriving back at the source 
client.  
 
Figure 4 illustrates a multi-tier architecture involving a 
middle-tier server and several source clients and sink 
servers.  
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Figure 4: A Three-tier Client/Server Architecture 

 
The three-tier client/server architecture shown in this figure 
can be used for many types of systems. For example, the 
middle-tier server could be a firewall gateway that validates 
requests from external clients before forwarding them to 
sink servers. Likewise, the middle-tier server could be a 
load balancer that distributes access to a group of database 



servers [Othman et. al. 2001].  In both cases, the middle-
tier servers act as intermediaries that accept requests from a 
client and then pass the requests on to another server or 
external data source.  When an intermediary receives a 
response, it sends its own response back to the source 
client.  The general behavior of a middle-tier server is 
summarized in Figure 5.  
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Figure 5: Typical Middle-tier Server Steps: (1) client 
sends request, (2) middle-tier processes the request and 
sends a new request to a sink server, (3) sink server 
processes and returns data, and (4) middle-tier returns 
data to (5) the client. 
 
Unlike ordinary source clients, middle-tier servers must 
communicate with multiple source clients and sink servers.  
They must therefore be highly scalable to avoid becoming a 
bottleneck.  Due to the cost of thread creation, context 
switching, synchronization, and data movement, it may not 
be scalable to dedicate a separate thread for each 
outstanding client request.  
 
The overhead of threads motivates the need for another way 
to increase middle-tier server scalability.  Unfortunately, 
these servers cannot leverage the benefits of AMI fully 
since AMI only provides asynchrony on the client side of a 
request.  In a middle-tier server, therefore, outgoing 
requests can use AMI to return program control from the 
ORB quickly, but the servant for the incoming request must 
remain on the stack of activation records (i.e., control 
cannot return back to the ORB) until a response can be 
returned to the source client.   

Properties of an Ideal Solution for Middle-tier Servers 

Figure 5 shows the sequence of steps performed per-request 
by a middle-tier server.  The point where asynchrony can 
provide the most benefit is step 3, i.e., send a new request 
to another server or data source and wait to receive the 
response.  Depending on the speed of the sink server or 
data source, considerable time could be spent blocked 
waiting for a response.   This waiting reduces the scalability 
of the middle-tier server since it must dedicate a thread for 
the duration of the request/response cycle.   
 
An ideal solution to this problem should have the following 
properties: 
 

• Request throughput:  A solution should provide high 
throughput for a client, i.e., it should be able to handle 
a large number of requests per unit time, e.g., per 
second or per “busy hour.”  A solution that serializes 
or minimizes incoming requests can degrade 
throughput. 

• Latency/Jitter: A solution should minimize the 
request/response processing delay (latency), as well as 
the variation of the delay (jitter). 

• Scalability: A solution should take advantage of 
multiple sink servers and handle many aggregate 
requests/responses. 

• Portability: Ideally, little or no changes and non-
portable features should be required to implement a 
scalable solution. 

• Simplicity: Compared with existing SMI designs, the 
solution should minimize the amount of work needed 
to implement scalable middle-tier servers. In addition, 
any ORB features required by the solution should be 
easy to implement. 

 
Although it is hard to achieve all these properties in a single 
design, we present this ideal solution as an archetypical 
baseline for comparison. 

Paper Organization  

The remainder of this paper is organized as follows: 
Section 2 introduces our solution—Asynchronous Method 
Handling (AMH)—and outlines its benefits; Section 3 
describes how we are addressing the key design challenges 
of AMH in The ACE ORB (TAO); Section 4 compares 
AMH with related work; and Section 5 presents concluding 
remarks. 



2. An Overview of Asynchronous 
Method Handling for Middle-tier 
Servers 

The difficulty of implementing a scalable middle-tier server 
is rooted in the tight coupling between a server’s receiving 
a request and returning a response in the same activation 
record.  This tight coupling limits a middle-tier server’s 
ability to handle incoming requests and responses 
efficiently.  In particular, each request needs its own 
activation record, which effectively restricts a 
request/response pair to a single thread in standard 
CORBA.   
 
This restriction also affects the design of servers that 
depend on long-running asynchronous hardware tasks.  
These servers cannot take advantage of asynchrony of the 
hardware because the ORB and servants must handle 
requests synchronously. 

 

A solution to this problem is to extend the same benefits of 
AMI to the server by employing Asynchronous Method 
Handling.  By allowing the server to asynchronously return 
responses, we decouple the existing 1-to-1 association of an 
incoming request to the run-time stack originating from the 
activation record that received the request without incurring 
the overhead of multi-threading.  This design can be seen in 
Figure 6, where the out parameters must be set when the 
servant upcall returns control to the ORB. 

: ORB : Servant

method(rh, in)

out

 
Figure 6: Current Method Handling Model 

Adding AMH to a middle-tier server that also uses the AMI 
callback model yields a server that can take full advantage 
of asynchrony.  Such an AMI/AMH server can act much 
like a message-oriented middleware (MOM) server, which 
is well suited for use in middle-tier servers.  A middle-tier 
server’s main task is to forward requests from source 
clients and responses from sink servers.  A server using 
AMI and AMH can treat a method call as two separate 
messages: a request and a response.  This type of 

architecture results in a more efficient design that does not 
require as much state in a middle-tier server as a method-
oriented design. 
 
Much as AMI allows a client application to provide a reply 
handler object to an ORB, AMH allows an ORB to provide 
a server application’s servant with a response handler 
object that contains the context information needed to 
return a response to the appropriate client. The server 
application can return a response via this response handler 
either during the servant upcall or at some later point 
during the server’s execution. 
 
Figure 7 shows how a servant upcall in a middle-tier server 
receives a response handler object and “in” parameters. 

 

: ORB

: Servant

rh : ResponseHandler

create()

method(rh, in)

method(out)

: ReplyHandler

 
Figure 7: Asynchronous Method Handling Model 

Using AMH, this middle-tier server can invoke an AMI call 
to a sink server and return control to the ORB without 
specifying the “out” parameters. When the response from 
the sink server becomes available, it is dispatched to the 
AMI callback handler, which can use the context 
information stored in the response handler to specify the 
“out” parameters and return a response to the client. 
 
Below we evaluate the pros and cons for this AMI/AMH 
model in terms of the ideal solution we outlined towards 
the end of Section 1. 
 

• Request throughput:  The middle-tier server can 
provide very high throughput by handling multiple 
incoming requests from a client asynchronously. 



• Latency/Jitter: When a request arrives, it is handled 
quickly, and when the response returns from the sink 
server, a reply can be sent back immediately.  Latency 
should be relatively low since no additional threads 
need be created to handle requests and wait for 
responses.  However, more state is required than in the 
simple single-threaded case, resulting in more context 
stored on the heap. 

• Scalability: Scalability can be very high since the 
upcall for requests and callbacks on ReplyHandler 
objects need not block. Moreover, performance can be 
enhanced to take advantage of multiple CPUs by 
combining the AMI/AMH model with a thread pool 
[Schmidt 1998].   

• Portability:  AMH is not yet defined in a CORBA 
specification, nor is it implemented by many ORBs.  
TAO’s implementation will include a proof-of-concept 
prototype. 

• Simplicity: The server application becomes more 
complicated because application code uses both AMH 
and AMI. The ORB and IDL compiler also become 
more complicated because request lifetimes are 
decoupled from the lifetime of a servant upcall.    

3. The Design of TAO’s Asynchronous 
Method Handling Architecture 

 
The design of TAO’s AMH support is modeled after its 
AMI callback model implementation [Arulanthu et al. 
2000b].  In the AMI callback model, the client creates a 
custom ReplyHandler object that it passes to the ORB 
when it uses the callback version of an operation.  Methods 
on a ReplyHandler are then invoked by the client ORB 
when a reply is returned from the server.   
 
TAO’s AMH design uses a ResponseHandler that 
behaves much like an AMI ReplyHandler.  When a 
server ORB invokes an upcall on a servant’s method, it 
passes the ResponseHandler to the servant.  The 
servant upcall method then has the following choices: 
 
• Immediate response -- It can use this Response

Handler during the upcall to send a reply 
immediately (which is akin to conventional two-way 
server behavior) or  

• Deferred response -- It can save the Response
Handler and defer the reply to a more suitable point 
in time, i.e., after the original upcall returns back to the 
skeleton. 

 
As with AMI, AMH requires changes to both IDL 
compilers and ORB internals.  For example, for each IDL 
interface an IDL compiler must generate a POA skeleton 

class that contains signatures that take the appropriate 
ResponseHandler parameter.  Likewise, an ORB must 
be extended to handle both the immediate and deferred 
response use-cases outlined above. 
 
Below, we describe the challenges we encountered during 
the design of TAO’s AMH support and outline our solution 
approach.2 

Challenge 1:  How to Process Asynchronous Responses 
Efficiently 

Context:  To support SMI-based servant upcalls, an ORB 
can make assumptions about the lifetime of objects needed 
for method handling.  For example, ORBs can use 
automatic variables to control the lifetime of objects 
associated with method handling. 
 
Problem: The introduction of AMH violates most of the 
SMI assumptions.  In the above example, the lifetime of an 
object must be extended until a ResponseHandler is 
used to return a response (which can occur long after the 
upcall returns).  Since assumptions like this are key to 
optimizations involving memory allocations and thread 
synchronization, new techniques must be devised to handle 
these issues efficiently. 
 
Solution: Use the Strategy pattern [Gamma et al. 1995] to 
encapsulate different algorithms and interchange them 
easily.  To minimize the impact of AMH support, the TAO 
ORB mechanisms that process incoming requests are 
controlled by a strategy.  The ORB will normally be 
configured without support for AMH, thereby minimizing 
the performance and footprint impact of this extension.   

Challenge 2:  How to Minimize the Time/Space Cost of 
AMH Support on non-AMH Applications 

Context:  Only certain types of applications, such as 
middle-tier servers, will require AMH capabilities. 
 
Problem:  AMH requires changes to the ORB’s use of 
servant upcalls.  As described in Challenge 1, this change 
can affect the optimizations currently in place.  As a result, 
non-AMH calls can also be affected.  Ideally, only servants 
that make use of AMH should have to pay any penalties, 
such as additional dynamic memory allocators or footprint 
enlargement, related to this feature. 
 
Solution: Use the Component Configurator pattern 
[Schmidt et al. 2000], which allows middleware or 
application developers to delay their configuration 
                                                           
2 Note to reviewers: the final version of this paper will 
contain the results of benchmarks that will illustrate the 
benefits of AMH empirically. 



decisions until run-time.  In TAO, we use this pattern to 
dynamically load the AMH support strategies only when 
needed. For example, a different implementation of a server 
ORB’s request-processing strategy can be loaded 
dynamically to handle the special requirements of AMH 
request processing.  Applications that do not require these 
features need not load the AMH strategy, thereby avoiding 
any time/space penalties it incurs. 

Challenge 3:  How to Leverage AMI Stub Generation in 
TAO’s IDL compiler for AMH Skeleton Generation 

Context:  TAO’s IDL compiler currently has the ability to 
generate AMI stubs.  AMH requires the IDL compiler to 
also generate AMH skeletons. 
 
Problem: As noted earlier, many similarities exist between 
the ReplyHandler class generated for AMI stubs and 
the ResponseHandler class needed for AMH skeletons.  
Instead of adding new code, it should be possible to reuse 
existing AMI generation code to generate AMH skeletons. 
 
Solution: TAO’s IDL compiler design is based on the 
Visitor pattern [Gamma et al. 1995], which represents 
operations that are performed and members of an object 
structure.  The use of this pattern allows us to reuse the 
components that generate the ReplyHandler 
declarations.  However, the implementation of the new 
server-side ReplyHandler requires the addition of other 
visitors.   

Challenge 4: How to Minimize or Remove All Blocking 
I/O Operations from the ORB 

Context: There are many opportunities for the ORB to 
block due to flow control while reading or writing data to 
the network.  
 
Problem: Efficient use of the AMH model relies on the 
ability of a single thread to do other work while waiting for 
a response to outstanding requests.  Whenever the ORB 
blocks unnecessarily, the application is prevented from 
handling other requests, which can degrade the 
performance of middle-tier servers significantly. 
 
Solution: Recently, support for non-blocking I/O for both 
sending and receiving data in the ORB was added to TAO.  
This feature is fundamental for the efficient use of AMH in 
a server.  The ORB configuration must be extended to help 
enable the appropriate configurations for optimal ORB 
behavior when AMH is enabled. 

Challenge 5:  How to Handle Multithreaded Issues with 
AMH 

Context:  TAO supports multiple threading models, ranging 
from one thread (i.e., a reactive model [Schmidt et al. 
2000]) to thread-per connection, to various forms of thread 
pools [Schmidt 1998].  
 
Problem:  The separation of the lifetime of the servant 
upcall to the lifetime of the request causes situations where 
the thread receiving the request may not be the thread 
sending back the response.  These situations must be 
handled in an efficient and scalable manner.   
 
Solution: The nature of AMH modifies some seldom-used 
properties of CORBA servers. For example, an application 
can ordinarily consult the POACurrent to obtain 
incoming request information, such as its target ObjectID.  
In AMH, this information cannot be obtained from a 
thread-specific object, and must therefore be represented 
explicitly.  To support this capability, therefore, we are 
adding a new AMHCurrent to represent all information 
normally contained in the thread activation.  This object 
can be obtained during the upcall to the AMH skeleton, and 
used by the application until the response is sent, or it can 
be passed as an extra argument in the AMH operation. 
 
Likewise, CORBA ORBs must follow strict threading rules 
in the invocation of interceptors and similar mechanisms; 
those rules cannot be followed for AMH requests.  We 
expect that applications designed for AMH will simply take 
these changes into consideration, however, and normal 
servants should not be affected by the relaxation of these 
rules. 

4. Related Work  
[Draves et al. 1991] outlines the use of continuations in an 
operating system’s kernel.  Continuations allow a thread to 
discard its call stack and provide a high-level representation 
of its execution state.  This capability is similar to AMH in 
that AMH also encapsulates state in a Response
Handler that is later used to return a response to a client. 
 
The AMH model is based on the design of the AMI 
callback model [Arulanthu et al. 2000a].  The idea of a 
ReplyHandler was extended for use within the server as 
a ResponseHandler.  In addition to allowing a client to 
use callbacks when the ORB receives a response from a 
server with AMI, the server application can now use a 
callback into the ORB to send a response back to the client. 
 
Some other examples of work on this subject include 
Futures [Halstead et al. 1985] and Promises [Liskov et al. 
1998], which are language mechanisms that decouple 
method invocation from method return values passed back 



to the caller when a method finishes executing. While 
mainly dealing with the client side of an operation, their use 
can be extended into the method itself to provide further 
decoupling. 
 
The TAO AMH design is influenced by the Proactor 
pattern [Schmidt et al. 2000], which allows event-driven 
applications to efficiently demultiplex and dispatch service 
requests triggered by the completion of asynchronous 
operations. The Proactor pattern separates (1) long-duration 
operations that execute asynchronously and (2) completion 
handlers that process the results of these operations to 
achieve the performance benefits of concurrency without 
incurring certain of its liabilities. 

5. Concluding Remarks 
Recent CORBA specifications [OMG 2000a] have 
standardized an Asynchronous Method Invocation (AMI) 
mechanism, which helps improve the scalability of client 
applications. Within the context of middle-tier servers, 
however, the utility of AMI is restricted by the fact that the 
activation records of threads in the servers cannot perform 
useful work while waiting for a response. A potentially 
better solution, therefore, is to apply a combination of AMI 
and the Asynchronous Method Handling (AMH) 
mechanism described in this paper.  
 
AMH allows servants in middle-tier server applications to 
store response handlers in a container maintained by the 
servant application code and return control to the ORB 
immediately. This design allows the ORB to start handling 
a new request while it is waiting for a response from a sink 
server without requiring a thread for each request/response 
pairing in a middle-tier server.  Any response from a sink 
server can invoke an immediate response to the client. 
Similarly, AMH can be applied to servers that block for a 
long time, e.g., waiting for I/O, communicating over wide-
area and other high latency networks, or long computations. 
Such applications can take advantage of AMH to improve 
predictability, latency and throughput, without the overhead 
of multi-threaded ORB server concurrency models 
[Schmidt 1998]. 
 
The open-source software, documentation, tests, examples, 
and related papers pertaining to TAO are available from 
http://www.cs.wustl.edu/~schmidt/TAO.html.  
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